1
|
Yari-Ilkhchi A, Hamidi N, Mahkam M, Ebrahimi-Kalan A. Graphene-based materials: an innovative approach for neural regeneration and spinal cord injury repair. RSC Adv 2025; 15:9829-9853. [PMID: 40165920 PMCID: PMC11956154 DOI: 10.1039/d4ra07976k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Spinal cord injury (SCI), the most serious disease affecting the central nervous system (CNS), is one of contemporary medicine's most difficult challenges, causing patients to suffer physically, emotionally, and socially. However, due to recent advances in medical science and biomaterials, graphene-based materials (GBMs) have tremendous potential in SCI therapy due to their wonderful and valuable properties, such as physicochemical properties, extraordinary electrical conductivity, distinct morphology, and high mechanical strength. This review discusses SCI pathology and GBM characteristics, as well as recent in vitro and in vivo findings on graphenic scaffolds, electrodes, and injectable achievements for SCI improvement using neuroprotective and neuroregenerative techniques to improve neural structural and functional repair. Additionally, it suggests possible ideas and desirable products for graphene-based technological advances, intending to reach therapeutic importance for SCI.
Collapse
Affiliation(s)
- Ayda Yari-Ilkhchi
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University 5375171379 Tabriz Iran
- Faculty of Chemical and Metallurgical Engineering, Department of Chemical Engineering, Istanbul Technical University Maslak 34469 Istanbul Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University 34956 Istanbul Turkey
| | - Nazila Hamidi
- Department of Chemistry and Biochemistry, The University of Tulsa Tulsa OK 74104 USA
| | - Mehrdad Mahkam
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University 5375171379 Tabriz Iran
| | - Abbas Ebrahimi-Kalan
- Faculty of Advanced Medical Science, Tabriz University of Medical Sciences 5166614733 Tabriz Iran
| |
Collapse
|
2
|
Luna-Figueroa E, Bernal-Ramírez J, Vázquez-Garza E, Huerta-Arcos L, García-Rivas G, Contreras-Torres FF. Angiotensin II-Induced Hypertrophy in H9c2 Cells Reveals Severe Cytotoxicity of Graphene Oxide. ACS OMEGA 2025; 10:7327-7337. [PMID: 40028060 PMCID: PMC11866173 DOI: 10.1021/acsomega.4c11130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
This study investigates the differential cytotoxicity of reduced graphene oxide (RGO) and graphene oxide (GO) particles using an angiotensin II (Ang II)-induced hypertrophy model in H9c2 cells. Herein, GO particles were synthesized from graphite, and subsequent reduction was carried out to obtain RGO particles. To ensure a thorough assessment of particle size, functionalization, and purity, the particles were characterized by using UV-vis absorbance spectroscopy, dynamic light scattering, X-ray photoelectron spectroscopy, FTIR spectroscopy, Raman spectroscopy, and scanning electron microscopy. Comprehensive characterization revealed that the transformation from GO (∼21.6% content of oxygen) to RGO (∼13.3% content of oxygen) results in an enrichment in the proportion of sp2 carbon. Additionally, rat cardiac myoblasts of the H9c2 cell line were subjected to Ang II to induce cellular hypertrophy, leading to cytoskeleton remodeling, increased cardiac myocyte surface area, extracellular matrix alterations, and collagen type 1a upregulation. To evaluate cytotoxicity, H9c2 cells were treated with RGO and GO suspensions at concentrations ranging from 1 to 10,000 μg/mL, and metabolic viability was assessed in both concentration- and time-dependent assays. GO and RGO reduced the viability of H9c2 cells; however, the metabolic viability assays showed that the half-maximal inhibitory concentration (IC50) values for GO and RGO were significantly lower in hypertrophic cardiomyocytes, with GO exhibiting an IC50 of 12.6 ± 10.7 μg/mL and RGO exhibiting an IC50 of 86.3 ± 12.9 μg/mL, compared to control cells (676.0 ± 80.3 μg/mL for GO and 152.9 ± 40.1 μg/mL for RGO). These results demonstrate that under hypertrophic conditions, there is a significant increase of cytotoxicity for GO (50-fold increase) in comparison to RGO (1.7-fold increase). It was demonstrated that GO particles create a pro-oxidative environment that ultimately leads to mechanistic impairments and cell death. Vulnerable populations predisposed to cardiac damage may be at increased risk of experiencing toxicity caused by the use of GO particles in potential bioapplications.
Collapse
Affiliation(s)
- Estefanía Luna-Figueroa
- Tecnologico
de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico
| | - Judith Bernal-Ramírez
- Tecnologico
de Monterrey, The Institute for Obesity Research, Unit of Experimental
Medicine, Monterrey 64849, Mexico
| | - Eduardo Vázquez-Garza
- Tecnologico
de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico
| | - Lázaro Huerta-Arcos
- Universidad
Nacional Autónoma de México, Instituto de Investigaciones en Materiales, Ciudad de México 04510, Mexico
| | - Gerardo García-Rivas
- Tecnologico
de Monterrey, The Institute for Obesity Research, Unit of Experimental
Medicine, Monterrey 64849, Mexico
| | - Flavio F. Contreras-Torres
- Tecnologico
de Monterrey, The Institute for Obesity Research, Unit of Experimental
Medicine, Monterrey 64849, Mexico
| |
Collapse
|
3
|
Zhou X, Zhang Q, Zhu H, Ouyang G, Wang X, Cai Y. High Carbonyl Graphene Oxide Suppresses Colorectal Cancer Cell Proliferation and Migration by Inducing Ferroptosis via the System Xc-/GSH/GPX4 Axis. Pharmaceutics 2024; 16:1605. [PMID: 39771583 PMCID: PMC11678421 DOI: 10.3390/pharmaceutics16121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Colorectal cancer (CRC) is characterized by a high rate of both incidence and mortality, and its treatment outcomes are often affected by recurrence and drug resistance. Ferroptosis, an iron-dependent programmed cell death mechanism triggered by lipid peroxidation, has recently gained attention as a potential therapeutic target. Graphene oxide (GO), known for its oxygen-containing functional groups, biocompatibility, and potential for functionalization, holds promise in cancer treatment. However, its role in ferroptosis induction in CRC remains underexplored. The objective of this study was to investigate the effects of High Carbonyl Graphene Oxide (HC-GO) on ferroptosis in CRC and elucidate the underlying mechanisms. METHODS In vitro assays were conducted to evaluate the impact of HC-GO on CRC cell proliferation, mitochondrial function, iron accumulation, lipid peroxidation, and reactive oxygen species (ROS) production. The ferroptosis inhibitor Fer-1 was used to confirm the role of ferroptosis in HC-GO's anti-tumor effects. In vivo, the anti-tumor activity of HC-GO was assessed in a CRC xenograft model, with organ toxicity evaluated. RESULTS HC-GO significantly inhibited CRC cell proliferation, induced mitochondrial damage, and enhanced iron accumulation, lipid peroxidation, and ROS production. It also downregulated the ferroptosis-inhibiting proteins GPX4 and SLC7A11, which were reversed by Fer-1, confirming the involvement of ferroptosis in HC-GO's anti-cancer effects. In vivo, HC-GO significantly suppressed tumor growth without noticeable toxicity to vital organs. CONCLUSIONS HC-GO triggered ferroptosis in CRC cells by suppressing the System Xc-/GSH/GPX4 pathway, providing a novel therapeutic strategy for CRC treatment. These findings suggest HC-GO as a promising nanomedicine for clinical application, warranting further investigation to explore its potential in CRC therapy.
Collapse
Affiliation(s)
- Xiecheng Zhou
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China; (X.Z.); (H.Z.)
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China;
| | - Qixing Zhang
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China;
- Department of Pediatrics, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Haoran Zhu
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China; (X.Z.); (H.Z.)
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China;
| | - Guangxiong Ouyang
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China; (X.Z.); (H.Z.)
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China;
| | - Xin Wang
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China; (X.Z.); (H.Z.)
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China;
| | - Yuankun Cai
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China; (X.Z.); (H.Z.)
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China;
| |
Collapse
|
4
|
Lin L, Liu H, Zhang D, Du L, Zhang H. Nanolevel Immunomodulators in Sepsis: Novel Roles, Current Perspectives, and Future Directions. Int J Nanomedicine 2024; 19:12529-12556. [PMID: 39606559 PMCID: PMC11600945 DOI: 10.2147/ijn.s496456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis represents a profound challenge in critical care, characterized by a severe systemic inflammatory response which can lead to multi-organ failure and death. The intricate pathophysiology of sepsis involves an overwhelming immune reaction that disrupts normal host defense mechanisms, necessitating innovative approaches to modulation. Nanoscale immunomodulators, with their precision targeting and controlled release capabilities, have emerged as a potent solution to recalibrate immune responses in sepsis. This review explores the recent advancements in nanotechnology for sepsis management, emphasizing the integration of nanoparticulate systems to modulate immune function and inflammatory pathways. Discussions detail the development of the immune system, the distinct inflammatory responses triggered by sepsis, and the scientific principles underpinning nanoscale immunomodulation, including specific targeting mechanisms and delivery systems. The review highlights nanoformulation designs aimed at enhancing bioavailability, stability, and therapeutic efficacy, which shows promise in clinical settings by modulating key inflammatory pathways. Ultimately, this review synthesizes the current state of knowledge and projects future directions for research, underscoring the transformative potential of nanolevel immunomodulators for sepsis treatment through innovative technologies and therapeutic strategies.
Collapse
Affiliation(s)
- Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Hanyou Liu
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Dingshan Zhang
- Department of Intensive Care Unit, Public Health Clinical Center of Chengdu, Chengdu, People’s Republic of China
| | - Lijia Du
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| | - Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
5
|
Cui M, Zhang J, Han P, Shi L, Li X, Zhang Z, Bao H, Ma Y, Tao Z, Dong X, Fu L, Wu Y. Two-dimensional nanomaterials: A multifunctional approach for robust for diabetic wound repair. Mater Today Bio 2024; 28:101186. [PMID: 39221220 PMCID: PMC11364902 DOI: 10.1016/j.mtbio.2024.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Diabetic wounds pose a clinical challenge due to persistent inflammation, severe bacterial infections, inadequate vascularization, and pronounced oxidative stress. Current therapeutic modalities fail to provide satisfactory outcomes in managing these conditions, resulting in considerable patient distress. Two-dimensional nanomaterials (2DNMs), characterized by their unique nanosheet structures, expansive surface areas, and remarkable physicochemical properties, have garnered considerable attention for their potential in therapeutic applications. Emerging 2DNMs can be loaded with various pharmacological agents, including small molecules, metal ions, and liposomes. Moreover, they can be integrated with various biomaterials such as hydrogels, microneedles, and microspheres, thus demonstrating unprecedented advantages in expediting the healing process of diabetic wounds. Moreover, 2DNMs exhibit exceptional performance characteristics, including high biocompatibility, effective antimicrobial properties, optimal phototherapeutic effects, and enhanced electrostimulation capabilities. These properties enable them to modulate the wound microenvironment, leading to widespread application in tissue repair with remarkable outcomes. This review delineates several emerging 2DNMs, such as graphene and its derivatives, black phosphorus, MXenes, and transition metal dichalcogenides, in the context of diabetic wound repair. Furthermore, it elucidates the translational challenges and future perspectives of 2DNMs in wound healing treatments. Overall, 2DNMs present a highly promising strategy for ameliorating diabetic wounds, thus providing novel avenues for diagnostic and therapeutic strategies in diabetic wound management.
Collapse
Affiliation(s)
- Mingming Cui
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jin Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, Quzhou, 324004, China
| | - Pengfei Han
- Clinical Laboratory, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Ling Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xing Li
- Department of Clinical Laboratory, The Quzhou Afiliated Hospital of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, 324000, China
| | - Zhe Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Haihua Bao
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yubo Ma
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Ziwei Tao
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xianghui Dong
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Li Fu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| |
Collapse
|
6
|
Memarian P, Bagher Z, Asghari S, Aleemardani M, Seifalian A. Emergence of graphene as a novel nanomaterial for cardiovascular applications. NANOSCALE 2024; 16:12793-12819. [PMID: 38919053 DOI: 10.1039/d4nr00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CDs) are the foremost cause of death worldwide. Several promising therapeutic methods have been developed for this approach, including pharmacological, surgical intervention, cell therapy, or biomaterial implantation since heart tissue is incapable of regenerating and healing on its own. The best treatment for heart failure to date is heart transplantation and invasive surgical intervention, despite their invasiveness, donor limitations, and the possibility of being rejected by the patient's immune system. To address these challenges, research is being conducted on less invasive and efficient methods. Consequently, graphene-based materials (GBMs) have attracted a great deal of interest in the last decade because of their exceptional mechanical, electrical, chemical, antibacterial, and biocompatibility properties. An overview of GBMs' applications in the cardiovascular system has been presented in this article. Following a brief explanation of graphene and its derivatives' properties, the potential of GBMs to improve and restore cardiovascular system function by using them as cardiac tissue engineering, stents, vascular bypass grafts,and heart valve has been discussed.
Collapse
Affiliation(s)
- Paniz Memarian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sheida Asghari
- Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, S3 7HQ, UK.
- Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK.
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
| |
Collapse
|
7
|
Andrews JPM, Joshi SS, Tzolos E, Syed MB, Cuthbert H, Crica LE, Lozano N, Okwelogu E, Raftis JB, Bruce L, Poland CA, Duffin R, Fokkens PHB, Boere AJF, Leseman DLAC, Megson IL, Whitfield PD, Ziegler K, Tammireddy S, Hadjidemetriou M, Bussy C, Cassee FR, Newby DE, Kostarelos K, Miller MR. First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses. NATURE NANOTECHNOLOGY 2024; 19:705-714. [PMID: 38366225 PMCID: PMC11106005 DOI: 10.1038/s41565-023-01572-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/09/2023] [Indexed: 02/18/2024]
Abstract
Graphene oxide nanomaterials are being developed for wide-ranging applications but are associated with potential safety concerns for human health. We conducted a double-blind randomized controlled study to determine how the inhalation of graphene oxide nanosheets affects acute pulmonary and cardiovascular function. Small and ultrasmall graphene oxide nanosheets at a concentration of 200 μg m-3 or filtered air were inhaled for 2 h by 14 young healthy volunteers in repeated visits. Overall, graphene oxide nanosheet exposure was well tolerated with no adverse effects. Heart rate, blood pressure, lung function and inflammatory markers were unaffected irrespective of graphene oxide particle size. Highly enriched blood proteomics analysis revealed very few differential plasma proteins and thrombus formation was mildly increased in an ex vivo model of arterial injury. Overall, acute inhalation of highly purified and thin nanometre-sized graphene oxide nanosheets was not associated with overt detrimental effects in healthy humans. These findings demonstrate the feasibility of carefully controlled human exposures at a clinical setting for risk assessment of graphene oxide, and lay the foundations for investigating the effects of other two-dimensional nanomaterials in humans. Clinicaltrials.gov ref: NCT03659864.
Collapse
Affiliation(s)
- Jack P M Andrews
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- The Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Shruti S Joshi
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Evangelos Tzolos
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maaz B Syed
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Livia E Crica
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Emmanuel Okwelogu
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Jennifer B Raftis
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Lorraine Bruce
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Craig A Poland
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Rodger Duffin
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Paul H B Fokkens
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - A John F Boere
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Daan L A C Leseman
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ian L Megson
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Phil D Whitfield
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Kerstin Ziegler
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Seshu Tammireddy
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Marilena Hadjidemetriou
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Cyrill Bussy
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
- Thomas Ashton Institute for Risk and Regulatory Research, The University of Manchester, Manchester, UK
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK.
- National Graphene Institute, The University of Manchester, Manchester, UK.
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, Spain.
| | - Mark R Miller
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Ereej N, Hameed H, Khan MA, Faheem S, Hameed A. Nanoparticle-based Gene Therapy for Neurodegenerative Disorders. Mini Rev Med Chem 2024; 24:1723-1745. [PMID: 38676491 DOI: 10.2174/0113895575301011240407082559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
Neurological disorders present a formidable challenge in modern medicine due to the intricate obstacles set for the brain and the multipart nature of genetic interventions. This review article delves into the promising realm of nanoparticle-based gene therapy as an innovative approach to addressing the intricacies of neurological disorders. Nanoparticles (NPs) provide a multipurpose podium for the conveyance of therapeutic genes, offering unique properties such as precise targeting, enhanced stability, and the potential to bypass blood-brain barrier (BBB) restrictions. This comprehensive exploration reviews the current state of nanoparticle-mediated gene therapy in neurological disorders, highlighting recent advancements and breakthroughs. The discussion encompasses the synthesis of nanoparticles from various materials and their conjugation to therapeutic genes, emphasizing the flexibility in design that contributes to specific tissue targeting. The abstract also addresses the low immunogenicity of these nanoparticles and their stability in circulation, critical factors for successful gene delivery. While the potential of NP-based gene therapy for neurological disorders is vast, challenges and gaps in knowledge persist. The lack of extensive clinical trials leaves questions about safety and potential side effects unanswered. Therefore, this abstract emphasizes the need for further research to validate the therapeutic applications of NP-mediated gene therapy and to address nanosafety concerns. In conclusion, nanoparticle-based gene therapy emerges as a promising avenue in the pursuit of effective treatments for neurological disorders. This abstract advocates for continued research efforts to bridge existing knowledge gaps, unlocking the full potential of this innovative approach and paving the way for transformative solutions in the realm of neurological health.
Collapse
Affiliation(s)
- Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
- Institute of Clinical and Experimental Pharmacology and Toxicology, University of Lubeck 23566 Lubeck, Germany
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan
| |
Collapse
|
9
|
Vakili B, Karami-Darehnaranji M, Mirzaei E, Hosseini F, Nezafat N. Graphene oxide as novel vaccine adjuvant. Int Immunopharmacol 2023; 125:111062. [PMID: 37866317 DOI: 10.1016/j.intimp.2023.111062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
To improve antigen immunogenicity and promote long-lasting immunity, vaccine formulations have been appropriately supplemented with adjuvants. Graphene has been found to enhance the presentation of antigens to CD8+ T cells, as well as stimulating innate immune responses and inflammatory factors. Its properties, such as large surface area, water stability, and high aspect ratio, make it a suitable candidate for delivering biological substances. Graphene-based nanomaterials have recently attracted significant attention as a new type of vaccine adjuvants due to their potential role in the activation of immune responses. Due to the limited functionality of some approved human adjuvants for use, the development of new all-purpose adjuvants is urgently required. Research on the immunological and biomedical use of graphene oxide (GO) indicates that these nanocarriers possess excellent physicochemical properties, acceptable biocompatibility, and a high capacity for drug loading. Graphene-based nanocarriers also could improve the function of some immune cells such as dendritic cells and macrophages through specific signaling pathways. However, GO injection can lead to significant oxidative stress and inflammation. Various surface functionalization protocols have been employed to reduce possible adverse effects of GO, such as aggregation of GO in biological liquids and induce cell death. Furthermore, these modifications enhance the properties of functionalized-GO's qualities, making it an excellent carrier and adjuvant. Shedding light on different physicochemical and structural properties of GO and its derivatives has led to their application in various therapeutic and drug delivery fields. In this review, we have endeavored to elaborate on different aspects of GO.
Collapse
Affiliation(s)
- Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Karami-Darehnaranji
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hosseini
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Yu S, Wang X, Lv L, Liu T, Guan Q. Borneol-modified PEGylated graphene oxide as a nanocarrier for brain-targeted delivery of ginsenoside Rg1 against depression. Int J Pharm 2023; 643:123284. [PMID: 37527732 DOI: 10.1016/j.ijpharm.2023.123284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Depression is a chronic mental disorder which threatens human health and lives. However, the treatment of depression remains challenging largely due to blood brain barrier (BBB), which restricts drugs from entering the brain, resulting in a poor distribution of antidepressants in the brain. In this work, a novel brain-targeted drug delivery system was developed based on borneol-modified PEGylated graphene oxide (GO-PEG-BO). GO-PEG-BO was characterized and proved to possess excellent biocompatibility. By incorporating borneol, GO-PEG-BO could penetrate BBB efficiently by opening tight junctions and inhibiting the efflux system of BBB. The targeted distribution of GO-PEG-BO in the brain was observed by an in vivo biodistribution study. Moreover, GO-PEG-BO exhibited a neuroprotective effect, which is beneficial to the treatment of depression. Ginsenoside Rg1 (GRg1), which can relieve depressive symptoms but difficult to cross BBB, was loaded to GO-PEG-BO for the therapy of depression. In depressive rats, GRg1/GO-PEG-BO improved stress-induced anhedonia, despair and anxiety, and comprehensively relieved the depressive symptoms. In conclusion, GO-PEG-BO could serve as a promising nanocarrier for brain-targeted drug delivery, and provide a new strategy for the therapy of depression.
Collapse
Affiliation(s)
- Shangmin Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China; Department of Pharmaceutics, School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui 233000, China
| | - Xinying Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Linlin Lv
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Tongyan Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Qingxiang Guan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China.
| |
Collapse
|
11
|
Ye T, Yang Y, Bai J, Wu FY, Zhang L, Meng LY, Lan Y. The mechanical, optical, and thermal properties of graphene influencing its pre-clinical use in treating neurological diseases. Front Neurosci 2023; 17:1162493. [PMID: 37360172 PMCID: PMC10288862 DOI: 10.3389/fnins.2023.1162493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Rapid progress in nanotechnology has advanced fundamental neuroscience and innovative treatment using combined diagnostic and therapeutic applications. The atomic scale tunability of nanomaterials, which can interact with biological systems, has attracted interest in emerging multidisciplinary fields. Graphene, a two-dimensional nanocarbon, has gained increasing attention in neuroscience due to its unique honeycomb structure and functional properties. Hydrophobic planar sheets of graphene can be effectively loaded with aromatic molecules to produce a defect-free and stable dispersion. The optical and thermal properties of graphene make it suitable for biosensing and bioimaging applications. In addition, graphene and its derivatives functionalized with tailored bioactive molecules can cross the blood-brain barrier for drug delivery, substantially improving their biological property. Therefore, graphene-based materials have promising potential for possible application in neuroscience. Herein, we aimed to summarize the important properties of graphene materials required for their application in neuroscience, the interaction between graphene-based materials and various cells in the central and peripheral nervous systems, and their potential clinical applications in recording electrodes, drug delivery, treatment, and as nerve scaffolds for neurological diseases. Finally, we offer insights into the prospects and limitations to aid graphene development in neuroscience research and nanotherapeutics that can be used clinically.
Collapse
Affiliation(s)
- Ting Ye
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Jin Bai
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Feng-Ying Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
| | - Lu Zhang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Long-Yue Meng
- Department of Environmental Science, Department of Chemistry, Yanbian University, Yanji, Jilin, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
12
|
Uskoković V. Lessons from the history of inorganic nanoparticles for inhalable diagnostics and therapeutics. Adv Colloid Interface Sci 2023; 315:102903. [PMID: 37084546 DOI: 10.1016/j.cis.2023.102903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
The respiratory tract is one of the most accessible ones to exogenous nanoparticles, yet drug delivery by their means to it is made extraordinarily challenging because of the plexus of aerodynamic, hemodynamic and biomolecular factors at cellular and extracellular levels that synergistically define the safety and efficacy of this process. Here, the use of inorganic nanoparticles (INPs) for inhalable diagnostics and therapies of the lung is viewed through the prism of the history of studies on the interaction of INPs with the lower respiratory tract. The most conceptually and methodologically innovative and illuminative studies are referred to in the chronological order, as they were reported in the literature, and the trends in the progress of understanding this interaction of immense therapeutic and toxicological significance are being deduced from it. The most outstanding actual trends delineated include the diminishment of toxicity via surface functionalization, cell targeting, tagging and tracking via controlled binding and uptake, hybrid INP treatments, magnetic guidance, combined drug and gene delivery, use as adjuvants in inhalable vaccines, and other. Many of the understudied research directions, which have been accomplished by the nanostructured organic polymers in the pulmonary niche, are discussed. The progress in the use of INPs as inhalable diagnostics or therapeutics has been hampered by their well-recognized inflammatory potential and toxicity in the respiratory tract. However, the annual numbers of methodologically innovative studies have been on the rise throughout the past two decades, suggesting that this is a prolific direction of research, its comparatively poor commercial takings notwithstanding. Still, the lack of consensus on the effects of many INP compositions at low but therapeutically effective doses, the plethora of contradictory reports on ostensibly identical chemical compositions and NP properties, and the many cases of antagonism in combinatorial NP treatments imply that the rational design of inhalable medical devices based on INPs must rely on qualitative principles for the most part and embrace a partially stochastic approach as well. At the same time, the fact that the most studied INPs for pulmonary applications have been those with some of the thickest records of pulmonary toxicity, e.g., carbon, silver, gold, silica and iron oxide, is a silent call for the expansion of the search for new inorganic compositions for use in inhalable therapies to new territories.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, 7 Park Vista, Irvine, CA 92604, USA; Department of Mechanical Engineering, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
13
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
14
|
Xiao Y, Pang YX, Yan Y, Qian P, Zhao H, Manickam S, Wu T, Pang CH. Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205292. [PMID: 36658693 PMCID: PMC10037997 DOI: 10.1002/advs.202205292] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Since its discovery in 2004, graphene is increasingly applied in various fields owing to its unique properties. Graphene application in the biomedical domain is promising and intriguing as an emerging 2D material with a high surface area, good mechanical properties, and unrivalled electronic and physical properties. This review summarizes six typical synthesis methods to fabricate pristine graphene (p-G), graphene oxide (GO), and reduced graphene oxide (rGO), followed by characterization techniques to examine the obtained graphene materials. As bare graphene is generally undesirable in vivo and in vitro, functionalization methods to reduce toxicity, increase biocompatibility, and provide more functionalities are demonstrated. Subsequently, in vivo and in vitro behaviors of various bare and functionalized graphene materials are discussed to evaluate the functionalization effects. Reasonable control of dose (<20 mg kg-1 ), sizes (50-1000 nm), and functionalization methods for in vivo application are advantageous. Then, the key biomedical applications based on graphene materials are discussed, coupled with the current challenges and outlooks of this growing field. In a broader sense, this review provides a comprehensive discussion on the synthesis, characterization, functionalization, evaluation, and application of p-G, GO, and rGO in the biomedical field, highlighting their recent advances and potential.
Collapse
Affiliation(s)
- Yuqin Xiao
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Yoong Xin Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
| | - Yuxin Yan
- College of Energy EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Ping Qian
- Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing100083P. R. China
- School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Haitao Zhao
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Sivakumar Manickam
- Petroleum and Chemical EngineeringFaculty of EngineeringUniversiti Teknologi BruneiBandar Seri BegawanBE1410Brunei Darussalam
| | - Tao Wu
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Key Laboratory for Carbonaceous Wastes Processing and ProcessIntensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Cheng Heng Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Municipal Key Laboratory of Clean Energy Conversion TechnologiesUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| |
Collapse
|
15
|
Taheriazam A, Abad GGY, Hajimazdarany S, Imani MH, Ziaolhagh S, Zandieh MA, Bayanzadeh SD, Mirzaei S, Hamblin MR, Entezari M, Aref AR, Zarrabi A, Ertas YN, Ren J, Rajabi R, Paskeh MDA, Hashemi M, Hushmandi K. Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis. J Control Release 2023; 354:503-522. [PMID: 36641122 DOI: 10.1016/j.jconrel.2023.01.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Nanotechnology is a growing field, with many potential biomedical applications of nanomedicine for the treatment of different diseases, particularly cancer, on the horizon. Graphene oxide (GO) nanoparticles can act as carbon-based nanocarriers with advantages such as a large surface area, good mechanical strength, and the capacity for surface modification. These nanostructures have been extensively used in cancer therapy for drug and gene delivery, photothermal therapy, overcoming chemotherapy resistance, and for imaging procedures. In the current review, we focus on the biological functions of GO nanoparticles as regulators of apoptosis and autophagy, the two major forms of programmed cell death. GO nanoparticles can either induce or inhibit autophagy in cancer cells, depending on the conditions. By stimulating autophagy, GO nanocarriers can promote the sensitivity of cancer cells to chemotherapy. However, by impairing autophagy flux, GO nanoparticles can reduce cell survival and enhance inflammation. Similarly, GO nanomaterials can increase ROS production and induce DNA damage, thereby sensitizing cancer cells to apoptosis. In vitro and in vivo experiments have investigated whether GO nanomaterials show any toxicity in major body organs, such as the brain, liver, spleen, and heart. Molecular pathways, such as ATG, MAPK, JNK, and Akt, can be regulated by GO nanomaterials, leading to effects on autophagy and apoptosis. These topics are discussed in this review to shed some lights towards the biomedical potential of GO nanoparticles and their biocompatibility, paving the way for their future application in clinical trials.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan Yousef Abad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
16
|
Gungordu Er S, Edirisinghe M, Tabish TA. Graphene-Based Nanocomposites as Antibacterial, Antiviral and Antifungal Agents. Adv Healthc Mater 2023; 12:e2201523. [PMID: 36511355 PMCID: PMC11468666 DOI: 10.1002/adhm.202201523] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Over the past decade, there have been many interesting studies in the scientific literature about the interaction of graphene-based polymeric nanocomposites with microorganisms to tackle antimicrobial resistance. These studies have reported variable intensities of biocompatibility and selectivity for the nanocomposites toward a specific strain, but it is widely believed that graphene nanocomposites have antibacterial, antiviral, and antifungal activities. Such antibacterial activity is due to several mechanisms by which graphene nanocomposites can act on cells including stimulating oxidative stress; disrupting membranes due to sharp edges; greatly changing core structure mechanical strength and coarseness. However, the underlying mechanisms of graphene nanocomposites as antiviral and antifungal agents remain relatively scarce. In this review, recent advances in the synthesis, functional tailoring, and antibacterial, antiviral, and antifungal applications of graphene nanocomposites are summarized. The synthesis of graphene materials and graphene-based polymeric nanocomposites with techniques such as pressurized gyration, electrospinning, chemical vapor deposition, and layer-by-layer self-assembly is first introduced. Then, the antimicrobial mechanisms of graphene membranes are presented and demonstrated typical in vitro and in vivo studies on the use of graphene nanocomposites for antibacterial, antiviral, and antifungal applications. Finally, the review describes the biosafety, current limitations, and potential of antimicrobial graphene-based nanocomposites.
Collapse
Affiliation(s)
- Seda Gungordu Er
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Mohan Edirisinghe
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Tanveer A. Tabish
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- Radcliffe Department of MedicineUniversity of OxfordOld RoadOxfordOX3 7BNUK
- Department of Engineering ScienceUniversity of OxfordBegbroke Science ParkOxfordOX5 1PFUK
| |
Collapse
|
17
|
Detection and modulation of neurodegenerative processes using graphene-based nanomaterials: Nanoarchitectonics and applications. Adv Colloid Interface Sci 2023; 311:102824. [PMID: 36549182 DOI: 10.1016/j.cis.2022.102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Neurodegenerative disorders (NDDs) are caused by progressive loss of functional neurons following the aggregation and fibrillation of proteins in the central nervous system. The incidence rate continues to rise alarmingly worldwide, particularly in aged population, and the success of treatment remains limited to symptomatic relief. Graphene nanomaterials (GNs) have attracted immense interest on the account of their unique physicochemical and optoelectronic properties. The research over the past two decades has recognized their ability to interact with aggregation-prone neuronal proteins, regulate autophagy and modulate the electrophysiology of neuronal cells. Graphene can prevent the formation of higher order protein aggregates and facilitate the clearance of such deposits. In this review, after highlighting the role of protein fibrillation in neurodegeneration, we have discussed how GN-protein interactions can be exploited for preventing neurodegeneration. A comprehensive understanding of such interactions would contribute to the exploration of novel modalities for controlling neurodegenerative processes.
Collapse
|
18
|
Liu X, Yang C, Chen P, Zhang L, Cao Y. The uses of transcriptomics and lipidomics indicated that direct contact with graphene oxide altered lipid homeostasis through ER stress in 3D human brain organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157815. [PMID: 35931159 DOI: 10.1016/j.scitotenv.2022.157815] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The potential uses of graphene-based nanomaterials (NMs) in various fields lead to the concern about their neurotoxicity, considering that graphene-based NMs are capable to cross blood brain barrier (BBB) and enter central nervous system (CNS). Although previous studies reported the possibility of graphene-based NM exposure to alter lipid homeostasis in animals or cultured neurons, recent studies suggested the need to use 3D human brain organoids for mechanism-based toxicological studies as this model might better recapitulate the complex human brains. Herein, we used multi-omics techniques to investigate the mechanisms of graphene oxide (GO) on lipid homeostasis in a novel 3D brain organoid model. We found that 50 μg/mL GO induced cytotoxicity but not superoxide. RNA-sequencing data showed that 50 μg/mL GO significantly up-regulated and down-regulated 80 and 121 genes, respectively. Furthermore, we found that GO exposure altered biological molecule metabolism pathways including lipid metabolism. Consistently, lipidomics data supported dose-dependent alteration of lipid profiles by GO in 3D brain organoids. Interestingly, co-exposure to GO and endoplasmic reticulum (ER) stress inhibitor 4-phenylbutyric acid (4-PBA) decreased most of the lipid classes compared with the exposure of GO only. We further verified that exposure to GO promoted ER stress marker GRP78 proteins, which in turn activated IRE1α/XBP-1 axis, and these changes were partially or completely inhibited by 4-PBA. These results proved that direct contact with GO disrupted lipid homeostasis through the activation of ER stress. As 3D brain organoids resemble human brains, these data might be better extrapolated to humans.
Collapse
Affiliation(s)
- Xudong Liu
- Department of Food science and Engineering, Moutai Institute, Renhuai 564507, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China.
| |
Collapse
|
19
|
Understanding the Role of the Lateral Dimensional Property of Graphene Oxide on Its Interactions with Renal Cells. Molecules 2022; 27:molecules27227956. [PMID: 36432058 PMCID: PMC9697150 DOI: 10.3390/molecules27227956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Renal excretion is expected to be the major route for the elimination of biomedically applied nanoparticles from the body. Hence, understanding the nanomedicine-kidney interaction is crucially required, but it is still far from being understood. Herein, we explored the lateral dimension- (~70 nm and ~300 nm), dose- (1, 5, and 15 mg/kg in vivo and 0.1~250 μg/mL in vitro), and time-dependent (48 h and 7 d in vivo) deposition and injury of PEGylated graphene oxide sheets (GOs) in the kidney after i.v. injection in mice. We specially investigated the cytotoxic effects on three typical kidney cell types with which GO renal excretion is related: human renal glomerular endothelial cells (HRGECs) and human podocytes, and human proximal tubular epithelial cells (HK-2). By using in vivo fluorescence imaging and in situ Raman imaging and spectroscopic analysis, we revealed that GOs could gradually be eliminated from the kidneys, where the glomeruli and renal tubules are their target deposition sites, but only the high dose of GO injection induced obvious renal histological and ultrastructural changes. We showed that the high-dose GO-induced cytotoxicity included a cell viability decrease and cellular apoptosis increase. GO uptake by renal cells triggered cellular membrane damage (intracellular LDH release) and increased levels of oxidative stress (ROS level elevation and a decrease in the balance of the GSH/GSSG ratio) accompanied by a mitochondrial membrane potential decrease and up-regulation of the expression of pro-inflammatory cytokines TNF-α and IL-18, resulting in cellular apoptosis. GO treatments activated Keap1/Nrf2 signaling; however, the antioxidant function of Nrf2 could be inhibited by apoptotic engagement. GO-induced cytotoxicity was demonstrated to be associated with oxidative stress and an inflammation reaction. Generally, the l-GOs presented more pronounced cytotoxicity and more severe cellular injury than s-GOs did, demonstrating lateral size-dependent toxicity to the renal cells. More importantly, GO-induced cytotoxicity was independent of renal cell type. The results suggest that the dosage of GOs in biomedical applications should be considered and that more attention should be paid to the ability of a high dose of GO to cause renal deposition and potential nephrotoxicity.
Collapse
|
20
|
Tan J, Li L, Li B, Tian X, Song P, Wang X. Titanium Surfaces Modified with Graphene Oxide/Gelatin Composite Coatings for Enhanced Antibacterial Properties and Biological Activities. ACS OMEGA 2022; 7:27359-27368. [PMID: 35967064 PMCID: PMC9366957 DOI: 10.1021/acsomega.2c02387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Titanium alloys have been widely used in orthopedic implants due to their excellent physicochemical properties and good biocompatibility. However, in practice, titanium implants may fail to integrate or develop an implant-centered infection. Because of its excellent mechanical properties, bone integrability, biocompatibility, antibacterial properties, and so on, graphene oxide is increasingly being used in the preparation of composite biomaterials. The percutaneous titanium implants are used as the research object in this project. To solve the integration of implant and tissue, a graphene oxide/gelatin (GO/gel) composite coating was used to optimize the implant surface. Bacterial and cell experiments were used to investigate the antimicrobial activity, biocompatibility, and regulation of macrophage polarization of GO/gel-modified titanium. According to our findings, GO/gel-modified titanium has a good bacteriostatic effect against Staphylococcus aureus. On the modified surface, L929 cells proliferated well and showed no cytotoxicity. Simultaneously, the GO/gel-modified titanium surface could inhibit macrophage adhesion and spread in the early stage of culture and showed a more obvious inflammatory decline in the late stage of culture. These findings implied that GO/gel-modified titanium is advantageous for resistant bacteria and tissue remolding.
Collapse
Affiliation(s)
- Jing Tan
- School
of Life Science, Shanxi Datong University, Datong 037009, Shanxi, China
- Institute
of Applied Biotechnology, Shanxi Datong
University, Datong 037009, Shanxi, China
| | - Lin Li
- Shanxi
Datong University, Datong 037009, Shanxi, China
| | - Baoyuan Li
- School
of Life Science, Shanxi Datong University, Datong 037009, Shanxi, China
- Institute
of Applied Biotechnology, Shanxi Datong
University, Datong 037009, Shanxi, China
| | - Xin Tian
- School
of Life Science, Shanxi Datong University, Datong 037009, Shanxi, China
| | - Pengyuan Song
- School
of Life Science, Shanxi Datong University, Datong 037009, Shanxi, China
| | - Xueqi Wang
- School
of Life Science, Shanxi Datong University, Datong 037009, Shanxi, China
| |
Collapse
|
21
|
Niknam Z, Hosseinzadeh F, Shams F, Fath-Bayati L, Nuoroozi G, Mohammadi Amirabad L, Mohebichamkhorami F, Khakpour Naeimi S, Ghafouri-Fard S, Zali H, Tayebi L, Rasmi Y. Recent advances and challenges in graphene-based nanocomposite scaffolds for tissue engineering application. J Biomed Mater Res A 2022; 110:1695-1721. [PMID: 35762460 DOI: 10.1002/jbm.a.37417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Graphene-based nanocomposites have recently attracted increasing attention in tissue engineering because of their extraordinary features. These biocompatible substances, in the presence of an apt microenvironment, can stimulate and sustain the growth and differentiation of stem cells into different lineages. This review discusses the characteristics of graphene and its derivatives, such as their excellent electrical signal transduction, carrier mobility, outstanding mechanical strength with improving surface characteristics, self-lubrication, antiwear properties, enormous specific surface area, and ease of functional group modification. Moreover, safety issues in the application of graphene and its derivatives in terms of biocompatibility, toxicity, and interaction with immune cells are discussed. We also describe the applicability of graphene-based nanocomposites in tissue healing and organ regeneration, particularly in the bone, cartilage, teeth, neurons, heart, skeletal muscle, and skin. The impacts of special textural and structural characteristics of graphene-based nanomaterials on the regeneration of various tissues are highlighted. Finally, the present review gives some hints on future research for the transformation of these exciting materials in clinical studies.
Collapse
Affiliation(s)
- Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.,Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Hosseinzadeh
- Department of Tissue Engineering, Qom University of Medical Science, Qom, Iran.,Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leyla Fath-Bayati
- Department of Tissue Engineering, Qom University of Medical Science, Qom, Iran
| | - Ghader Nuoroozi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fariba Mohebichamkhorami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| | - Yousef Rasmi
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
22
|
The Dose- and Time-Dependent Cytotoxic Effect of Graphene Nanoplatelets: In Vitro and In Vivo Study. NANOMATERIALS 2022; 12:nano12121978. [PMID: 35745317 PMCID: PMC9229803 DOI: 10.3390/nano12121978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
Graphene-based nanomaterials received attention from scientists due to their unique properties: they are highly conductive, mechanically resistant and elastic. These materials can be used in different sectors of society from electronic energy storage in industry to biomedical applications. This study evaluates the influence of graphene nanoplatelets in vitro and in vivo. The toxicological influence of graphene nanoplatelets (GPs) was analyzed by cytotoxic methods, the change of cell proliferation was assessed in real-time, and the effect of GPs on a living organism was evaluated in an animal model using histopathological examination. We analyzed two types of GP administration: intratracheal and peroral. We found dose- and time-dependent cytotoxic effects of GPs in vitro; the concentration above 50 μg/mL increased the cytotoxicity significantly. The real-time analysis confirmed these data; the cells exposed to a high concentration of GPs for a longer time period resulted in a decrease in cell index which indicated lower cell viability. Histopathological examination revealed thickened alveolar septa and accumulation of GPs in the endocardium after intratracheal exposure. Peroral administration did not reveal any morphological changes. This study showed the dose- and time-dependent cytotoxic potential of graphene nanoplatelets in in vitro and in vivo models.
Collapse
|
23
|
Romaldini A, Spanò R, Catalano F, Villa F, Poggi A, Sabella S. Sub-Lethal Concentrations of Graphene Oxide Trigger Acute-Phase Response and Impairment of Phase-I Xenobiotic Metabolism in Upcyte ® Hepatocytes. Front Bioeng Biotechnol 2022; 10:867728. [PMID: 35662849 PMCID: PMC9161028 DOI: 10.3389/fbioe.2022.867728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
The impact of graphene oxide on hepatic functional cells represents a crucial evaluation step for its potential application in nanomedicine. Primary human hepatocytes are the gold standard for studying drug toxicity and metabolism; however, current technical limitations may slow down the large-scale diffusion of this cellular tool for in vitro investigations. To assess the potential hepatotoxicity of graphene oxide, we propose an alternative cell model, the second-generation upcyte® hepatocytes, which show metabolic and functional profiles akin to primary human hepatocytes. Cells were acutely exposed to sub-lethal concentrations of graphene oxide (≤80 μg/ml) for 24 h and stress-related cell responses (such as apoptosis, oxidative stress, and inflammatory response) were evaluated, along with a broad investigation of graphene oxide impact on specialized hepatic functions. Results show a mild activation of early apoptosis but not oxidative stress or inflammatory response in our cell model. Notably, while graphene oxide clearly impacted phase-I drug-metabolism enzymes (e.g., CYP3A4, CYP2C9) through the inhibition of gene expression and metabolic activity, conversely, no effect was observed for phase-II enzyme GST and phase-III efflux transporter ABCG2. The GO-induced impairment of CYP3A4 occurs concomitantly with the activation of an early acute-phase response, characterized by altered levels of gene expression and protein production of relevant acute-phase proteins (i.e., CRP, Albumin, TFR, TTR). These data suggest that graphene oxide induces an acute phase response, which is in line with recent in vivo findings. In conclusion, upcyte® hepatocytes appear a reliable in vitro model for assessing nanomaterial-induced hepatotoxicity, specifically showing that sub-lethal doses of graphene oxide have a negative impact on the specialized hepatic functions of these cells. The impairment of the cytochrome P450 system, along with the activation of an acute-phase response, may suggest potential detrimental consequences for human health, as altered detoxification from xenobiotics and drugs.
Collapse
Affiliation(s)
- A. Romaldini
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genoa, Italy
| | - R. Spanò
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genoa, Italy
| | - F. Catalano
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | - F. Villa
- Unit of Molecular Oncology and Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - A. Poggi
- Unit of Molecular Oncology and Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - S. Sabella
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
24
|
Biological Responses in the Blood and Organs of Rats to Intraperitoneal Inoculation of Graphene and Graphene Oxide. MATERIALS 2022; 15:ma15082898. [PMID: 35454592 PMCID: PMC9029982 DOI: 10.3390/ma15082898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023]
Abstract
Background: The discrepancy among the in vivo results found in the literature regarding graphene’s side effects led us to conduct an in vivo study with graphene. Methods: In vivo tests involving intraperitoneal inoculation of graphene and graphene oxide nanosheets in rats were carried out to assess potential changes in the blood and organs after 15 and 30 days. Graphene and graphene oxide nanosheets at a concentration of 4 mg per kilogram were suspended in an aqueous solution of 0.9% NaCl at a 1:1 proportion (graphene or graphene oxide), i.e., 1 mg/mL. Results: Optical microscopy of liver, kidney, spleen, and lung tissues revealed no visible histological changes. However, particle traces were found in the peritoneal cavity. Thirty days after inoculation, blood samples were collected for hematological analysis. The blood analysis showed changes indicating a hepatic inflammatory process. Hematological changes after 30 days consisted of alterations to the red series, including microcytosis or higher mean hemoglobin concentrations. In addition, changes in prothrombin and thromboplastin caused longer coagulation times. Conclusion: This study contributes to further clarifying the possible toxicity of graphene and its potential biomedical applications.
Collapse
|
25
|
Pan J, Wang J, Fang K, Hou W, Li B, Zhao J, Ma X. RNA m 6A Alterations Induced by Biomineralization Nanoparticles: A Proof-of-Concept Study of Epitranscriptomics for Nanotoxicity Evaluation. NANOSCALE RESEARCH LETTERS 2022; 17:23. [PMID: 35122526 PMCID: PMC8817964 DOI: 10.1186/s11671-022-03663-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Although various strategies have been included in nanotoxicity evaluation, epitranscriptomics has rarely been integrated into this field. In this proof-of-concept study, N6-methyladenosine (m6A) changes of mRNA in HEK293T cells induced by three bovine serum albumin (BSA)-templated Au, CuS and Gd2O3 nanoparticles are systematically explored, and their possible biological mechanisms are preliminarily investigated. It has been found that all the three BSA-templated nanoparticles can reduce m6A levels, and the genes with reduced m6A are enriched for TGF-beta signaling, which is critical for cell proliferation, differentiation and apoptosis. Further results indicate that abnormal aggregation of m6A-related enzymes at least partly account for the nanoparticle-induced epitranscriptomic changes. These findings demonstrate that epitranscriptomics analysis can provide an unprecedented landscape of the biological effect induced by nanomaterials, which should be involved in the nanotoxicity evaluation to promote the potential clinical translation of nanomaterials.
Collapse
Affiliation(s)
- Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jiaojiao Wang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Kun Fang
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Wenjing Hou
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Bing Li
- Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Jie Zhao
- Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| | - Xinlong Ma
- Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| |
Collapse
|
26
|
Dong Z, Wang R, Wang M, Meng Z, Wang X, Han M, Guo Y, Wang X. Preparation of Naringenin Nanosuspension and Its Antitussive and Expectorant Effects. Molecules 2022; 27:molecules27030741. [PMID: 35164006 PMCID: PMC8837938 DOI: 10.3390/molecules27030741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022] Open
Abstract
Naringenin (NRG) is a natural flavonoid compound abundantly present in citrus fruits and has the potential to treat respiratory disorders. However, the clinical therapeutic effect of NRG is limited by its low bioavailability due to poor solubility. To enhance the solubility, naringenin nanosuspensions (NRG-NSps) were prepared by applying tocopherol polyethylene glycol succinate (TPGS) as the nanocarrier via the media-milling method. The particle size, morphology, and drug-loading content of NRG-NSps were examined, and the stability was evaluated by detecting particle size changes in different physiological media. NRG-NSps exhibited a flaky appearance with a mean diameter of 216.9 nm, and the drug-loading content was 66.7%. NRG-NSps exhibited good storage stability and media stability. NRG-NSps presented a sustainable release profile, and the cumulative drug-release rate approached approximately 95% within 7 d. NRG-NSps improved the antitussive effect significantly compared with the original NRG, the cough frequency was decreased from 22 to 15 times, and the cough incubation period was prolonged from 85.3 to 121.6 s. Besides, NRG-NSps also enhanced expectorant effects significantly, and phenol red secretion was increased from 1.02 to 1.45 μg/mL. These results indicate that NRG-NSps could enhance the bioavailability of NRG significantly and possess a potential clinical application.
Collapse
Affiliation(s)
- Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
| | - Rui Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Mingyue Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Zheng Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- College of Pharmacy, Harbin University of Commerce, No. 138, Tongda Street, Daoli District, Harbin 150076, China
| | - Xiaotong Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- Correspondence: (Y.G.); (X.W.); Tel.: +86-010-57833264 (X.W.)
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- Correspondence: (Y.G.); (X.W.); Tel.: +86-010-57833264 (X.W.)
| |
Collapse
|
27
|
Foroutan T. Application of some graphene derivatives to increase the efficiency of stem cell therapy. Curr Stem Cell Res Ther 2021; 17:294-300. [PMID: 34727863 DOI: 10.2174/1574888x16666211102085246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/24/2021] [Accepted: 09/12/2021] [Indexed: 11/22/2022]
Abstract
Graphene and its derivatives have application potential in many areas such as environmental technology, catalysis, biomedicine, and in particular, stem cell-based differentiation and regenerative therapies. Mesenchymal stem cell transplantation has emerged as a potential therapy for some diseases, such as acute kidney damage, liver failure and myocardial infarction. However, the poor survival of transplanted stem cells in such applications has significantly limited their therapeutic effectiveness. Graphene-based materials can improve the therapeutic efficacy of stem cells as they prevent the death of implanted cells by attaching them prior to implantation and increasing their paracrine secretion. In this review, we will highlight a number of recent studies that have investigated the potential use of graphene or its derivatives in stem cell applications and the prevention of transplanted stem cells from cell death, thereby improving their therapeutic efficacy.
Collapse
Affiliation(s)
- Tahereh Foroutan
- Department of animal biology, Faculty of biological sciences, Kharazmi University, Tehran. Iran
| |
Collapse
|
28
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
29
|
Zhou Q, Gu H, Sun S, Zhang Y, Hou Y, Li C, Zhao Y, Ma P, Lv L, Aji S, Sun S, Wang X, Zhan L. Large-Sized Graphene Oxide Nanosheets Increase DC-T-Cell Synaptic Contact and the Efficacy of DC Vaccines against SARS-CoV-2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102528. [PMID: 34396603 PMCID: PMC8420123 DOI: 10.1002/adma.202102528] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/29/2021] [Indexed: 05/03/2023]
Abstract
Dendritic cell (DC) vaccines are used for cancer and infectious diseases, albeit with limited efficacy. Modulating the formation of DC-T-cell synapses may greatly increase their efficacy. The effects of graphene oxide (GO) nanosheets on DCs and DC-T-cell synapse formation are evaluated. In particular, size-dependent interactions are observed between GO nanosheets and DCs. GOs with diameters of >1 µm (L-GOs) demonstrate strong adherence to the DC surface, inducing cytoskeletal reorganization via the RhoA-ROCK-MLC pathway, while relatively small GOs (≈500 nm) are predominantly internalized by DCs. Furthermore, L-GO treatment enhances DC-T-cell synapse formation via cytoskeleton-dependent membrane positioning of integrin ICAM-1. L-GO acts as a "nanozipper," facilitating the aggregation of DC-T-cell clusters to produce a stable microenvironment for T cell activation. Importantly, L-GO-adjuvanted DCs promote robust cytotoxic T cell immune responses against SARS-CoV-2 spike 1, leading to >99.7% viral RNA clearance in mice infected with a clinically isolated SARS-CoV-2 strain. These findings highlight the potential value of nanomaterials as DC vaccine adjuvants for modulating DC-T-cell synapse formation and provide a basis for the development of effective COVID-19 vaccines.
Collapse
Affiliation(s)
- Qianqian Zhou
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Hongjing Gu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Sujing Sun
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Yulong Zhang
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Yangyang Hou
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Chenyan Li
- BGI collegeZhengzhou UniversityHenan Institute of Medical and Pharmaceutical ScienceZhengzhou UniversityZhengzhou450001P. R. China
| | - Yan Zhao
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Ping Ma
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Liping Lv
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Subi Aji
- Cold Spring Biotech CorporationBeijing110000P. R. China
| | - Shihui Sun
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Xiaohui Wang
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Linsheng Zhan
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
- BGI collegeZhengzhou UniversityHenan Institute of Medical and Pharmaceutical ScienceZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
30
|
Magne TM, de Oliveira Vieira T, Alencar LMR, Junior FFM, Gemini-Piperni S, Carneiro SV, Fechine LMUD, Freire RM, Golokhvast K, Metrangolo P, Fechine PBA, Santos-Oliveira R. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2021; 12:693-727. [PMID: 34512930 PMCID: PMC8419677 DOI: 10.1007/s40097-021-00444-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
Over the past few years, there has been a growing potential use of graphene and its derivatives in several biomedical areas, such as drug delivery systems, biosensors, and imaging systems, especially for having excellent optical, electronic, thermal, and mechanical properties. Therefore, nanomaterials in the graphene family have shown promising results in several areas of science. The different physicochemical properties of graphene and its derivatives guide its biocompatibility and toxicity. Hence, further studies to explain the interactions of these nanomaterials with biological systems are fundamental. This review has shown the applicability of the graphene family in several biomedical modalities, with particular attention for cancer therapy and diagnosis, as a potent theranostic. This ability is derivative from the considerable number of forms that the graphene family can assume. The graphene-based materials biodistribution profile, clearance, toxicity, and cytotoxicity, interacting with biological systems, are discussed here, focusing on its synthesis methodology, physicochemical properties, and production quality. Despite the growing increase in the bioavailability and toxicity studies of graphene and its derivatives, there is still much to be unveiled to develop safe and effective formulations. Graphic abstract
Collapse
Affiliation(s)
- Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
| | | | - Luciana Magalhães Rebelo Alencar
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis, Maranhão 65080805 Brazil
| | - Francisco Franciné Maia Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, Mossoró, RN 59625-900 Brazil
| | - Sara Gemini-Piperni
- Laboratory of Advanced Science, Universidade Unigranrio, Duque de Caxias, RJ 25071-202 Brazil
| | - Samuel V. Carneiro
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Lillian M. U. D. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Rafael M. Freire
- Institute of Applied Chemical Sciences, Universidad Autónoma de Chile, 8910060 Santiago, Chile
| | - Kirill Golokhvast
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Vladivostok, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, Russia
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials, Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico Di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| | - Pierre B. A. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
- Laboratory of Nanoradiopharmacy and Synthesis of Radiopharmaceuticals, Zona Oeste State University, Av Manuel Caldeira de Alvarenga, 200, Campo Grande, Rio de Janeiro, 2100000 Brazil
| |
Collapse
|
31
|
Guo Z, Chakraborty S, Monikh FA, Varsou DD, Chetwynd AJ, Afantitis A, Lynch I, Zhang P. Surface Functionalization of Graphene-Based Materials: Biological Behavior, Toxicology, and Safe-By-Design Aspects. Adv Biol (Weinh) 2021; 5:e2100637. [PMID: 34288601 DOI: 10.1002/adbi.202100637] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/11/2021] [Indexed: 01/08/2023]
Abstract
The increasing exploitation of graphene-based materials (GBMs) is driven by their unique properties and structures, which ignite the imagination of scientists and engineers. At the same time, the very properties that make them so useful for applications lead to growing concerns regarding their potential impacts on human health and the environment. Since GBMs are inert to reaction, various attempts of surface functionalization are made to make them reactive. Herein, surface functionalization of GBMs, including those intentionally designed for specific applications, as well as those unintentionally acquired (e.g., protein corona formation) from the environment and biota, are reviewed through the lenses of nanotoxicity and design of safe materials (safe-by-design). Uptake and toxicity of functionalized GBMs and the underlying mechanisms are discussed and linked with the surface functionalization. Computational tools that can predict the interaction of GBMs behavior with their toxicity are discussed. A concise framing of current knowledge and key features of GBMs to be controlled for safe and sustainable applications are provided for the community.
Collapse
Affiliation(s)
- Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Swaroop Chakraborty
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India
| | - Fazel Abdolahpur Monikh
- Department of Environmental & Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu, FI-80101, Finland
| | - Dimitra-Danai Varsou
- School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Andrew J Chetwynd
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Antreas Afantitis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia, 1046, Cyprus
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
32
|
Shim NY, Heo JS. Performance of the Polydopamine-Graphene Oxide Composite Substrate in the Osteogenic Differentiation of Mouse Embryonic Stem Cells. Int J Mol Sci 2021; 22:ijms22147323. [PMID: 34298943 PMCID: PMC8303500 DOI: 10.3390/ijms22147323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Graphene oxide (GO) is a biocompatible material considered a favorable stem cell culture substrate. In this study, GO was modified with polydopamine (PDA) to facilitate depositing GO onto a tissue culture polystyrene (PT) surface, and the osteogenic performance of the PDA/GO composite in pluripotent embryonic stem cells (ESCs) was investigated. The surface chemistry of the PDA/GO-coated PT surface was analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). A high cell viability of ESCs cultured on the PDA/GO composite-coated surface was initially ensured. Then, the osteogenic differentiation of the ESCs in response to the PDA/GO substrate was assessed by alkaline phosphatase (ALP) activity, intracellular calcium levels, matrix mineralization assay, and evaluation of the mRNA and protein levels of osteogenic factors. The culture of ESCs on the PDA/GO substrate presented higher osteogenic potency than that on the uncoated control surface. ESCs cultured on the PDA/GO substrate expressed significantly higher levels of integrin α5 and β1, as well as bone morphogenetic protein receptor (BMPR) types I and II, compared with the control groups. The phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun-N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) was observed in ESCs culture on the PDA/GO substrate. Moreover, BMP signal transduction by SMAD1/5/8 phosphorylation was increased more in cells on PDA/GO than in the control. The nuclear translocation of SMAD1/5/8 in cells was also processed in response to the PDA/GO substrate. Blocking activation of the integrin α5/β1, MAPK, or SMAD signaling pathways downregulated the PDA/GO-induced osteogenic differentiation of ESCs. These results suggest that the PDA/GO composite stimulates the osteogenic differentiation of ESCs via the integrin α5/β1, MAPK, and BMPR/SMAD signaling pathways.
Collapse
|
33
|
Magne TM, de Oliveira Vieira T, Costa B, Alencar LMR, Ricci-Junior E, Hu R, Qu J, Zamora-Ledezma C, Alexis F, Santos-Oliveira R. Factors affecting the biological response of Graphene. Colloids Surf B Biointerfaces 2021; 203:111767. [PMID: 33878553 DOI: 10.1016/j.colsurfb.2021.111767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Nanotechnology has gained significant importance in different fields of medical, electronic, and environmental science. This technology is founded on the use of materials at the nanoscale scale (1-100 nanometers) for various purposes, particularly in the biomedical area, where its application is growing daily due to the need of materials with advanced properties. Over the past few years, there has been a growing use for graphene and its derivative composite materials. However, different physico-chemical properties influence its biological response; therefore, further studies to explain the interactions of these nanomaterials with biological systems are critical. This review presents the current advances in the applications of graphene in biomedicine with a focus on the physico-chemical characteristics of the graphene family and their influences on biological interactions.
Collapse
Affiliation(s)
- Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | - Thamires de Oliveira Vieira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | - Bianca Costa
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | | | - Eduardo Ricci-Junior
- Federal University of Rio de Janeiro, Laboratory of Nanomedicine, Av. Carlos Chagas Filho, 373, Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-170, Brazil
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair: Orthobiology, Biomaterials & Tissue Engineering Group. UCAM - Universidad Católica de Murcia, Avda. Los Jerónimos 135, Guadalupe, 30107, Murcia, Spain
| | - Frank Alexis
- School of Physical Sciences and Nanotechnology, Yachay Tech University, 100119, Urcuquí, Ecuador
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil; Zona Oeste State University, Laboratory of Nanoradiopharmacy and Synthesis of Radiopharmaceuticals, Av Manuel caldeira de Alvarenga, 200, Campo Grande, Rio de Janeiro, 2100000, Brazil.
| |
Collapse
|
34
|
Daneshmandi L, Barajaa M, Tahmasbi Rad A, Sydlik SA, Laurencin CT. Graphene-Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Adv Healthc Mater 2021; 10:e2001414. [PMID: 33103370 PMCID: PMC8218309 DOI: 10.1002/adhm.202001414] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Graphene and its derivatives have continued to garner worldwide interest due to their unique characteristics. Having expanded into biomedical applications, there have been efforts to employ their exceptional properties for the regeneration of different tissues, particularly bone. This article presents a comprehensive review on the usage of graphene-based materials for bone regenerative engineering. The graphene family of materials (GFMs) are used either alone or in combination with other biomaterials in the form of fillers in composites, coatings for both scaffolds and implants, or vehicles for the delivery of various signaling and therapeutic agents. The applications of the GFMs in each of these diverse areas are discussed and emphasis is placed on the characteristics of the GFMs that have implications in this regard. In tandem and of importance, this article evaluates the safety and biocompatibility of the GFMs and carefully elucidates how various factors influence the biocompatibility and biodegradability of this new class of nanomaterials. In conclusion, the challenges and opportunities regarding the use of the GFMs in regenerative engineering applications are discussed, and future perspectives for the developments in this field are proposed.
Collapse
Affiliation(s)
- Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Mohammed Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Armin Tahmasbi Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
35
|
Graphene Oxide Coatings as Tools to Prevent Microbial Biofilm Formation on Medical Device. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1282:21-35. [PMID: 31468360 DOI: 10.1007/5584_2019_434] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical challenge on surface engineering of medical devices to prevent microorganisms adhesion and biofilm formation, has become an essential aspect for medical implants. Antibacterial properties of Graphene Oxide (GO) have been demonstrated across a broad spectrum of bacteria, and the different mechanisms of action with which this nanomaterial interacts with the microbial surface have been elucidated in detail. Innovative protective coatings based on graphene film and hydrogel could represent an innovative solution for the prevention of nosocomial pathogens colonization on implantable device. This brief review mainly focuses on the applications of graphene in nanomedicine with a particular deepening on the antibacterial properties of GO and GO-based nanomaterials. In order to evaluate the possible future applications of GO as an anti-biofilm coating material for medical devices, studies on the ability of graphene coated surface to prevent microbial adhesion are also discussed. A concise review on in vitro toxicity and in vivo safety is also presented.
Collapse
|
36
|
Shende P, Pathan N. Potential of carbohydrate-conjugated graphene assemblies in biomedical applications. Carbohydr Polym 2020; 255:117385. [PMID: 33436214 DOI: 10.1016/j.carbpol.2020.117385] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 01/16/2023]
Abstract
Graphene displays various properties like optical, electrical, mechanical, etc. resulting in a large range of applications in biosensing, bio-imaging, medical and electronic devices. The graphene-based nanomaterials show disadvantages like hydrophobic surface, degradation of biomolecules (proteins and amino acids) and toxicity to the human and microbes by permeating into the cells and thus, limiting the use in the biomedical field. Conjugation of carbohydrates like chitin, cyclodextrins and cellulose with graphene results in thermal stability, oxygen repulsive ability, fire-retardant and gelling properties with better biodegradability, biocompatibility and safety leading to the formation of environment-friendly biopolymers. This article delivers an overview of the molecular interaction of different carbohydrates-derived from natural sources like marine, plants and microbes with graphene nanosheets to extend the applications in tissue engineering, surgical materials, biosensing and novel drug delivery for prolonged action in the treatment of breast and hepatic cancers.
Collapse
Affiliation(s)
- Pravin Shende
- Shobaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| | - Nazneen Pathan
- Shobaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
37
|
Newman L, Jasim DA, Prestat E, Lozano N, de Lazaro I, Nam Y, Assas BM, Pennock J, Haigh SJ, Bussy C, Kostarelos K. Splenic Capture and In Vivo Intracellular Biodegradation of Biological-Grade Graphene Oxide Sheets. ACS NANO 2020; 14:10168-10186. [PMID: 32658456 PMCID: PMC7458483 DOI: 10.1021/acsnano.0c03438] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/13/2020] [Indexed: 05/20/2023]
Abstract
Carbon nanomaterials, including 2D graphene-based materials, have shown promising applicability to drug delivery, tissue engineering, diagnostics, and various other biomedical areas. However, to exploit the benefits of these materials in some of the areas mentioned, it is necessary to understand their possible toxicological implications and long-term fate in vivo. We previously demonstrated that following intravenous administration, 2D graphene oxide (GO) nanosheets were largely excreted via the kidneys; however, a small but significant portion of the material was sequestered in the spleen. Herein, we interrogate the potential consequences of this accumulation and the fate of the spleen-residing GO over a period of nine months. We show that our thoroughly characterized GO materials are not associated with any detectable pathological consequences in the spleen. Using confocal Raman mapping of tissue sections, we determine the sub-organ biodistribution of GO at various time points after administration. The cells largely responsible for taking up the material are confirmed using immunohistochemistry coupled with Raman spectroscopy, and transmission electron microscopy (TEM). This combination of techniques identified cells of the splenic marginal zone as the main site of GO bioaccumulation. In addition, through analyses using both bright-field TEM coupled with electron diffraction and Raman spectroscopy, we reveal direct evidence of in vivo intracellular biodegradation of GO sheets with ultrastructural precision. This work offers critical information about biological processing and degradation of thin GO sheets by normal mammalian tissue, indicating that further development and exploitation of GO in biomedicine would be possible.
Collapse
Affiliation(s)
- Leon Newman
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Dhifaf A. Jasim
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Eric Prestat
- Department
of Materials, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Neus Lozano
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, 08193, Spain
| | - Irene de Lazaro
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Yein Nam
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Bakri M. Assas
- Lydia
Becker Institute of Immunology and Inflammation, and Division of Infection,
Immunity and Respiratory Medicine, School of Biological Sciences,
Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
- Department
of Immunology, Faculty of Applied Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Joanne Pennock
- Lydia
Becker Institute of Immunology and Inflammation, and Division of Infection,
Immunity and Respiratory Medicine, School of Biological Sciences,
Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Sarah J. Haigh
- Department
of Materials, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Cyrill Bussy
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, 08193, Spain
| |
Collapse
|
38
|
Li Q, Liang B, Wang F, Wang Z. Delivery of Interleukin 4 from a Titanium Substrate Coated with Graphene Oxide for Enhanced Osseointegration by Regulating Macrophage Polarization. ACS Biomater Sci Eng 2020; 6:5215-5229. [PMID: 33455271 DOI: 10.1021/acsbiomaterials.0c01011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrophage-related inflammation has been identified as a possible predictor of the success or failure of implants based on their polarization of the pro-inflammatory/anti-inflammatory (M1/M2) phenotype. The purpose of this study was to deliver interleukin 4 (IL-4, a cytokine that triggers M2 polarization of macrophages) from a titanium substrate by a graphene oxide (GO) coating to regulate the macrophage-related inflammatory response and improve the implant performance. The GO/IL-4 coating showed good biocompatibility and promoted macrophages polarization to the M2 phenotype in vitro. Conditioned media from macrophages cultured on a GO/IL-4 surface promoted the proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). As the inflammatory response at the interface of GO/IL-4 weakened, the percentage of M2-polarized macrophages increased and the best stability, bone-implant contact, and osteogenesis were observed in vivo. These results demonstrate that the macrophage-related inflammatory response plays a crucial role in osteogenesis around implants and that this GO/IL-4 coating provides an effective strategy for promoting implant osseointegration by regulating immune function.
Collapse
Affiliation(s)
- Qingfan Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.,Department of Oral Implant, School of Stomatology, Hospital of Stomatology, Tongji University, Shanghai 200092, China
| | - Beilei Liang
- Department of Oral Implant, School of Stomatology, Hospital of Stomatology, Tongji University, Shanghai 200092, China
| | - Fei Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.,Department of Oral Implant, School of Stomatology, Hospital of Stomatology, Tongji University, Shanghai 200092, China
| |
Collapse
|
39
|
Li Q, Wang Z. Involvement of FAK/P38 Signaling Pathways in Mediating the Enhanced Osteogenesis Induced by Nano-Graphene Oxide Modification on Titanium Implant Surface. Int J Nanomedicine 2020; 15:4659-4676. [PMID: 32636624 PMCID: PMC7335313 DOI: 10.2147/ijn.s245608] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Titanium implants are widely used in dental and orthopedic medicine. Nevertheless, there is limited osteoinductive capability of titanium leading to a poor or delayed osseointegration, which might cause the failure of the implant therapy. Therefore, appropriate modification on the titanium surface for promoting osseointegration of existing implants is still pursued. PURPOSE Graphene oxide (GO) is a promising candidate to perform implant surface biofunctionalization for modulating the interactions between implant surface and cells. So the objective of this study was to fabricate a bioactive GO-modified titanium implant surface with excellent osteoinductive potential and further investigate the underlying biological mechanisms. MATERIALS AND METHODS The large particle sandblasting and acid etching (SLA, commonly used in clinical practice) surface as a control group was first developed and then the nano-GO was deposited on the SLA surface via an ultrasonic atomization spraying technique to create the SLA/GO group. Their effects on rat bone marrow mesenchymal stem cells (BMSCs) responsive behaviors were assessed in vitro, and the underlying biological mechanisms were further systematically investigated. Moreover, the osteogenesis performance in vivo was also evaluated. RESULTS The results showed that GO coating was fabricated on the titanium substrates successfully, which endowed SLA surface with the improved hydrophilicity and protein adsorption capacity. Compared with the SLA surface, the GO-modified surface favored cell adhesion and spreading, and significantly improved cell proliferation and osteogenic differentiation of BMSCs in vitro. Furthermore, the FAK/P38 signaling pathways were proven to be involved in the enhanced osteogenic differentiation of BMSCs, accompanied by the upregulated expression of focal adhesion (vinculin) on the GO coated surface. The enhanced bone regeneration ability of GO-modified implants when inserted into rat femurs was also observed and confirmed that the GO coating induced accelerated osseointegration and osteogenesis in vivo. CONCLUSION GO modification on titanium implant surface has potential applications for achieving rapid bone-implant integration through the mediation of FAK/P38 signaling pathways.
Collapse
Affiliation(s)
- Qingfan Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People’s Republic of China
- Department of Oral Implant, School of Stomatology, Hospital of Stomatology, Tongji University, Shanghai, People’s Republic of China
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People’s Republic of China
- Department of Oral Implant, School of Stomatology, Hospital of Stomatology, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
40
|
Martelli C, King A, Simon T, Giamas G. Graphene-Induced Transdifferentiation of Cancer Stem Cells as a Therapeutic Strategy against Glioblastoma. ACS Biomater Sci Eng 2020; 6:3258-3269. [PMID: 33463176 DOI: 10.1021/acsbiomaterials.0c00197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is an extremely malignant tumor of the central nervous system, characterized by low response to treatments and reoccurrence. This therapeutic resistance is believed to arise mostly from the presence of a subpopulation of tumorigenic stem cells, known as cancer stem cells (CSCs). In addition, the surrounding microenvironment is known to maintain CSCs, thus supporting tumor development and aggressiveness. This review focuses on a therapeutic strategy involving the stem cell trans-differentiating ability of graphene and its derivatives. Graphene distinguishes itself from other carbon-based nanomaterials due to an array of properties that makes it suitable for many purposes, from bioengineering to biomedical applications. Studies have shown that graphene is able to promote and direct the differentiation of CSCs. In addition, potential usage of graphene in GBM treatment represents a challenge in respect to its administration method. The present review also provides a general outlook of the potential side effects (e.g., cell toxicity) that graphene could have. Overall, this report discusses certain graphene-based therapeutic strategies targeting CSCs, which can be considered as prospective effective GBM treatments.
Collapse
Affiliation(s)
- Costanza Martelli
- University College London, Queen Square Institute of Neurology, London WC1N 3BG, U.K
| | - Alice King
- Department of Physics and Astronomy, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QG, U.K
| | - Thomas Simon
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton BN1 9QG, U.K
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton BN1 9QG, U.K
| |
Collapse
|
41
|
Zhang Y, Ma C, Wang Z, Zhou Q, Sun S, Ma P, Lv L, Jiang X, Wang X, Zhan L. Large-sized graphene oxide synergistically enhances parenchymal hepatocyte IL-6 expression monitored by dynamic imaging. NANOSCALE 2020; 12:8147-8158. [PMID: 32236244 DOI: 10.1039/c9nr10713d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene oxides (GOs) have received significant attention as emerging biomedical materials due to their special properties. The application of GOs in biological systems has raised considerable concern about their hepatotoxicity, however their biological effects on parenchymal hepatocytes remain unclear, despite the fact that GOs have shown size-dependent interactions with immunocytes in the liver. Herein we chose pleiotropic cytokine IL-6 as the model parameter to investigate inflammation responses upon exposure to GOs. An early and sensitive reporter mouse model was constructed, allowing non-invasive and longitudinal imaging of parenchymal hepatocyte IL-6 expressions. GOs of various lateral dimensions were assessed by using the reporter mice. The results demonstrated that large-sized GOs (L-GO) induced much stronger IL-6 activation. A detailed analysis uncovered that L-GO induced ROS production and TLR-4 activation promoted macrophage polarization and secretion of pro-inflammatory cytokines IL-1β and TNF-α, activated via> the NF-κB signaling pathway, which in turn initiated the expression of IL-6 in hepatocytes. These in-depth investigations are expected to help modulate the inflammatory responses involved in hepatotoxicity and provide extended information to design sub-hepatic distribution and cell subset targeting by controlling the nanoparticle sizes.
Collapse
Affiliation(s)
- Yulong Zhang
- Institute of Health Service and Transfusion Medicine, Beijing 100850, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Electrochemically reduced graphene oxide on CoCr biomedical alloy: Characterization, macrophage biocompatibility and hemocompatibility in rats with graphene and graphene oxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110522. [DOI: 10.1016/j.msec.2019.110522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022]
|
43
|
Abstract
Carbon nanostructures (CNs), such as carbon nanotubes, fullerenes, carbon dots, nanodiamonds as well as graphene and its derivatives present a tremendous potential for various biomedical applications, ranging from sensing to drug delivery and gene therapy, biomedical imaging and tissue engineering. Since most of these applications encompass blood contact or intravenous injection, hemocompatibility is a critical aspect that must be carefully considered to take advantage of CN exceptional characteristics while allowing their safe use. This review discusses the hemocompatibility of different classes of CNs with the purpose of providing biomaterial scientists with a comprehensive vision of the interactions between CNs and blood components. The various complex mechanisms involved in blood compatibility, including coagulation, hemolysis, as well as the activation of complement, platelets, and leukocytes will be considered. Special attention will be paid to the role of CN size, structure, and surface properties in the formation of the protein corona and in the processes that drive blood response. The aim of this review is to emphasize the importance of hemocompatibility for CNs intended for biomedical applications and to provide some valuable insights for the development of new generation particles with improved performance and safety in the physiological environment.
Collapse
|
44
|
Foroutan T, Nafar M, Motamedi E. Intraperitoneal Injection of Graphene Oxide Nanoparticle Accelerates Stem Cell Therapy Effects on Acute Kidney Injury. Stem Cells Cloning 2020; 13:21-32. [PMID: 32104004 PMCID: PMC7023909 DOI: 10.2147/sccaa.s212087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/10/2020] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Graphene-based nanostructures have shown some degree of stem cell protection against cell death. Acute kidney injury (AKI) is a major cause of mortality in hospitalized patients. Here, graphene oxide (GO) was used to improve the efficacy of bone marrow-derived mesenchymal stem cells (MSCs) in the treatment of AKI induced by cisplatin, a chemotherapy medication used to treat a number of cancers. MATERIALS AND METHODS Cisplatin-induced AKI was modeled in male rats. Intraperitoneal injection of MSCs mixed with GO, synthesized by graphite powder, H2SO4, and KMnO4 was administered in modeled animals. Biochemical analysis of serum and histological and immunohistochemical (IHC) staining of kidney tissue samples were determined. RESULTS Administration of GO nanoparticles suspended in MSCs reduced serum levels of creatinine (Cr) and blood urea nitrogen (BUN) in cisplatin-induced AKI in the experimental group compared to the control group. Histopathological evaluation also showed an improvement of morphological alterations of kidney, such as cellular proliferation, apoptosis and necrosis, cyst formation and intratubular debris in the experimental group compared to the control group. Our data revealed that GO injection alone without MSCs accelerated the improvement of the kidney injury induced by cisplatin. CONCLUSION This study demonstrated that suspended GO could enhance the efficacy of stem cells in the treatment of AKI. GO alone without stem cell accelerates the improvement of cisplatin-induced AKI.
Collapse
Affiliation(s)
- Tahereh Foroutan
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohsen Nafar
- Nephrology Department of Erfan Hospital, Tehran, Iran
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
45
|
Patil R, Bahadur P, Tiwari S. Dispersed graphene materials of biomedical interest and their toxicological consequences. Adv Colloid Interface Sci 2020; 275:102051. [PMID: 31753296 DOI: 10.1016/j.cis.2019.102051] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Graphene is one-atom thick nanocarbon displaying a unique honeycomb structure and extensive conjugation. In addition to high surface area to mass ratio, it displays unique optical, thermal, electronic and mechanical properties. Atomic scale tunability of graphene has attracted immense research interest with a prospective utility in electronics, desalination, energy sectors, and beyond. Its intrinsic opto-thermal properties are appealing from the standpoint of multimodal drug delivery, imaging and biosensing applications. Hydrophobic basal plane of sheets can be efficiently loaded with aromatic molecules via non-specific forces. With intense biomedical interest, methods are evolving to produce defect-free and dispersion stable sheets. This review summarizes advancements in synthetic approaches and strategies of stabilizing graphene derivatives in aqueous medium. We have described the interaction of colloidal graphene with cellular and sub-cellular components, and subsequent physiological signaling. Finally, a systematic discussion is provided covering toxicological challenges and possible solutions on utilizing graphene formulations for high-end biomedical applications.
Collapse
|
46
|
Kitko KE, Zhang Q. Graphene-Based Nanomaterials: From Production to Integration With Modern Tools in Neuroscience. Front Syst Neurosci 2019; 13:26. [PMID: 31379522 PMCID: PMC6646684 DOI: 10.3389/fnsys.2019.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 06/24/2019] [Indexed: 12/02/2022] Open
Abstract
Graphene, a two-dimensional carbon crystal, has emerged as a promising material for sensing and modulating neuronal activity in vitro and in vivo. In this review, we provide a primer for how manufacturing processes to produce graphene and graphene oxide result in materials properties that may be tailored for a variety of applications. We further discuss how graphene may be composited with other bio-compatible materials of interest to make novel hybrid complexes with desired characteristics for bio-interfacing. We then highlight graphene's ever-widen utility and unique properties that may in the future be multiplexed for cross-modal modulation or interrogation of neuronal network. As the biological effects of graphene are still an area of active investigation, we discuss recent development, with special focus on how surface coatings and surface properties of graphene are relevant to its biological effects. We discuss studies conducted in both non-murine and murine systems, and emphasize the preclinical aspect of graphene's potential without undermining its tangible clinical implementation.
Collapse
Affiliation(s)
- Kristina E. Kitko
- Program in Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Qi Zhang
- The Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
47
|
Cherian R, Sandeman S, Ray S, Savina I, J. A, P.V. M. Green synthesis of Pluronic stabilized reduced graphene oxide: Chemical and biological characterization. Colloids Surf B Biointerfaces 2019; 179:94-106. [DOI: 10.1016/j.colsurfb.2019.03.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
48
|
Mousavi SM, Hashemi SA, Ghasemi Y, Amani AM, Babapoor A, Arjmand O. Applications of graphene oxide in case of nanomedicines and nanocarriers for biomolecules: review study. Drug Metab Rev 2019; 51:12-41. [PMID: 30741033 DOI: 10.1080/03602532.2018.1522328] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this Review article, recent progress in matter of graphene oxide (GO) synthesis and its functionalization via a vast range of materials, including small molecules, polymers, and biomolecules, were reported and systematically summarized in order to overcome the inherent drawbacks of GO nanocarriers and thereby make these nanocarriers suitable for delivering chemotherapeutic agents, genes, and short interfering RNAs. Briefly, this work describes current strategies for the large scale production of GO and modification of graphene-based nanocarriers surfaces through practical chemical approaches, improving their biocompatibility and declining their toxicity. It also describes the most relevant cases of study suitable to demonstrate the role of graphene and graphene derivatives (GD) as nanocarrier for anti-cancer drugs and genes (e.g. miRNAs). Moreover, the controlled release mechanisms within the cell compartments and blood pH for targeted therapeutics release in the acidic environment of tumor cells or in intracellular compartments are mentioned and explored.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Seyyed Alireza Hashemi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Younes Ghasemi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Ali Mohammad Amani
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Aziz Babapoor
- b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran.,c Department of Chemical Engineering , University of Mohaghegh Ardabili (UMA) , Ardabil , Iran
| | - Omid Arjmand
- d Department of Chemical Engineering, South Tehran Branch , Islamic Azad University , Tehran , Iran
| |
Collapse
|
49
|
Strojny B, Sawosz E, Grodzik M, Jaworski S, Szczepaniak J, Sosnowska M, Wierzbicki M, Kutwin M, Orlińska S, Chwalibog A. Nanostructures of diamond, graphene oxide and graphite inhibit CYP1A2, CYP2D6 and CYP3A4 enzymes and downregulate their genes in liver cells. Int J Nanomedicine 2018; 13:8561-8575. [PMID: 30587978 PMCID: PMC6300366 DOI: 10.2147/ijn.s188997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION AND OBJECTIVE Currently, carbon nanostructures are vastly explored materials with potential for future employment in biomedicine. The possibility of employment of diamond nanoparticles (DN), graphene oxide (GO) or graphite nanoparticles (GN) for in vivo applications raises a question of their safety. Even though they do not induce a direct toxic effect, due to their unique properties, they can still interact with molecular pathways. The objective of this study was to assess if DN, GO and GN affect three isoforms of cytochrome P450 (CYP) enzymes, namely, CYP1A2, CYP2D6 and CYP3A4, expressed in the liver. METHODS Dose-dependent effect of the DN, GO and GN nanostructures on the catalytic activity of CYPs was examined using microsome-based model. Cytotoxicity of DN, GO and GN, as well as the influence of the nanostructures on mRNA expression of CYP genes and CYP-associated receptor genes were studied in vitro using HepG2 and HepaRG cell lines. RESULTS All three nanostructures interacted with the CYP enzymes and inhibited their catalytic activity in microsomal-based models. CYP gene expression at the mRNA level was also downregulated in HepG2 and HepaRG cell lines. Among the three nanostructures, GO showed the most significant influence on the enzymes, while DN was the most inert. CONCLUSION Our findings revealed that DN, GO and GN might interfere with xenobiotic and drug metabolism in the liver by interactions with CYP isoenzymes responsible for the process. Such results should be considered if DN, GO and GN are used in medical applications.
Collapse
Affiliation(s)
- Barbara Strojny
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Sawosz
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Grodzik
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jarosław Szczepaniak
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Malwina Sosnowska
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sylwia Orlińska
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark,
| |
Collapse
|
50
|
Zare-Zardini H, Taheri-Kafrani A, Ordooei M, Amiri A, Karimi-Zarchi M. Evaluation of toxicity of functionalized graphene oxide with ginsenoside Rh2, lysine and arginine on blood cancer cells (K562), red blood cells, blood coagulation and cardiovascular tissue: In vitro and in vivo studies. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|