1
|
Lu C, Jin A, Liu H, Gao C, Sun W, Zhang Y, Dai Q, Liu Y. Advancing tissue engineering through vascularized cell spheroids: building blocks of the future. Biomater Sci 2025; 13:1901-1922. [PMID: 40067332 DOI: 10.1039/d4bm01206b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Vascularization is a crucial aspect of biofabrication, as the development of vascular networks is essential for tissue survival and the optimization of cellular functions. Spheroids have emerged as versatile units for vascularization, demonstrating significant potential in angiogenesis and prevascularization for tissue engineering and regenerative medicine. However, a major challenge in creating customized vascularized spheroids is the construction of a biomimetic extracellular matrix (ECM) microenvironment. This process requires careful regulation of environmental factors, including the modulation of growth factors, the selection of culture media, and the co-culture of diverse cell types. Recent advancements in biofabrication have expanded the potential applications of vascularized spheroids. The integration of microfluidic technology with bioprinting offers promising solutions to existing challenges in regenerative medicine. Spheroids have been widely studied for their ability to promote vascularization in in vitro models. This review highlights the latest developments in vascularized biofabrication, and systematically explores strategies for constructing vascularized spheroids. We provide a comprehensive analysis of spheroid applications in specific tissues, including skin, liver, bone, cardiac, and tumor models. Finally, the review addresses the major challenges and future directions in the field.
Collapse
Affiliation(s)
- Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Wenbin Sun
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| |
Collapse
|
2
|
Shi Y, Yang X, Min J, Kong W, Hu X, Zhang J, Chen L. Advancements in culture technology of adipose-derived stromal/stem cells: implications for diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1343255. [PMID: 38681772 PMCID: PMC11045945 DOI: 10.3389/fendo.2024.1343255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Stem cell-based therapies exhibit considerable promise in the treatment of diabetes and its complications. Extensive research has been dedicated to elucidate the characteristics and potential applications of adipose-derived stromal/stem cells (ASCs). Three-dimensional (3D) culture, characterized by rapid advancements, holds promise for efficacious treatment of diabetes and its complications. Notably, 3D cultured ASCs manifest enhanced cellular properties and functions compared to traditional monolayer-culture. In this review, the factors influencing the biological functions of ASCs during culture are summarized. Additionally, the effects of 3D cultured techniques on cellular properties compared to two-dimensional culture is described. Furthermore, the therapeutic potential of 3D cultured ASCs in diabetes and its complications are discussed to provide insights for future research.
Collapse
Affiliation(s)
- Yinze Shi
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xueyang Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
3
|
Thai VL, Ramos-Rodriguez DH, Mesfin M, Leach JK. Hydrogel degradation promotes angiogenic and regenerative potential of cell spheroids for wound healing. Mater Today Bio 2023; 22:100769. [PMID: 37636986 PMCID: PMC10450977 DOI: 10.1016/j.mtbio.2023.100769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Chronic nonhealing wounds are debilitating and diminish one's quality of life, necessitating the development of improved strategies for effective treatment. Biomaterial- and cell-based therapies offer an alternative treatment compared to conventional wound care for regenerating damaged tissues. Cell-based approaches frequently utilize endothelial cells (ECs) to promote vascularization and mesenchymal stromal cells (MSCs) for their potent secretome that promotes host cell recruitment. Spheroids have improved therapeutic potential over monodisperse cells, while degradable scaffolds can influence cellular processes conducive to long-term tissue regeneration. However, the role of biomaterial degradation on the therapeutic potential of heterotypic EC-MSC spheroids for wound healing is largely unknown. We formed poly(ethylene) glycol (PEG) hydrogels with varying ratios of matrix metalloproteinase (MMP)-degradable and non-degradable crosslinkers to develop three distinct constructs - fully degradable, partially degradable, and non-degradable - and interrogate the influence of degradation rate on engineered cell carriers for wound healing. We found that the vulnerability to degradation was critical for cellular proliferation, while inhibition of degradation impaired spheroid metabolic activity. Higher concentrations of degradable crosslinker promoted robust cell spreading, outgrowth, and secretion of proangiogenic cytokines (i.e., VEGF, HGF) that are critical in wound healing. The degree of degradation dictated the unique secretory profile of spheroids. When applied to a clinically relevant full-thickness ex vivo skin model, degradable spheroid-loaded hydrogels restored stratification of the epidermal layer, confirming the efficacy of scaffolds to promote wound healing. These results highlight the importance of matrix remodeling and its essential role in the therapeutic potential of heterotypic spheroids.
Collapse
Affiliation(s)
- Victoria L. Thai
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
- Department of Biomedical Engineering, UC Davis, Davis, CA, 95616, USA
| | | | - Meron Mesfin
- Department of Biomedical Engineering, UC Davis, Davis, CA, 95616, USA
| | - J. Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
- Department of Biomedical Engineering, UC Davis, Davis, CA, 95616, USA
| |
Collapse
|
4
|
Saemundsson SA, Ganguly S, Curry SD, Goodwin AP, Cha JN. Controlling Cell Organization in 3D Coculture Spheroids Using DNA Interactions. ACS Biomater Sci Eng 2023. [PMID: 37155244 DOI: 10.1021/acsbiomaterials.3c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The role of stromal and immune cells in transforming the tumor microenvironment is a key consideration in understanding tumor cell behavior and anticancer drug development. To better model these systems in vitro, 3D coculture tumor spheroids have been engineered using a variety of techniques including centrifugation to microwells, hanging drop, low adhesion cultures, and culture of cells in a microfluidic platform. Aside from using bioprinting, however, it has remained more challenging to direct the spatial organization of heterotypic cells in standalone 3D spheroids. To address this, we present an in vitro 3D coculture tumor model where we modulated the interactions between cancer cells and fibroblasts through DNA hybridization. When native heterotypic cells are simply mixed, the cell aggregates typically show cell sorting behavior to form phase separated structures composed of single cell types. In this work, we demonstrate that when MDA-MB-468 breast cancer and NIH/3T3 fibroblasts are directed to associate via complementary DNA, a uniform distribution of the two cell types within a single spheroid was observed. In contrast, in the absence of specific DNA interactions between the cancer cells and fibroblasts, individual clusters of the NIH/3T3 cells formed in each spheroid due to cell sorting. To better understand the effect of heterotypic cell organization on either cell-cell contacts or matrix protein production, the spheroids were further stained with anti-E-cadherin and antifibronectin antibodies. While the amounts of E-cadherin appeared to be similar between the spheroids, a significantly higher amount of fibronectin secretion was observed in the coculture spheroids with uniform mixing of two cell types. This result showed that different heterotypic cell distributions within 3D architecture can influence the ECM protein production that can again alter the properties of the tumor or tumor microenvironment. The present study thus describes the use of DNA templating to direct the organization of cells in coculture spheroids, which can provide mechanistic biological insight into how heterotypic distribution in tumor spheroids can influence tumor progression, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Sven A Saemundsson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
| | - Saheli Ganguly
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
| | - Shane D Curry
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
| | - Andrew P Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
| | - Jennifer N Cha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
- Biomedical Engineering Program, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
| |
Collapse
|
5
|
Hsu CN, Lin YT, Chen YH, Tseng TY, Tsai HF, Hong SG, Yao CL. An Aligned Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Scaffold Fixed with Fibronectin to Enhance the Attachment and Growth of Human Endothelial Progenitor Cells. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Di Stefano AB, Urrata V, Trapani M, Moschella F, Cordova A, Toia F. Systematic review on spheroids from adipose‐derived stem cells: Spontaneous or artefact state? J Cell Physiol 2022; 237:4397-4411. [PMID: 36209478 PMCID: PMC10091738 DOI: 10.1002/jcp.30892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
Three-dimensional (3D) cell cultures represent the spontaneous state of stem cells with specific gene and protein molecular expression that are more alike the in vivo condition. In vitro two-dimensional (2D) cell adhesion cultures are still commonly employed for various cellular studies such as movement, proliferation and differentiation phenomena; this procedure is standardized and amply used in laboratories, however their representing the original tissue has recently been subject to questioning. Cell cultures in 2D require a support/substrate (flasks, multiwells, etc.) and use of fetal bovine serum as an adjuvant that stimulates adhesion that most likely leads to cellular aging. A 3D environment stimulates cells to grow in suspended aggregates that are defined as "spheroids." In particular, adipose stem cells (ASCs) are traditionally observed in adhesion conditions, but a recent and vast literature offers many strategies that obtain 3D cell spheroids. These cells seem to possess a greater ability in maintaining their stemness and differentiate towards all mesenchymal lineages, as demonstrated in in vitro and in vivo studies compared to adhesion cultures. To date, standardized procedures that form ASC spheroids have not yet been established. This systematic review carries out an in-depth analysis of the 76 articles produced over the past 10 years and discusses the similarities and differences in materials, techniques, and purposes to standardize the methods aimed at obtaining ASC spheroids as already described for 2D cultures.
Collapse
Affiliation(s)
- Anna Barbara Di Stefano
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
| | - Valentina Urrata
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
| | - Marco Trapani
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
| | - Francesco Moschella
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
| | - Adriana Cordova
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
- Department of Surgical, Oncological and Oral Sciences, Unit of Plastic and Reconstructive Surgery University of Palermo Palermo Italy
- Department of D.A.I. Chirurgico, Plastic and Reconstructive Unit Azienda Ospedaliera Universitaria Policlinico “Paolo Giaccone” Palermo Italy
| | - Francesca Toia
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
- Department of Surgical, Oncological and Oral Sciences, Unit of Plastic and Reconstructive Surgery University of Palermo Palermo Italy
- Department of D.A.I. Chirurgico, Plastic and Reconstructive Unit Azienda Ospedaliera Universitaria Policlinico “Paolo Giaccone” Palermo Italy
| |
Collapse
|
7
|
Shanbhag S, Rashad A, Nymark EH, Suliman S, de Lange Davies C, Stavropoulos A, Bolstad AI, Mustafa K. Spheroid Coculture of Human Gingiva-Derived Progenitor Cells With Endothelial Cells in Modified Platelet Lysate Hydrogels. Front Bioeng Biotechnol 2021; 9:739225. [PMID: 34513817 PMCID: PMC8427051 DOI: 10.3389/fbioe.2021.739225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
Cell coculture strategies can promote angiogenesis within tissue engineering constructs. This study aimed to test the angiogenic potential of human umbilical vein endothelial cells (HUVEC) cocultured with gingiva-derived progenitor cells (GPC) as spheroids in a xeno-free environment. Human platelet lysate (HPL) was used as a cell culture supplement and as a hydrogel matrix (HPLG) for spheroid encapsulation. HUVEC and HUVEC + GPC (1:1 or 5:1) spheroids were encapsulated in various HPLG formulations. Angiogenesis was assessed via in vitro sprouting and in vivo chick chorioallantoic membrane (CAM) assays. HUVEC revealed characteristic in vitro sprouting in HPL/HPLG and this was significantly enhanced in cocultures with GPC (p < 0.05). A trend for greater sprouting was observed in 5:1 vs 1:1 HUVEC + GPC spheroids and in certain HPLG formulations (p > 0.05). Both HUVEC and HUVEC + GPC spheroids in HPLG revealed abundant and comparable neoangiogenesis in the CAM assay (p > 0.05). Spheroid coculture of HUVEC + GPC in HPLG represents a promising strategy to promote angiogenesis.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ahmad Rashad
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ellen Helgeland Nymark
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Salwa Suliman
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Division of Regenerative Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Anne Isine Bolstad
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Jin GZ. Enhanced growth and myogenic differentiation of spheroid-derived C2C12 cells. Biosci Biotechnol Biochem 2021; 85:1227-1234. [PMID: 33704409 DOI: 10.1093/bbb/zbab018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022]
Abstract
Among many factors of controlling stem cell differentiation, the key transcription factor upregulation via physical force is a good strategy on the lineage-specific differentiation of stem cells. The study aimed to compare growth and myogenic potentials between the parental cells (PCs) and the 1-day-old C2C12 spheroid-derived cells (SDCs) in two-dimensional (2D) and three-dimensional (3D) culture conditions through examination of the cell proliferation and the expression of myogenic genes. The data showed that 1-day-old spheroids had more intense expression of MyoD gene with respect to the PCs. The proliferation of the SDCs is significantly higher than the PCs in a time-dependent manner. The SDCs had also significantly higher myogenic potential than the PCs in 2D and 3D culture conditions. The results suggest that MyoD gene upregulation through cell-cell contacts is the good approach for preparation of seed cells in muscle tissue engineering.
Collapse
Affiliation(s)
- Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
9
|
Bae Y, Joo C, Park KH, Kang SW, Huh KM, Choi JS. Preparation and characterization of 3D human glioblastoma spheroids using an N-octanoyl glycol chitosan hydrogel. Int J Biol Macromol 2021; 185:87-97. [PMID: 34144066 DOI: 10.1016/j.ijbiomac.2021.06.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
The current 2D culture model systems developed for drug screening are not sufficient to reflect the characteristics of in vivo solid tumors. Therefore, more effective in vitro tumor model systems must be developed for translational studies on therapeutic drug screening and testing. Herein, we report a new ultra-low adhesion (ULA) hydrogel for generating 3D cancer cell spheroids as tumor models in vitro. N-octanoyl glycol chitosan (OGC) was synthesized and coated onto the surface of a typical cell culture dish. Cell spheroids were effectively formed on the OGC-coated surface, and phenotypes of the tumor cells were well maintained during culture. More importantly, U373-MG cells cultured on OGC-coated plates were more resistant to doxorubicin than cells cultured on typical plates. Our OGC-based ULA system may offer a convenient method for 3D cell culture to provide enhanced performance in cancer research, drug screening and toxicology.
Collapse
Affiliation(s)
- Yoonhee Bae
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Busan 47392, Republic of Korea
| | - Chanyang Joo
- Departments of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyoung Hwan Park
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, Daejeon 34134, Republic of Korea.
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Joon Sig Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
10
|
Gibler P, Gimble J, Hamel K, Rogers E, Henderson M, Wu X, Olesky S, Frazier T. Human Adipose-Derived Stromal/Stem Cell Culture and Analysis Methods for Adipose Tissue Modeling In Vitro: A Systematic Review. Cells 2021; 10:1378. [PMID: 34204869 PMCID: PMC8227575 DOI: 10.3390/cells10061378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Human adipose-derived stromal/stem cells (hASC) are widely used for in vitro modeling of physiologically relevant human adipose tissue. These models are useful for the development of tissue constructs for soft tissue regeneration and 3-dimensional (3D) microphysiological systems (MPS) for drug discovery. In this systematic review, we report on the current state of hASC culture and assessment methods for adipose tissue engineering using 3D MPS. Our search efforts resulted in the identification of 184 independent records, of which 27 were determined to be most relevant to the goals of the present review. Our results demonstrate a lack of consensus on methods for hASC culture and assessment for the production of physiologically relevant in vitro models of human adipose tissue. Few studies have assessed the impact of different 3D culture conditions on hASC adipogenesis. Additionally, there has been a limited use of assays for characterizing the functionality of adipose tissue in vitro. Results from this study suggest the need for more standardized culture methods and further analysis on in vitro tissue functionality. These will be necessary to validate the utility of 3D MPS as an in vitro model to reduce, refine, and replace in vivo experiments in the drug discovery regulatory process.
Collapse
Affiliation(s)
- Peyton Gibler
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Jeffrey Gimble
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
- Department of Structural and Cell Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Katie Hamel
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Emma Rogers
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Michael Henderson
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Xiying Wu
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Spencer Olesky
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Trivia Frazier
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
- Department of Structural and Cell Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Li Y, Wang Y, Shen C, Meng Q. Non-swellable F127-DA hydrogel with concave microwells for formation of uniform-sized vascular spheroids. RSC Adv 2020; 10:44494-44502. [PMID: 35517174 PMCID: PMC9058638 DOI: 10.1039/d0ra06188c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Hydrogels with concave microwells are one of the simplest means to obtain uniform-sized cellular spheroids. However, the inherent swelling of hydrogels leads to reduced mechanical strength and thus deforms the structure of the microwells. In this study, we developed a hydrogel with microwells for formation of vascular spheroids via non-swellable di-acrylated Pluronic F127 (F127-DA), which showed higher mechanical strength than a conventional di-acrylated polyethylene glycol (PEG-DA) hydrogel. The uniform-sized vascular spheroids were spontaneously generated by human umbilical vein endothelial cells (HUVECs) and fibroblasts in the microwells. The endothelial functions of vascular spheroids were about 1-fold higher than those in two-dimensional (2D) culture, as indicated by secretion of nitric oxide (NO), prostacyclin (PGI2) and tissue factor pathway inhibitor (TFPI). Interestingly, the vascular spheroids with large diameter showed higher sensitivity to ethanol toxicity than those with small diameter, possibly due to the higher endothelial functions of large spheroids. Hence, F127-DA hydrogel with concave microwells provides a convenient way of forming uniform-sized spheroids that are useful for high throughput screening of drug/food toxicity. Hydrogels with concave microwells are one of the simplest means to obtain uniform-sized cellular spheroids.![]()
Collapse
Affiliation(s)
- Yingjun Li
- College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Ying Wang
- College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Chong Shen
- College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Qin Meng
- College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
12
|
Chang PH, Chao HM, Chern E, Hsu SH. Chitosan 3D cell culture system promotes naïve-like features of human induced pluripotent stem cells: A novel tool to sustain pluripotency and facilitate differentiation. Biomaterials 2020; 268:120575. [PMID: 33341735 DOI: 10.1016/j.biomaterials.2020.120575] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/03/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
A simplified and cost-effective culture system for maintaining the pluripotency of human induced pluripotent stem cells (hiPSCs) is crucial for stem cell applications. Although recombinant protein-based feeder-free hiPSC culture systems have been developed, their manufacturing processes are expensive and complicated, which hinders hiPSC technology progress. Chitosan, a versatile biocompatible polysaccharide, has been reported as a biomaterial for three-dimensional (3D) cell culture system that promotes the physiological activities of mesenchymal stem cells and cancer cells. In the current study, we demonstrated that chitosan membranes sustained proliferation and pluripotency of hiPSCs in long-term culture (up to 365 days). Moreover, using vitronectin as the comparison group, the pluripotency of hiPSCs grown on the membranes was altered into a naïve-like state, which, for pluripotent stem cells, is an earlier developmental stage with higher stemness. On the chitosan membranes, hiPSCs self-assembled into 3D spheroids with an average diameter of ~100 μm. These hiPSC spheroids could be directly differentiated into lineage-specific cells from the three germ layers with 3D structures. Collectively, chitosan membranes not only promoted the naïve pluripotent features of hiPSCs but also provided a novel 3D differentiation platform. This convenient biomaterial-based culture system may enable the effective expansion and accessibility of hiPSCs for regenerative medicine, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Po-Hsiang Chang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiao-Mei Chao
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan; Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
13
|
Carvalho DJ, Feijão T, Neves MI, da Silva RMP, Barrias C. Directed self-assembly of spheroids into modular vascular beds for engineering large tissue constructs. Biofabrication 2020; 13. [PMID: 33147579 DOI: 10.1088/1758-5090/abc790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Spheroids can be used as building-blocks for bottom-up generation of artificial vascular beds, but current biofabrication strategies are often time-consuming and complex. Also, pre-optimization of single spheroid properties is often neglected. Here, we report a simple setup for rapid biomanufacturing of spheroid-based patch-like vascular beds. Prior to patch assembly, spheroids combining mesenchymal stem/stromal cells (MSC) and outgrowth endothelial cells (OEC) at different ratios (10:1; 5:1; 1:1; 1:5) were formed in non-adhesive microwells and monitored along 7 days. Optimal OEC retention and organization was observed at 1:1 MSC/OEC ratio. Dynamic remodelling of spheroids led to changes in both cellular and extracellular matrix components (ECM) over time. Some OEC formed internal clusters, while others organized into a peripheral monolayer, stabilized by ECM and pericyte-like cells, with concomitant increase in surface stiffness. Along spheroid culture, OEC switched from an active to a quiescent state, and their endothelial sprouting potential was significantly abrogated, suggesting that immature spheroids may be more therapeutically relevant. Non-adhesive moulds were subsequently used for triggering rapid, one-step, spheroid formation/fusion into square-shaped patches, with spheroids uniformly interspaced via a thin cell layer. The high surface area, endothelial sprouting potential, and scalability of the developed spheroid-based patches make them stand out as artificial vascular beds for modular engineering of large tissue constructs.
Collapse
Affiliation(s)
- Daniel Jose Carvalho
- Bioengineered 3D microenvironments, Instituto Nacional de Engenharia Biomedica, Porto, Porto, PORTUGAL
| | - Tália Feijão
- Universidade do Porto Instituto de Investigação e Inovação em Saúde, Porto, Porto, PORTUGAL
| | - Mariana Isabel Neves
- Universidade do Porto Instituto de Investigação e Inovação em Saúde, Porto, Porto, PORTUGAL
| | - Ricardo M P da Silva
- Universidade do Porto Instituto de Investigação e Inovação em Saúde, Porto, Porto, PORTUGAL
| | - Cristina Barrias
- Instituto Engenharia Biomedica Laboratorio de Biomaterials, Universidade do Porto, Porto, PORTUGAL
| |
Collapse
|
14
|
Fitzgerald SJ, Cobb JS, Janorkar AV. Comparison of the formation, adipogenic maturation, and retention of human adipose-derived stem cell spheroids in scaffold-free culture techniques. J Biomed Mater Res B Appl Biomater 2020; 108:3022-3032. [PMID: 32396702 PMCID: PMC8506838 DOI: 10.1002/jbm.b.34631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 11/02/2023]
Abstract
While three-dimensional spheroids outperform traditional two-dimensional monolayer culture for human adipose-derived stem cells (hASCs), there is not a consensus on the most successful method for enhancing their adipogenic differentiation and minimizing the loss of physiologically relevant, fatty spheroids during culture. To this end, we compared three culture methods, namely, elastin-like polypeptide-polyethyleneimine (ELP-PEI) coated surfaces, ultra-low attachment static culture, and suspension culture for their ability to form and retain productive hASC spheroids. The ELP-PEI coatings used the ELP conjugated to two molecular weights of PEI (800 or 25,000 g/mol). FTIR spectroscopy, atomic force microscopy, and contact angle goniometry revealed that the ELP-PEI coatings had similar chemical structures, surface topography, and hydrophobicity. Time-lapse microscopy showed that increasing the PEI molecular weight resulted in smaller spheroids. Measurement of triglyceride content showed that the three methods induced comparable differentiation of hASCs toward the adipogenic lineage. DNA content and morphometric analysis revealed merging of spheroids to form larger spheroids in the ultra-low attachment static culture and suspension culture methods. In contrast, the retention of hASC spheroid sizes and numbers with a regular spheroid size (~100 μm) were best atop the ELP-PEI800 coatings. Overall, this research shows that the spheroid culture atop the ELP-PEI coatings is a suitable cell culture model for future studies involving long-term, three-dimensional culture of mature adipocytes derived from hASCs.
Collapse
Affiliation(s)
- Sarah J. Fitzgerald
- Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216
| | - Jared S. Cobb
- Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216
| | - Amol V. Janorkar
- Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216
| |
Collapse
|
15
|
Zuo X, Zhang H, Zhou T, Duan Y, Shou H, Yu S, Gao C. Spheroids of Endothelial Cells and Vascular Smooth Muscle Cells Promote Cell Migration in Hyaluronic Acid and Fibrinogen Composite Hydrogels. RESEARCH 2020; 2020:8970480. [PMID: 32159162 PMCID: PMC7049785 DOI: 10.34133/2020/8970480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
Abstract
Cell migration plays a pivotal role in many pathological and physiological processes. So far, most of the studies have been focused on 2-dimensional cell adhesion and migration. Herein, the migration behaviors of cell spheroids in 3D hydrogels obtained by polymerization of methacrylated hyaluronic acid (HA-MA) and fibrinogen (Fg) with different ratios were studied. The Fg could be released to the medium gradually along with time prolongation, achieving the dynamic change of hydrogel structures and properties. Three types of cell spheroids, i.e., endothelial cell (EC), smooth muscle cell (SMC), and EC-SMC spheroids, were prepared with 10,000 cells in each, whose diameters were about 343, 108, and 224 μm, respectively. The composite hydrogels with an intermediate ratio of Fg allowed the fastest 3D migration of cell spheroids. The ECs-SMCs migrated longest up to 3200 μm at day 14, whereas the SMC spheroids migrated slowest with a distance of only ~400 μm at the same period of time. The addition of free RGD or anti-CD44 could significantly reduce the migration distance, revealing that the cell-substrate interactions take the major roles and the migration is mesenchymal dependent. Moreover, addition of anti-N-cadherin and MMP inhibitors also slowed down the migration rate, demonstrating that the degradation of hydrogels and cell-cell interactions are also largely involved in the cell migration. RT-PCR measurement showed that expression of genes related to cell adhesion and antiapoptosis, and angiogenesis was all upregulated in the EC-SMC spheroids than single EC or SMC spheroids, suggesting that the use of composite cell spheroids is more promising to promote cell-substrate interactions and maintenance of cell functions.
Collapse
Affiliation(s)
- Xingang Zuo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yiyuan Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hao Shou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shan Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Jiang CF, Hsu SH, Sun YM, Tsai MH. Quantitative Bioimage Analysis of Passaging Effect on the Migratory Behavior of Human Mesenchymal Stem Cells During Spheroid Formation. Cytometry A 2020; 97:394-406. [PMID: 32112613 DOI: 10.1002/cyto.a.23985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/31/2019] [Accepted: 01/27/2020] [Indexed: 01/02/2023]
Abstract
The quality of stem cells obtained through serial subcultivation is the pivotal factor determining the therapeutic effectiveness of regenerative medicine. However, an effective quality monitoring system for cell culture is yet to be established. Detailed parameter studies of the migratory behavior of stem cells at different passages may provide insight into the deterioration of stemness. Thus, this study aimed to evaluate the feasibility of quantitative bioimage analysis for monitoring stem cell quality during in vitro culture and to explore the passaging effects on stem cell migration. An image-based analytical tool using cell tracking, cytometric analyses, and gating with time-lapse microscopy was developed to characterize the migratory behavior of human mesenchymal stem cells (hMSCs) isolated from human adipose tissue (hADAS) and placenta (hPDMC) cultured on chitosan membranes. Quantitative analysis was performed for the single cells and assembled spheroids selected from 15 videos of Passages 3, 5, and 11 for hADAS and those from 12 videos of Passages 7, 11, and 16 for hPDMC. These passages were selected to represent the young, matured, and degenerated stem cells, respectively. Migratory behavior varied with cell passages. The mobility of single hMSCs decreased at degenerated passages. In addition, enhancement of mobility, due to transformation from single cells to spheroids, occurred at each passage. The young hMSCs seemed more likely to move as single cells rather than as aggregates. Once matured, they tended to aggregate with strong 3D spheroid formability and increased mobility. However, the spheroid formability and mobility decreased at late passage. The increase in aggregation rate with passaging may be a compensatory mechanism to enhance the declining mobility of hMSCs through cell coordination. Our findings regarding the passaging effects on stem-cell migratory behavior agree with biochemical reports, suggesting that the developed imaging method is capable of monitoring the cell-culture quality effectively. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ching-Fen Jiang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Man Sun
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Ming-Hong Tsai
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Vorwald CE, Joshee S, Leach JK. Spatial localization of endothelial cells in heterotypic spheroids influences Notch signaling. J Mol Med (Berl) 2020; 98:425-435. [PMID: 32020237 DOI: 10.1007/s00109-020-01883-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Cell-based therapeutic approaches are an exciting strategy to replenish compromised endothelial cell (EC) populations that contribute to impaired vasculogenesis. Co-cultures of ECs and mesenchymal stromal cells (MSCs) can enhance neovascularization over ECs alone, but the efficacy of cells is limited by rapid cell death upon implantation. Co-culture spheroids exhibit improved survival compared with monodisperse cells, yet little is known about the influence of spatial regulation of ECs within co-culture spheroids. We hypothesized that EC sprouting from co-culture spheroids is a function of EC spatial localization. We formed co-culture spheroids containing ECs and MSCs in two formats: ECs uniformly distributed throughout the spheroid (i.e., mixed) or seeded on the perimeter of the MSC core (i.e., shell). Qualitative observations suggested increased vasculogenesis for mixed co-culture spheroids compared with shell conformations as early as day 3, yet quantitative metrics did not reveal significant differences in network formation between these 3D structures. Notch3 expression demonstrated significant increases in cell-cell communication in mixed conformations compared with shell counterparts. Furthermore, knockdown of Notch3 in MSCs abrogated the vasculogenic potential of mixed spheroids, supporting its role in promoting EC-MSC contacts. This study highlights the direct impact of EC-MSC contacts on sprouting and provides insight to improve the quality of network formation. KEY MESSAGES: • Endothelial cell (EC) localization can be controlled in co-culture EC-MSC spheroids. • Mixed spheroids exhibit consistent networks compared to shell counterparts. • Differences in NOTCH3 were observed between mixed and shell spheroids. • NOTCH3 may be a necessary target for improved vasculogenic potential.
Collapse
Affiliation(s)
- Charlotte E Vorwald
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Shreeya Joshee
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA. .,Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA.
| |
Collapse
|
18
|
Kim EM, Lee YB, Kim SJ, Park J, Lee J, Kim SW, Park H, Shin H. Fabrication of core-shell spheroids as building blocks for engineering 3D complex vascularized tissue. Acta Biomater 2019; 100:158-172. [PMID: 31542503 DOI: 10.1016/j.actbio.2019.09.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Cell spheroids as building blocks for engineering micro-tissue should be able to mimic the complex structure of natural tissue. However, control of the distribution of multiple cell populations within cell spheroids is difficult to achieve with current spheroid-harvest methods such as hanging-drop and with the use of microwell plates. In this study, we report the fabrication of core-shell spheroids with the ultimate goal to form 3D complex micro-tissue. We used endothelial cells and two types of stem cells (human turbinate mesenchymal stem cells (hTMSCs)/adipose-derived stem cells (ADSCs)). The stem cells and endothelial cells formed layered micro-sized cell sheets (µCSs) on polydopamine micro-patterned temperature-responsive hydrogel surfaces by a sequential seeding method, and these layered µCSs self-assembled to form core-shell spheroids by expansion of the hydrogels. The co-cultured spheroids formed a core-shell structure irrespective of stem cell type. In addition, the size of the core-shell spheroids was controlled from 90 ± 1 to 144 ± 3 µm by changing pattern sizes (200, 300, and 400 µm). The shell thickness gradually increased from 12 ± 3 to 30 ± 6 µm by adjusting the endothelial cell seeding density. Finally, we fabricated the micro-tissue by fusion of the co-cultured spheroids, and the spheroids with the core-shell structure rapidly induced in vitro vessel-like network in 3 days. Thus, the position of endothelial cells in co-cultured spheroids may be an important factor for the modulation of the vascularization process, which can be useful for the production of 3D complex micro-tissues using spheroids as building blocks. STATEMENT OF SIGNIFICANCE: This manuscript describes our work on the fabrication of core-shell spheroids as building blocks to form 3D complex vascularized micro-tissue. Stem cells (human turbinate mesenchymal stem cells (hTMSCs) or adipose-derived stem cells (ADSCs)) and endothelial cells formed layered micro-sized cell sheets (µCSs) on micro-patterned temperature-responsive hydrogel surfaces by a sequential seeding method, and these layered µCSs self-assembled to form core-shell spheroids (core - stem cells, shell - endothelial cells), irrespective of stem cell type. In addition, the size and shell thickness of the core-shell spheroids were controlled by modifying pattern size and endothelial cell seeding density. We fabricated the vascularized micro-tissue by fusion of the spheroids and demonstrated that the spheroids with a core-shell structure rapidly induced vessel-like network.
Collapse
Affiliation(s)
- Eun Mi Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University
| | - Yu Bin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University
| | - Se-Jeong Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University
| | - Jaesung Park
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University
| | - Sung Won Kim
- Department of Pathology, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University.
| |
Collapse
|
19
|
Kang Y, Liu Y, Liu Z, Ren S, Xiong H, Chen J, Duscher D, Machens HG, Liu W, Guo G, Zhan P, Chen H, Chen Z. Differentiated human adipose-derived stromal cells exhibit the phenotypic and functional characteristics of mature Schwann cells through a modified approach. Cytotherapy 2019; 21:987-1003. [PMID: 31351800 DOI: 10.1016/j.jcyt.2019.04.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS Tissue engineering technology is a promising therapeutic strategy in peripheral nerve injury. Schwann cells (SCs) are deemed to be a vital component of cell-based nerve regeneration therapies. Many methods for producing SC-like cells derived from adipose-derived stromal cells (ADSCs) have been explored, but their phenotypic and functional characteristics remain unsatisfactory. METHODS We investigated whether human ADSCs can be induced to differentiate into mature and stable SC-like cells with the addition of insulin, progestero``ne and glucocorticoids. The phenotypic and functional characteristics of new differentiated ADSCs (modified SC-like cells) were evaluated by real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and immunocytochemistry in vitro. Cells loaded into collagen sponge biomaterials were implanted around transected sciatic nerves with a 10-mm gap in vivo. The axon regrowth and functional recovery of the regenerated nerves were assessed by immunohistochemistry and Walking footprint analysis. RESULTS After differentiation induction, the modified SC-like cells showed significantly up-regulated levels of S100B and P0 and enhanced proliferative and migratory capacities. In addition, the modified SC-like cells showed increased secretion of neurotrophic factors, and their functional characteristics were maintained for more than 3 weeks after removing the induction reagents. The modified SC-like cells exhibited significantly enhanced axon regrowth, myelination and functional recovery after sciatic nerve injury. CONCLUSIONS Overall, the results suggest that this modified induction method can induce human ADSCs to differentiate into cells with the molecular and functional properties of mature SCs and increase the promotion of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenyu Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hewei Xiong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dominik Duscher
- Department of Plastic and Hand Surgery, Klinikum rechts der Isar (MRI), Technische Universität München (TUM), Ismaninger Straße 22 81675, München, Germany
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Klinikum rechts der Isar (MRI), Technische Universität München (TUM), Ismaninger Straße 22 81675, München, Germany
| | - Wei Liu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guojun Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Zhan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongrui Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
20
|
Angiogenic potential of co-spheroids of neural stem cells and endothelial cells in injectable gelatin-based hydrogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:140-149. [DOI: 10.1016/j.msec.2019.01.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/12/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
|
21
|
Mizukami Y, Takahashi Y, Shimizu K, Konishi S, Takakura Y, Nishikawa M. Regulation of the Distribution of Cells in Mixed Spheroids by Altering Migration Direction. Tissue Eng Part A 2019; 25:390-398. [DOI: 10.1089/ten.tea.2018.0063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yuya Mizukami
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazunori Shimizu
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Satoshi Konishi
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Ritsumeikan University, Shiga, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Maikiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
22
|
Gionet-Gonzales MA, Leach JK. Engineering principles for guiding spheroid function in the regeneration of bone, cartilage, and skin. Biomed Mater 2018; 13:034109. [PMID: 29460842 PMCID: PMC5898817 DOI: 10.1088/1748-605x/aab0b3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a critical need for strategies that effectively enhance cell viability and post-implantation performance in order to advance cell-based therapies. Spheroids, which are dense cellular aggregates, overcome many current limitations with transplanting individual cells. Compared to individual cells, the aggregation of cells into spheroids results in increased cell viability, together with enhanced proangiogenic, anti-inflammatory, and tissue-forming potential. Furthermore, the transplantation of cells using engineered materials enables localized delivery to the target site while providing an opportunity to guide cell fate in situ, resulting in improved therapeutic outcomes compared to systemic or localized injection. Despite promising early results achieved by freely injecting spheroids into damaged tissues, growing evidence demonstrates the advantages of entrapping spheroids within a biomaterial prior to implantation. This review will highlight the basic characteristics and qualities of spheroids, describe the underlying principles for how biomaterials influence spheroid behavior, with an emphasis on hydrogels, and provide examples of synergistic approaches using spheroids and biomaterials for tissue engineering applications.
Collapse
Affiliation(s)
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
23
|
Bauman E, Feijão T, Carvalho DTO, Granja PL, Barrias CC. Xeno-free pre-vascularized spheroids for therapeutic applications. Sci Rep 2018; 8:230. [PMID: 29321569 PMCID: PMC5762877 DOI: 10.1038/s41598-017-18431-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Spheroid culture has gained increasing popularity, arising as a promising tool for regenerative medicine applications. Importantly, spheroids may present advantages over single-cell suspensions in cell-based therapies (CT). Unfortunately, most growth media used for spheroid culture contain animal origin-components, such as fetal bovine serum (FBS). The presence of FBS compromises the safety of CT and presents economic and ethical constraints. SCC (supplement for cell culture) is a novel xeno-free (XF) industrial cell culture supplement, derived from well-controlled pooled human plasma and processed under good manufacturing practice rules. Here, we developed a XF SCC-based formulation for 2D-culture of outgrowth endothelial cells (OEC), and then used it for generating co-culture spheroids of OEC and mesenchymal stem cells (MSC). XF MSC-OEC spheroids were characterized in detail and compared to spheroids cultured in FBS-supplemented medium. XF spheroids presented comparable integrity, size and morphology as the reference culture. The use of both media resulted in spheroids with similar structure, abundant extracellular matrix deposition and specific patterns of OEC distribution and organization. Notably, XF spheroids presented significantly enhanced angiogenic potential, both in vitro (fibrin sprouting assay) and in vivo (CAM assay). These findings are particularly promising in the context of potential therapeutic applications.
Collapse
Affiliation(s)
- E Bauman
- Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal
| | - T Feijão
- Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - D T O Carvalho
- Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - P L Granja
- Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - C C Barrias
- Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Porto, Portugal. .,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal. .,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
24
|
Spheroids as vascularization units: From angiogenesis research to tissue engineering applications. Biotechnol Adv 2017; 35:782-791. [DOI: 10.1016/j.biotechadv.2017.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 02/08/2023]
|
25
|
Tseng TC, Wong CW, Hsieh FY, Hsu SH. Biomaterial Substrate-Mediated Multicellular Spheroid Formation and Their Applications in Tissue Engineering. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700064] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/01/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ting-Chen Tseng
- Institute of Polymer Science and Engineering; National Taiwan University; Taipei Taiwan
| | - Chui-Wei Wong
- Institute of Polymer Science and Engineering; National Taiwan University; Taipei Taiwan
| | - Fu-Yu Hsieh
- Institute of Polymer Science and Engineering; National Taiwan University; Taipei Taiwan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering; National Taiwan University; Taipei Taiwan
- Institute of Cellular and System Medicine; National Health Research Institutes; Miaoli Taiwan
| |
Collapse
|
26
|
Han HW, Hsu SH. Chitosan derived co-spheroids of neural stem cells and mesenchymal stem cells for neural regeneration. Colloids Surf B Biointerfaces 2017; 158:527-538. [DOI: 10.1016/j.colsurfb.2017.07.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/10/2017] [Accepted: 07/15/2017] [Indexed: 12/15/2022]
|
27
|
Hill MJ, Sarkar D. Polyurethane Microgel Based Microtissue: Interface-Guided Assembly and Spreading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6167-6181. [PMID: 28564546 PMCID: PMC7214101 DOI: 10.1021/acs.langmuir.7b01493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Colloidal gels are three-dimensional networks of microgel particles and can be utilized to design microtissues where the differential adhesive interactions between the particles and cells, guided by their surface energetics, are engineered to spatially assemble the cellular and colloidal components into three-dimensional microtissues. In this work we utilized a colloidal interaction approach to design cell-polyurethane (PU) microgel bimodal microtissues using endothelial cells (ECs) as a normal cell model and a nonmalignant breast cancer cell line (MCF-7) as a cancer cell model. PU microgels were developed from a library of segmental polyurethanes with poly(ethylene glycol) soft segment and aliphatic diisocyanate/l-tyrosine based chain extender as hard segment to modulate the interactions between PU colloidal particles and cells. The surface energies of the microgel particles and cells were estimated using Zisman's critical surface tension and van Oss-Good-Chaudhury theory (vOGCT) from liquid contact angle analysis. Binary interaction potentials between colloidal PU particles and cells and the ternary interaction between colloidal PU particle, cell, and collagen I/Matrigel were calculated to explain the formation of microtissues and their spreading in extraneous biomatrix respectively by using classical and extended DLVO theory (XDLVO). Furthermore, rheological analysis and in silico simulations were used to analyze the assembly and spreading of the PU microgel based microtissues. In vitro experiments showed that ECs and MCF-7 displayed more differentiated (EC spreading/MCF-7 lumen formation) character when mixed with microgel particles that were stable in aqueous medium and more undifferentiated character (EC nonspreading/MCF-7 spreading) when mixed with microgel particles unstable in aqueous medium.
Collapse
Affiliation(s)
- Michael J. Hill
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Debanjan Sarkar
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
28
|
Chen S, Kawazoe N, Chen G. Biomimetic Assembly of Vascular Endothelial Cells and Muscle Cells in Microgrooved Collagen Porous Scaffolds. Tissue Eng Part C Methods 2017; 23:367-376. [DOI: 10.1089/ten.tec.2017.0088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Shangwu Chen
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Naoki Kawazoe
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Guoping Chen
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
29
|
Lee SI, Ko Y, Park JB. Evaluation of the shape, viability, stemness and osteogenic differentiation of cell spheroids formed from human gingiva-derived stem cells and osteoprecursor cells. Exp Ther Med 2017; 13:3467-3473. [PMID: 28587426 PMCID: PMC5450690 DOI: 10.3892/etm.2017.4388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 03/17/2017] [Indexed: 12/14/2022] Open
Abstract
The present study was performed to create stem cell spheroids from human gingiva-derived stem cells and osteoprecursor cells and to evaluate the maintenance of the stemness, the viability and osteogenic differentiation of the cell spheroids. Gingiva-derived stem cells were isolated, and a total of 6×105 stem cells and osteoprecursor cells were seeded into concave micromolds at various ratios. Gingiva-derived stem cells and/or osteoprecursor cells formed spheroids in concave microwells. The spheroids demonstrated a smaller diameter when the number of osteoprecursor cells seeded was lower. The majority of cells in the spheroids were identified to be live cells and the cell spheroids preserved viability throughout the experimental period. The cell spheroids, which contained stem cells, were positive for stem-cell markers. Cell spheroids in concave microwells demonstrated a statistically significant increase in alkaline phosphatase activity as time progressed (P<0.05). A statistically significant difference in phosphatase activity was observed in the stem cell alone group when compared with the osteoprecursor cell group at day 5 (P<0.05). Mineralized extracellular deposits were observed in each group after Alizarin Red S staining. Within the limits of the present study, cell spheroids from gingival cells and osteoprecursor cells maintained shape, viability, stemness and osteogenic differentiation potential.
Collapse
Affiliation(s)
- Sung-Il Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngkyung Ko
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
30
|
Affiliation(s)
- Hao-Wei Han
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan; Center of Tissue Engineering and 3D printing, National Taiwan University, Taipei, Taiwan; Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan, China
| |
Collapse
|
31
|
Han HW, Hsu SH. Chitosan-hyaluronan based 3D co-culture platform for studying the crosstalk of lung cancer cells and mesenchymal stem cells. Acta Biomater 2016; 42:157-167. [PMID: 27296841 DOI: 10.1016/j.actbio.2016.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 01/06/2023]
Abstract
UNLABELLED The controversial roles of mesenchymal stem cells (MSCs) in lung cancer development are not yet resolved because of the lack of an extracellular environment that mimics the tumor microenvironment. Three-dimensional (3D) culture system is an emerging research tool for biomedical applications such as drug screening. In this study, MSCs and human non-small cell lung carcinoma cells (A549) were co-cultured on a thin biomaterial-based substratum (hyaluronan-grafted chitosan, CS-HA; ∼2μm), and they were self-organized into the 3D tumor co-spheroids with core-shell structure. The gene expression levels of tumorigenicity markers in cancer cells associated with cancer stemness, epithelial-mesenchymal transition (EMT) property, and cell mobility were up-regulated for more than twofold in the MSC-tumor co-spheroids, through the promoted expression of certain tumor enhancers and the direct cell-cell interaction. To verify the different extents of tumorigenicity, A549 cells or those co-cultured with MSCs were transplanted into zebrafish embryos for evaluation in vivo. The tumorigenicity obtained from the zebrafish xenotransplantation model was consistent with that observed in vitro. These evidences suggest that the CS-HA substrate-based 3D co-culture platform for cancer cells and MSCs may be a convenient tool for studying the cell-cell interaction in a tumor-like microenvironment and potentially for cancer drug testing. STATEMENT OF SIGNIFICANCE Mesenchymal stem cells (MSCs) have been found in several types of tumor tissues. However, the controversial roles of MSCs in cancer development are still unsolved. Chitosan and hyaluronan are commonly used materials in the biomedical field. In the current study, we co-cultured lung cancer cells and MSCs on the planar hyaluronan-grafted chitosan (CS-HA) hybrid substrates, and discovered that lung cancer cells and MSCs were rapidly self-assembled into 3D tumor spheroids with core-shell structure on the substrates after only two days in culture. Therefore, CS-HA based 3D co-culture platform can be applied to exploration of the relationship between cancer cells and MSCs and other cancer-related medical applications such as drug screening.
Collapse
|
32
|
Jeon O, Marks R, Wolfson D, Alsberg E. Dual-crosslinked hydrogel microwell system for formation and culture of multicellular human adipose tissue-derived stem cell spheroids. J Mater Chem B 2016; 4:3526-3533. [PMID: 32263386 PMCID: PMC7738273 DOI: 10.1039/c6tb00064a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) multicellular spheroids of human adipose tissue-derived stem cells (hASCs) are an attractive system for basic science studies and tissue engineering applications, as they can resemble cellular condensations present in developmental and healing processes. The purpose of this study was to engineer a hydrogel-based microwell platform by capitalizing on the differential swelling behavior of micropatterned dual-crosslinked oxidized, methacrylated alginate (OMA)/multi-arm polyethylene glycol (PEG) hydrogels for rapid formation of uniform multicellular hASC spheroids with controllable size and evaluation of the capacity of the system to be used to drive osteogenic differentiation of the spheroids. By changing the micropattern size, the size of the hydrogel microwells was easily controllable. Microwell-seeded hASCs generated spheroids of relatively uniform size and high cell viability. hASC spheroids exhibited rapid mineralization in osteogenic media, which was faster than that of conventional two-dimensionally cultured hASCs. This new hydrogel microwell system has great potential for controlled multicellular spheroid formation and defined signal presentation from the hydrogel material to the cell aggregates to regulate tissue formation.
Collapse
Affiliation(s)
- Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
33
|
Parvizi M, Bolhuis-Versteeg LA, Poot AA, Harmsen MC. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering. Biotechnol J 2016; 11:932-44. [DOI: 10.1002/biot.201500519] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/24/2015] [Accepted: 03/09/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Mojtaba Parvizi
- University of Groningen; University Medical Center Groningen, Department of Pathology and Medical Biology; Groningen the Netherlands
| | | | - André A. Poot
- Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
| | - Martin C. Harmsen
- University of Groningen; University Medical Center Groningen, Department of Pathology and Medical Biology; Groningen the Netherlands
| |
Collapse
|
34
|
Self-patterning of adipose-derived mesenchymal stem cells and chondrocytes cocultured on hyaluronan-grafted chitosan surface. Biointerphases 2016; 11:011011. [PMID: 26916660 DOI: 10.1116/1.4942754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The articular cartilage, once injured, has a limited capacity for intrinsic repair. Preparation of functionally biocartilage substitutes in vitro for cartilage repair is an attractive concept with the recent advances in tissue engineering. In this study, adipose-derived adult stem cells (ADAS) and chondrocytes (Ch) were cocultured in different population ratios on the surface of hyaluronan-grafted chitosan (CS-HA) membranes. The two types of cells could self-assemble into cospheroids with different morphologies. In particular, when ADAS and Ch were cocultured at an initial ratio of 7:3 on CS-HA surface, the expression of chondrogenic markers was upregulated, leading to preferred chondrogenesis of the cospheroids. Therefore, using the ADAS/Ch 7:3 cospheroids derived on CS-HA surface instead of using only a single type of cells may be favorable for future therapeutic applications.
Collapse
|
35
|
Mesenchymal Stem/Stromal Cells from Discarded Neonatal Sternal Tissue: In Vitro Characterization and Angiogenic Properties. Stem Cells Int 2015; 2016:5098747. [PMID: 26770206 PMCID: PMC4684890 DOI: 10.1155/2016/5098747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/22/2015] [Indexed: 12/13/2022] Open
Abstract
Autologous and nonautologous bone marrow mesenchymal stem/stromal cells (MSCs) are being evaluated as proangiogenic agents for ischemic and vascular disease in adults but not in children. A significant number of newborns and infants with critical congenital heart disease who undergo cardiac surgery already have or are at risk of developing conditions related to inadequate tissue perfusion. During neonatal cardiac surgery, a small amount of sternal tissue is usually discarded. Here we demonstrate that MSCs can be isolated from human neonatal sternal tissue using a nonenzymatic explant culture method. Neonatal sternal bone MSCs (sbMSCs) were clonogenic, had a surface marker expression profile that was characteristic of bone marrow MSCs, were multipotent, and expressed pluripotency-related genes at low levels. Neonatal sbMSCs also demonstrated in vitro proangiogenic properties. Sternal bone MSCs cooperated with human umbilical vein endothelial cells (HUVECs) to form 3D networks and tubes in vitro. Conditioned media from sbMSCs cultured in hypoxia also promoted HUVEC survival and migration. Given the neonatal source, ease of isolation, and proangiogenic properties, sbMSCs may have relevance to therapeutic applications.
Collapse
|
36
|
Mishra R, Roux BM, Posukonis M, Bodamer E, Brey EM, Fisher JP, Dean D. Effect of prevascularization on in vivo vascularization of poly(propylene fumarate)/fibrin scaffolds. Biomaterials 2015; 77:255-66. [PMID: 26606451 DOI: 10.1016/j.biomaterials.2015.10.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022]
Abstract
The importance of vascularization in the field of bone tissue engineering has been established by previous studies. The present work proposes a novel poly(propylene fumarate) (PPF)/fibrin composite scaffold for the development of vascularized neobone tissue. The effect of prevascularization (i.e., in vitro pre-culture prior to implantation) with human mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) on in vivo vascularization of scaffolds was determined. Five conditions were studied: no pre-culture (NP), 1 week pre-culture (1P), 2 week pre-culture (2P), 3 week pre-culture (3P), and scaffolds without cells (control, C). Scaffolds were implanted subcutaneously in a severe combined immunodeficiency (SCID) mouse model for 9 days. During in vitro studies, CD31 staining showed a significant increase in vascular network area over 3 weeks of culture. Vascular density was significantly higher in vivo when comparing the NP and 3P groups. Immunohistochemical staining of human CD-31 expression indicated spreading of vascular networks with increasing pre-culture time. These vascular networks were perfused with mouse blood indicated by perfused lectin staining in human CD-31 positive vessels. Our results demonstrate that in vitro prevascularization supports in vivo vascularization in PPF/fibrin scaffolds.
Collapse
Affiliation(s)
- Ruchi Mishra
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA
| | - Brianna M Roux
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines Jr. V.A. Hospital, Hines, IL, USA
| | - Megan Posukonis
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA
| | - Emily Bodamer
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines Jr. V.A. Hospital, Hines, IL, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - David Dean
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
37
|
Perez RA, Kim HW. Core-shell designed scaffolds for drug delivery and tissue engineering. Acta Biomater 2015; 21:2-19. [PMID: 25792279 DOI: 10.1016/j.actbio.2015.03.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/03/2015] [Accepted: 03/08/2015] [Indexed: 11/19/2022]
Abstract
Scaffolds that secure and deliver therapeutic ingredients like signaling molecules and stem cells hold great promise for drug delivery and tissue engineering. Employing a core-shell design for scaffolds provides a promising solution. Some unique methods, such as co-concentric nozzle extrusion, microfluidics generation, and chemical confinement reactions, have been successful in producing core-shelled nano/microfibers and nano/microspheres. Signaling molecules and drugs, spatially allocated to the core and/or shell part, can be delivered in a controllable and sequential manner for optimal therapeutic effects. Stem cells can be loaded within the core part on-demand, safely protected from the environments, which ultimately affords ex vivo culture and in vivo tissue engineering. The encapsulated cells experience three-dimensional tissue-mimic microenvironments in which therapeutic molecules are secreted to the surrounding tissues through the semi-permeable shell. Tuning the material properties of the core and shell, changing the geometrical parameters, and shaping them into proper forms significantly influence the release behaviors of biomolecules and the fate of the cells. This topical issue highlights the immense usefulness of core-shell designs for the therapeutic actions of scaffolds in the delivery of signaling molecules and stem cells for tissue regeneration and disease treatment.
Collapse
Affiliation(s)
- Roman A Perez
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea.
| |
Collapse
|
38
|
|
39
|
Hsu SH, Hsieh PS. Self-assembled adult adipose-derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model. Wound Repair Regen 2015; 23:57-64. [DOI: 10.1111/wrr.12239] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/13/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Shan-hui Hsu
- Institute of Polymer Sciences and Engineering; Research Center for Developmental Biology and Regenerative Medicine; National Taiwan University; Taipei Taiwan
| | - Pai-Shan Hsieh
- Institute of Polymer Sciences and Engineering; Research Center for Developmental Biology and Regenerative Medicine; National Taiwan University; Taipei Taiwan
| |
Collapse
|
40
|
Jiang CF, Hsu SH, Tsai KP, Tsai MH. Segmentation and tracking of stem cells in time lapse microscopy to quantify dynamic behavioral changes during spheroid formation. Cytometry A 2015; 87:491-502. [PMID: 25676894 DOI: 10.1002/cyto.a.22642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/12/2014] [Accepted: 01/21/2015] [Indexed: 01/08/2023]
Abstract
Dynamic behavior of stem cells during in vitro development is diverse. Previous cell tracking studies have focused more on cell proliferation than on cell aggregation. However, the enhancement of cell proliferation in association with cell aggregation has been reported. In a previous study, we also demonstrated that the aggregation of adult human mesenchymal stem cells to form three-dimensional (3D) cellular spheroids helped maintain the expression of stemness marker genes in the cells. However, the dynamic behavioral changes triggered by spheroid formation remain to be investigated. A scheme of image processing techniques is proposed to meet this need. A hybrid-thresholding technique was first developed for efficient segmentation of cell clusters, after which a cell tracking method based on pair-matching with topological constraints was designed. Two morphological indices were derived to track the timing of 3D spheroid formation during the cellular aggregation process. Five cell motility indices measured from single cells and 3D spheroids were then compared. After confirmation of more than 90% correspondence between the results obtained by manual tracking and the proposed methods, an analysis of cellular behavior reveals a significant increase in motility in association with spheroid formation, consistent with a previous report that used a gene expression approach. This study proposed a systematic image analysis method to quantify the dynamic behavior of stem cells for stemness evaluation during cell culturing in vitro. Results demonstrated the validity of the developed platform in investigation of the dynamic behavior of cell aggregation in stem cell cultures in vitro.
Collapse
Affiliation(s)
- Ching-Fen Jiang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Ka-Pei Tsai
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Ming-Hong Tsai
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
41
|
Zhang S, Liu P, Chen L, Wang Y, Wang Z, Zhang B. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials 2014; 41:15-25. [PMID: 25522961 DOI: 10.1016/j.biomaterials.2014.11.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/30/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
Adipose-derived stem cells (ADSCs) represent a valuable source of stem cells for regenerative medicine, but the loss of their stemness during in vitro expansion remains a major roadblock. We employed a microgravity bioreactor (MB) to develop a method for biomaterial-free-mediated spheroid formation to maintain the stemness properties of ADSCs. ADSCs spontaneously formed three-dimensional spheroids in the MB. Compared with monolayer culture, the expression levels of E-cadherin and pluripotent markers were significantly upregulated in ADSC spheroids. Spheroid-derived ADSCs exhibited increased proliferative ability and colony-forming efficiency. By culturing the spheroid-derived ADSCs in an appropriate induction medium, we found that the multipotency differentiation capacities of ADSCs were significantly improved by spheroid culture in the MB. Furthermore, when ADSCs were administered to mice with carbon tetrachloride-induced acute liver failure, spheroid-derived ADSCs showed more effective potentials to rescue liver failure than ADSCs derived from constant monolayer culture. Our results suggest that spheroid formation of ADSCs in an MB enhances their stemness properties and increases their therapeutic potential. Therefore, spheroid culture in an MB can be an efficient method to maintain stemness properties, without the involvement of any biomaterials for clinical applications of in vitro cultured ADSCs.
Collapse
Affiliation(s)
- Shichang Zhang
- Department 4, Institute of Surgery Research, Daping Hospital, Third Military Medical University, State Key Lab of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | - Ping Liu
- Department 4, Institute of Surgery Research, Daping Hospital, Third Military Medical University, State Key Lab of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | - Li Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210017, China
| | - Yingjie Wang
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhengguo Wang
- Department 4, Institute of Surgery Research, Daping Hospital, Third Military Medical University, State Key Lab of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | - Bo Zhang
- Department 4, Institute of Surgery Research, Daping Hospital, Third Military Medical University, State Key Lab of Trauma, Burns and Combined Injury, Chongqing 400042, China.
| |
Collapse
|