1
|
Vishvaja S, Priyadharshini D, Sabarees G, Tamilarasi GP, Gouthaman S, Solomon VR. Optimizing processes and unveiling the therapeutic potential of electrospun gelatin nanofibers for biomedical applications. J Mater Chem B 2025; 13:5202-5225. [PMID: 40171573 DOI: 10.1039/d4tb02769h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Gelatin, derived primarily from animal sources such as bovine, porcine, and fish skin and bones, exhibits remarkable properties that make it an ideal candidate for various contemporary applications. Its unique attributes include excellent biocompatibility, non-toxicity, biodegradability, low immunogenicity, ease of chemical modification, and structural similarity to the extracellular matrix (ECM). These features have led to the development of gelatin-based biomaterials with tunable properties and specialized functionalities. Electrospinning remains the most widely adopted and effective technique for fabricating gelatin nanofibers. These nanofibers are gaining significant attention in the biomedical sector due to their adjustable fiber morphology, enhanced surface properties, controllable porosity, mechanical adaptability, high surface area, multi-scale pore size distribution, and intrinsic bioactive characteristics. Functionalized gelatin-based electrospun nanofibers are a rapidly advancing area in the life sciences, enabling the creation of innovative drug delivery platforms and next-generation scaffolds for tissue regeneration. Their applications span across various domains, including bone and cartilage repair, retinal and vascular engineering, myocardial regeneration, cancer therapy, chronic wound management, and biosensor development. In this article, we provide a comprehensive assessment of the progression of gelatin-based nanofibers, highlight the critical parameters governing the electrospinning of gelatin, and explore recent innovations in diverse biomedical fields, emphasizing significant advancements and research findings.
Collapse
Affiliation(s)
- Sivapregassame Vishvaja
- Department of Pharmaceutical Chemistry, Shri Venkateshwara College of Pharmacy, Ariyur, Puducherry 605102, India.
| | | | - Govindaraj Sabarees
- Department of Pharmaceutical Chemistry, Shri Venkateshwara College of Pharmacy, Ariyur, Puducherry 605102, India.
| | - Ganesan Padmini Tamilarasi
- Department of Pharmaceutical Chemistry, Shri Venkateshwara College of Pharmacy, Ariyur, Puducherry 605102, India.
| | - Siddan Gouthaman
- Organic Material Laboratory, Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Viswas Raja Solomon
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Greater Hyderabad, Sangareddy 502294, India.
| |
Collapse
|
2
|
Li Z, Hu Z, Gao Z. Advances in the Study of Age-Related Macular Degeneration Based on Cell or Cell-Biomaterial Scaffolds. Bioengineering (Basel) 2025; 12:278. [PMID: 40150743 PMCID: PMC11939329 DOI: 10.3390/bioengineering12030278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Age-related macular degeneration (AMD), a progressive neurodegenerative disorder affecting the central retina, is pathologically defined by the irreversible degeneration of photoreceptors and retinal pigment epithelium (RPE), coupled with extracellular drusen deposition and choroidal neovascularization (CNV), and AMD constitutes the predominant etiological factor for irreversible vision impairment in adults aged ≥60 years. Cell-based or cell-biomaterial scaffold-based approaches have been popular in recent years as a major research direction for AMD; monotherapy with cell-based approaches typically involves subretinal injection of progenitor-derived or stem cell-derived RPE cells to restore retinal homeostasis. Meanwhile, cell-biomaterial scaffolds delivered to the lesion site by vector transplantation have been widely developed, and the implanted cell-biomaterial scaffolds can promote the reintegration of cells at the lesion site and solve the problems of translocation and discrete cellular structure produced by cell injection. While these therapeutic strategies demonstrate preliminary efficacy, rigorous preclinical validation and clinical trials remain imperative to validate their long-term safety, functional durability, and therapeutic consistency. This review synthesizes current advancements and translational challenges in cell-based and cell-biomaterial scaffold approaches for AMD, aiming to inform future development of targeted interventions for AMD pathogenesis and management.
Collapse
Affiliation(s)
| | | | - Zhixian Gao
- School of Public Health, Binzhou Medical University, Yantai 264003, China; (Z.L.); (Z.H.)
| |
Collapse
|
3
|
Marchesi N, Capierri M, Pascale A, Barbieri A. Different Therapeutic Approaches for Dry and Wet AMD. Int J Mol Sci 2024; 25:13053. [PMID: 39684764 DOI: 10.3390/ijms252313053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible loss of central vision in elderly subjects, affecting men and women equally. It is a degenerative pathology that causes progressive damage to the macula, the central and most vital part of the retina. There are two forms of AMD depending on how the macula is damaged, dry AMD and wet or neovascular AMD. Dry AMD is the most common form; waste materials accumulate under the retina as old cells die, not being replaced. Wet AMD is less common, but can lead to vision loss much more quickly. Wet AMD is characterized by new abnormal blood vessels developing under the macula, where they do not normally grow. This frequently occurs in patients who already have dry AMD, as new blood vessels are developed to try to solve the problem. It is not known what causes AMD to develop; however, certain risk factors (i.e., age, smoking, genetic factors) can increase the risk of developing AMD. There are currently no treatments for dry AMD. There is evidence that not smoking, exercising regularly, eating nutritious food, and taking certain supplements can reduce the risk of acquiring AMD or slow its development. The main treatment for wet AMD is inhibitors of VEGF (vascular endothelial growth factor), a protein that stimulates the growth of new blood vessels. VEGF inhibitors can stop the growth of new blood vessels, preventing further damage to the macula and vision loss. In most patients, VEGF inhibitors can improve vision if macular degeneration is diagnosed early and treated accordingly. However, VEGF inhibitors cannot repair damage that has already occurred. Current AMD research is trying to find treatments for dry AMD and other options for wet AMD. This review provides a summary of the current evidence regarding the different treatments aimed at both forms of AMD with particular and greater attention to the dry form.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Martina Capierri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
4
|
Zhou W, Chai Y, Lu S, Yang Q, Tang L, Zhou D. Advances in the study of tissue-engineered retinal pigment epithelial cell sheets. Regen Ther 2024; 27:419-433. [PMID: 38694444 PMCID: PMC11062139 DOI: 10.1016/j.reth.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/04/2024] Open
Abstract
Regarded as the most promising treatment modality for retinal degenerative diseases, retinal pigment epithelium cell replacement therapy holds significant potential. Common retinal degenerative diseases, including Age-related Macular Degeneration, are frequently characterized by damage to the unit comprising photoreceptors, retinal pigment epithelium, and Bruch's membrane. The selection of appropriate tissue engineering materials, in conjunction with retinal pigment epithelial cells, for graft preparation, can offer an effective treatment for retinal degenerative diseases. This article presents an overview of the research conducted on retinal pigment epithelial cell tissue engineering, outlining the challenges and future prospects.
Collapse
Affiliation(s)
- Wang Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Yujiao Chai
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Shan Lu
- National Engineering Research Center of Human Stem Cells, Changsha, China
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Qiaohui Yang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Liying Tang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Di Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- National Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| |
Collapse
|
5
|
Kaur G, Bisen S, Singh NK. Nanotechnology in retinal diseases: From disease diagnosis to therapeutic applications. BIOPHYSICS REVIEWS 2024; 5:041305. [PMID: 39512331 PMCID: PMC11540445 DOI: 10.1063/5.0214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Nanotechnology has demonstrated tremendous promise in the realm of ocular illnesses, with applications for disease detection and therapeutic interventions. The nanoscale features of nanoparticles enable their precise interactions with retinal tissues, allowing for more efficient and effective treatments. Because biological organs are compatible with diverse nanomaterials, such as nanoparticles, nanowires, nanoscaffolds, and hybrid nanostructures, their usage in biomedical applications, particularly in retinal illnesses, has increased. The use of nanotechnology in medicine is advancing rapidly, and recent advances in nanomedicine-based diagnosis and therapy techniques may provide considerable benefits in addressing the primary causes of blindness related to retinal illnesses. The current state, prospects, and challenges of nanotechnology in monitoring nanostructures or cells in the eye and their application to regenerative ophthalmology have been discussed and thoroughly reviewed. In this review, we build on our previously published review article in 2021, where we discussed the impact of nano-biomaterials in retinal regeneration. However, in this review, we extended our focus to incorporate and discuss the application of nano-biomaterials on all retinal diseases, with a highlight on nanomedicine-based diagnostic and therapeutic research studies.
Collapse
|
6
|
Kosior-Jarecka E, Grzybowski A. Retinal Ganglion Cell Replacement in Glaucoma Therapy: A Narrative Review. J Clin Med 2024; 13:7204. [PMID: 39685661 DOI: 10.3390/jcm13237204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. It leads to the progressive degeneration of retinal ganglion cells (RGCs), the axons of which form the optic nerve. Enormous RGC apoptosis causes a lack of transfer of visual information to the brain. The RGC loss typical of the central nervous system is irreversible, and when glaucoma progresses, the total amount of RGCs in the retina enormously diminishes. The successful treatment in glaucoma patients is a direct neuroprotection by decreasing the intraocular pressure, which enables RGC protection but does not revive the lost ones. The intriguing new therapy for advanced glaucoma is the possibility of RGC replacement with new healthy cells. In this review article, the strategies regarding RGC replacement therapy are presented with the latest advances in the technique and the obstacles that it meets.
Collapse
Affiliation(s)
- Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-079 Lublin, Poland
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 60-836 Poznan, Poland
| |
Collapse
|
7
|
Mousavi Z, Bagheri M, Rostaminasab G, Mikaeili A, Djalilian AR, Rezakhani L. Tissue engineering strategies for ocular regeneration; from bench to the bedside. Heliyon 2024; 10:e39398. [PMID: 39497964 PMCID: PMC11532841 DOI: 10.1016/j.heliyon.2024.e39398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Millions globally suffer from visual impairment, complicating the management of eye diseases due to various ocular barriers. The eye's complex structure and the limitations of existing treatments have spurred interest in tissue engineering (TE) as a solution. This approach offers new functionalities and improves therapeutic outcomes over traditional drug delivery methods, creating opportunities for treating various eye disorders, from corneal injuries to retinal degeneration. In our review of recent articles concerning the use of scaffolds for eye repair, we categorized scaffolds employed in eye TE from recent studies into four types based on tissue characteristics: natural, synthetic, biohybrid, and decellularized tissue. Additionally, we gathered data on the cell types and animal models associated with each scaffold. This allowed us to gather valuable insights into the benefits and drawbacks of each material. Our research elucidates that, in comparison to conventional treatment modalities, scaffolds in TE emulate the extracellular matrix (ECM) of the eye and facilitate cell proliferation and tissue regeneration. These scaffolds can be precisely tailored to incorporate growth factors that augment the healing process while also providing considerable advantages such as bacterial inhibition, biocompatibility, and enhanced durability. However, they also have drawbacks, such as potential immune responses, poor tissue integration, complex and costly manufacturing, and inconsistent degradation rates that can affect their effectiveness. In this review, we provide an overview of the present condition of eye regenerative treatments, assess notable preclinical and clinical research endeavors, contemplate the obstacles encountered, and speculate on potential advancements in the upcoming decade.
Collapse
Affiliation(s)
- Zeinab Mousavi
- Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masood Bagheri
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah, University of Medical Sciences, Kermanshah, Iran
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Sasseville S, Karami S, Tchatchouang A, Charpentier P, Anney P, Gobert D, Proulx S. Biomaterials used for tissue engineering of barrier-forming cell monolayers in the eye. Front Bioeng Biotechnol 2023; 11:1269385. [PMID: 37840667 PMCID: PMC10569698 DOI: 10.3389/fbioe.2023.1269385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell monolayers that form a barrier between two structures play an important role for the maintenance of tissue functionality. In the anterior portion of the eye, the corneal endothelium forms a barrier that controls fluid exchange between the aqueous humor of the anterior chamber and the corneal stroma. This monolayer is central in the pathogenesis of Fuchs endothelial corneal dystrophy (FECD). FECD is a common corneal disease, in which corneal endothelial cells deposit extracellular matrix that increases the thickness of its basal membrane (Descemet's membrane), and forms excrescences (guttae). With time, there is a decrease in endothelial cell density that generates vision loss. Transplantation of a monolayer of healthy corneal endothelial cells on a Descemet membrane substitute could become an interesting alternative for the treatment of this pathology. In the back of the eye, the retinal pigment epithelium (RPE) forms the blood-retinal barrier, controlling fluid exchange between the choriocapillaris and the photoreceptors of the outer retina. In the retinal disease dry age-related macular degeneration (dry AMD), deposits (drusen) form between the RPE and its basal membrane (Bruch's membrane). These deposits hinder fluid exchange, resulting in progressive RPE cell death, which in turn generates photoreceptor cell death, and vision loss. Transplantation of a RPE monolayer on a Bruch's membrane/choroidal stromal substitute to replace the RPE before photoreceptor cell death could become a treatment alternative for this eye disease. This review will present the different biomaterials that are proposed for the engineering of a monolayer of corneal endothelium for the treatment of FECD, and a RPE monolayer for the treatment of dry AMD.
Collapse
Affiliation(s)
- Samantha Sasseville
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Samira Karami
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Ange Tchatchouang
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Pascale Charpentier
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Princia Anney
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Delphine Gobert
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre universitaire d’ophtalmologie (CUO), Hôpital du Saint-Sacrement, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Stéphanie Proulx
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Patel SH, Lamba DA. Factors Affecting Stem Cell-Based Regenerative Approaches in Retinal Degeneration. Annu Rev Vis Sci 2023; 9:155-175. [PMID: 37713278 DOI: 10.1146/annurev-vision-120222-012817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Inherited and age-associated vision loss is often associated with degeneration of the cells of the retina, the light-sensitive layer at the back of the eye. The mammalian retina, being a postmitotic neural tissue, does not have the capacity to repair itself through endogenous regeneration. There has been considerable excitement for the development of cell replacement approaches since the isolation and development of culture methods for human pluripotent stem cells, as well as the generation of induced pluripotent stem cells. This has now been combined with novel three-dimensional organoid culture systems that closely mimic human retinal development in vitro. In this review, we cover the current state of the field, with emphasis on the cell delivery challenges, role of the recipient immunological microenvironment, and challenges related to connectivity between transplanted cells and host circuitry both locally and centrally to the different areas of the brain.
Collapse
Affiliation(s)
- Sachin H Patel
- Department of Ophthalmology, University of California, San Francisco, California, USA;
| | - Deepak A Lamba
- Department of Ophthalmology, University of California, San Francisco, California, USA;
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, San Francisco, California, USA
| |
Collapse
|
10
|
Gupta S, Lytvynchuk L, Ardan T, Studenovska H, Sharma R, Faura G, Eide L, Shanker Verma R, Znaor L, Erceg S, Stieger K, Motlik J, Petrovski G, Bharti K. Progress in Stem Cells-Based Replacement Therapy for Retinal Pigment Epithelium: In Vitro Differentiation to In Vivo Delivery. Stem Cells Transl Med 2023; 12:536-552. [PMID: 37459045 PMCID: PMC10427969 DOI: 10.1093/stcltm/szad039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/14/2023] [Indexed: 08/17/2023] Open
Abstract
Retinal pigment epithelium (RPE) is a critical cell monolayer forming the blood-retina-barrier (BRB) and a permeable bridge between the choriocapillaris and the retina. RPE is also crucial in maintaining photoreceptor function and for completing the visual cycle. Loss of the RPE is associated with the development of degenerative diseases like age-related macular degeneration (AMD). To treat diseases like AMD, pluripotent stem cell-derived RPE (pRPE) has been recently explored extensively as a regenerative module. pRPE like other ectodermal tissues requires specific lineage differentiation and long-term in vitro culturing for maturation. Therefore, understanding the differentiation process of RPE could be useful for stem cell-based RPE derivation. Developing pRPE-based transplants and delivering them into the subretinal space is another aspect that has garnered interest in the last decade. In this review, we discuss the basic strategies currently employed for stem cell-based RPE derivation, their delivery, and recent clinical studies related to pRPE transplantation in patients. We have also discussed a few limitations with in vitro RPE culture and potential solutions to overcome such problems which can be helpful in developing functional RPE tissue.
Collapse
Affiliation(s)
- Santosh Gupta
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, Giessen, Germany
- Department of Ophthalmology, Karl Landsteiner Institute for Retinal Research and Imaging, Vienna, Austria
| | - Taras Ardan
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Hana Studenovska
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Georgina Faura
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ljubo Znaor
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| | - Slaven Erceg
- Research Center “Principe Felipe,” Stem Cell Therapies in Neurodegenerative Diseases Laboratory, Valencia, Spain
- Department of Neuroregeneration, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Knut Stieger
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Jan Motlik
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Beardslee LA, Halman JR, Unser AM, Xie Y, Danias J, Bergkvist M, Sharfstein ST, Torrejon KY. Recreating the Trabecular Outflow Tissue on Implantable, Micropatterned, Ultrathin, Porous Polycaprolactone Scaffolds. Bioengineering (Basel) 2023; 10:679. [PMID: 37370610 PMCID: PMC10294786 DOI: 10.3390/bioengineering10060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Glaucoma, where increased intraocular pressure (IOP) leads to damage to the optic nerve and loss of sight, is amongst the foremost causes of irreversible blindness worldwide. In primary open angle glaucoma, the increased IOP is a result of the malfunctioning human trabecular meshwork (HTM) cells' inability to properly regulate the outflow of aqueous humor from the eye. A potential future treatment for glaucoma is to replace damaged HTM cells with a tissue-engineered substitute, thus restoring proper fluid outflow. Polycaprolactone (PCL) is a versatile, biodegradable, and implantable material that is widely used for cell culture and tissue engineering. In this work, PCL scaffolds were lithographically fabricated using a sacrificial process to produce submicron-thick scaffolds with openings of specific sizes and shapes (e.g., grid, hexagonal pattern). The HTM cell growth on gelatin-coated PCL scaffolds was assessed by scanning electron microscopy, tetrazolium metabolic activity assay, and cytoskeletal organization of F-actin. Expression of HTM-specific markers and ECM deposition were assessed by immunocytochemistry and qPCR analysis. Gelatin-coated, micropatterned, ultrathin, porous PCL scaffolds with a grid pattern supported proper HTM cell growth, cytoskeleton organization, HTM-marker expression, and ECM deposition, demonstrating the feasibility of using these PCL scaffolds to tissue-engineer implantable, healthy ocular outflow tissue.
Collapse
Affiliation(s)
- Luke A. Beardslee
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Justin R. Halman
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Andrea M. Unser
- Department of Ophthalmology, SUNY Downstate Health Sciences University, 450 Clackson Avenue, Brooklyn, NY 11203, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - John Danias
- Department of Ophthalmology, SUNY Downstate Health Sciences University, 450 Clackson Avenue, Brooklyn, NY 11203, USA
| | - Magnus Bergkvist
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Susan T. Sharfstein
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Karen Y. Torrejon
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
- Glauconix Biosciences Inc., 251 Fuller Road, Albany, NY 12203, USA
| |
Collapse
|
12
|
El-Seedi HR, Said NS, Yosri N, Hawash HB, El-Sherif DM, Abouzid M, Abdel-Daim MM, Yaseen M, Omar H, Shou Q, Attia NF, Zou X, Guo Z, Khalifa SA. Gelatin nanofibers: Recent insights in synthesis, bio-medical applications and limitations. Heliyon 2023; 9:e16228. [PMID: 37234631 PMCID: PMC10205520 DOI: 10.1016/j.heliyon.2023.e16228] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The use of gelatin and gelatin-blend polymers as environmentally safe polymers to synthesis electrospun nanofibers, has caused a revolution in the biomedical field. The development of efficient nanofibers has played a significant role in drug delivery, and for use in advanced scaffolds in regenerative medicine. Gelatin is an exceptional biopolymer, which is highly versatile, despite variations in the processing technology. The electrospinning process is an efficient technique for the manufacture of gelatin electrospun nanofibers (GNFs), as it is simple, efficient, and cost-effective. GNFs have higher porosity with large surface area and biocompatibility, despite that there are some drawbacks. These drawbacks include rapid degradation, poor mechanical strength, and complete dissolution, which limits the use of gelatin electrospun nanofibers in this form for biomedicine. Thus, these fibers need to be cross-linked, in order to control its solubility. This modification caused an improvement in the biological properties of GNFs, which made them suitable candidates for various biomedical applications, such as wound healing, drug delivery, bone regeneration, tubular scaffolding, skin, nerve, kidney, and cardiac tissue engineering. In this review an outline of electrospinning is shown with critical summary of literature evaluated with respect to the various applications of nanofibers-derived gelatin.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu Education Department, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Noha S. Said
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hamada B. Hawash
- Environmental Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Dina M. El-Sherif
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231 Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hany Omar
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Qiyang Shou
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nour F. Attia
- Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211, Egypt
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shaden A.M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| |
Collapse
|
13
|
Fu H, Yang J, Shen Z, Zhang Y, Kuang S, Li L, Lin Z, Shi X. Antibacterial, wet adhesive, and healing-promoting nanosheets for the treatment of oral ulcers. Biomater Sci 2023; 11:3214-3226. [PMID: 36927992 DOI: 10.1039/d2bm02063g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The severe pain caused by oral ulcers seriously affects food intake and speech, bringing great inconvenience in daily life. Drug-loaded patches are mostly used to treat oral mucosal diseases such as oral ulcers and oral lichen planus, but their effects are limited because of the influences of saliva and muscle movement. To enhance the adhesion of drug-loaded patches used in the oral cavity, we designed antimicrobial peptides (AMPs)-modified polycaprolactone (PCL)-collagen nanosheets (APCNs). The internal layer is a bioactive and antibacterial collagen layer modified with antimicrobial peptides. The backing layer is a hydrophobic PCL layer with good mechanical strength that can reduce external influences. We have characterized and tested the APCNs. First, the APCNs exhibited continuous and strong adhesion to irregular buccal mucosa surfaces under wet conditions and external force action. Antibacterial experiments showed that the APCNs had high antibacterial activity against both Gram-positive bacteria and Gram-negative bacteria. Moreover, the APCNs showed good biocompatibility and promoted the adhesion of fibroblasts in vitro. Furthermore, APCNs treatment accelerated ulcer healing in a Sprague Dawley rat oral ulcer model. Our study developed antibacterial, wet-adhesive, and healing-promoting PCL-collagen nanosheets and demonstrated that these nanosheets could be promising adhesive therapeutic agents for the treatment of oral mucosal ulcers.
Collapse
Affiliation(s)
- Haijun Fu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China.
| | - Jiayu Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China.
| | - Zongshan Shen
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China.
| | - Yong Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China.
| | - Shuhong Kuang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China.
| | - Lifeng Li
- Guangzhou SoonHeal Medical Technology Co., Ltd., Guangzhou 510000, China
| | - Zhengmei Lin
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China.
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China. .,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Gupta S, Lytvynchuk L, Ardan T, Studenovska H, Faura G, Eide L, Znaor L, Erceg S, Stieger K, Motlik J, Bharti K, Petrovski G. Retinal Pigment Epithelium Cell Development: Extrapolating Basic Biology to Stem Cell Research. Biomedicines 2023; 11:310. [PMID: 36830851 PMCID: PMC9952929 DOI: 10.3390/biomedicines11020310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The retinal pigment epithelium (RPE) forms an important cellular monolayer, which contributes to the normal physiology of the eye. Damage to the RPE leads to the development of degenerative diseases, such as age-related macular degeneration (AMD). Apart from acting as a physical barrier between the retina and choroidal blood vessels, the RPE is crucial in maintaining photoreceptor (PR) and visual functions. Current clinical intervention to treat early stages of AMD includes stem cell-derived RPE transplantation, which is still in its early stages of evolution. Therefore, it becomes essential to derive RPEs which are functional and exhibit features as observed in native human RPE cells. The conventional strategy is to use the knowledge obtained from developmental studies using various animal models and stem cell-based exploratory studies to understand RPE biogenies and developmental trajectory. This article emphasises such studies and aims to present a comprehensive understanding of the basic biology, including the genetics and molecular pathways of RPE development. It encompasses basic developmental biology and stem cell-based developmental studies to uncover RPE differentiation. Knowledge of the in utero developmental cues provides an inclusive methodology required for deriving RPEs using stem cells.
Collapse
Affiliation(s)
- Santosh Gupta
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, 35392 Giessen, Germany
- Karl Landsteiner Institute for Retinal Research and Imaging, 1030 Vienna, Austria
| | - Taras Ardan
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 27721 Libechov, Czech Republic
| | - Hana Studenovska
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 16206 Prague, Czech Republic
| | - Georgina Faura
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ljubo Znaor
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
| | - Slaven Erceg
- Research Center “Principe Felipe”, Stem Cell Therapies in Neurodegenerative Diseases Laboratory, 46012 Valencia, Spain
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 11720 Prague, Czech Republic
| | - Knut Stieger
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, 35392 Giessen, Germany
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 27721 Libechov, Czech Republic
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892, USA
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
- Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway
| |
Collapse
|
15
|
Gusev AA, Zakharova OV, Vasyukova IA, Osmanov RE, Al-Makhdar YM. [Nanotechnologies in ophthalmology]. Vestn Oftalmol 2023; 139:107-114. [PMID: 37638580 DOI: 10.17116/oftalma2023139041107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Application of new materials and methods in the diagnosis and treatment of eye diseases is one of the promising research areas in modern ophthalmology. Significant progress has been made in understanding the pathogenesis, diagnosis and treatment of eye diseases using nanotechnologies and nanomaterials. This paper presents the main achievements and results of original research on this issue. It has been shown that nanoparticles are able to overcome biological barriers, deliver drugs to the target site, and provide the required drug release rate. Modern nanotechnological approaches in tissue engineering are also being actively introduced into ophthalmology, making it possible to create nanoframeworks for growing three-dimensional cellular structures, including arrays of pigment epithelium cells and retinal ganglion cells for the treatment of retinal damage caused by degenerative diseases, injuries and infections.
Collapse
Affiliation(s)
- A A Gusev
- Tambov State University named after G.R. Derzhavin, Tambov, Russia
- National University of Science and Technology (MISIS), Moscow, Russia
| | - O V Zakharova
- Tambov State University named after G.R. Derzhavin, Tambov, Russia
- National University of Science and Technology (MISIS), Moscow, Russia
- Plekhanov Russian University of Economics, Moscow, Russia
| | - I A Vasyukova
- Tambov State University named after G.R. Derzhavin, Tambov, Russia
| | - R E Osmanov
- Tambov branch of S.N. Fedorov National Medical Research Center "MNTK "Eye Microsurgery", Tambov, Russia
| | | |
Collapse
|
16
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
17
|
Mechanisms of Cd-induced Cytotoxicity in Normal Human Skin Keratinocytes: Implication for Human Health. Int J Mol Sci 2022; 23:ijms231911767. [PMID: 36233064 PMCID: PMC9570009 DOI: 10.3390/ijms231911767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cadmium (Cd) is one of the toxic heavy metals found widely in the environment. Skin is an important target organ of Cd exposure. However, the adverse effects of Cd on human skin are still not well known. In this study, normal human skin keratinocytes (HaCaT cells) were studied for changes in cell viability, morphology, DNA damage, cycle, apoptosis, and the expression of endoplasmic reticulum (ER) stress-related genes (XBP-1, BiP, ATF-4, and CHOP) after exposure to Cd for 24 h. We found that Cd decreased cell viability in a concentration-dependent manner, with a median lethal concentration (LC50) of 11 µM. DNA damage induction was evidenced by upregulation of the level of γ-H2AX. Furthermore, Cd induced G0/G1 phase cell cycle arrest and apoptosis in a dose-dependent manner and upregulated the mRNA levels of ER stress biomarker genes (XBP-1, BiP, ATF4, and CHOP). Taken together, our results showed that Cd induced cytotoxicity and DNA damage in HaCaT cells, eventually resulting in cell cycle arrest in the G0/G1 phase and apoptosis. In addition, ER stress may be involved in Cd-induced HaCaT apoptosis. Our data imply the importance of reducing Cd pollution in the environment to reduce its adverse impacts on human skin.
Collapse
|
18
|
Molins B, Mesquida M, Adan A. Bioengineering approaches for modelling retinal pathologies of the outer blood-retinal barrier. Prog Retin Eye Res 2022:101097. [PMID: 35840488 DOI: 10.1016/j.preteyeres.2022.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
Alterations of the junctional complex of the outer blood-retinal barrier (oBRB), which is integrated by the close interaction of the retinal pigment epithelium, the Bruch's membrane, and the choriocapillaris, contribute to the loss of neuronal signalling and subsequent vision impairment in several retinal inflammatory disorders such as age-related macular degeneration and diabetic retinopathy. Reductionist approaches into the mechanisms that underlie such diseases have been hindered by the absence of adequate in vitro models using human cells to provide the 3D dynamic architecture that enables expression of the in vivo phenotype of the oBRB. Conventional in vitro cell models are based on 2D monolayer cellular cultures, unable to properly recapitulate the complexity of living systems. The main drawbacks of conventional oBRB models also emerge from the cell sourcing, the lack of an appropriate Bruch's membrane analogue, and the lack of choroidal microvasculature with flow. In the last years, the advent of organ-on-a-chip, bioengineering, and stem cell technologies is providing more advanced 3D models with flow, multicellularity, and external control over microenvironmental properties. By incorporating additional biological complexity, organ-on-a-chip devices can mirror physiologically relevant properties of the native tissue while offering additional set ups to model and study disease. In this review we first examine the current understanding of oBRB biology as a functional unit, highlighting the coordinated contribution of the different components to barrier function in health and disease. Then we describe recent advances in the use of pluripotent stem cells-derived retinal cells, Bruch's membrane analogues, and co-culture techniques to recapitulate the oBRB. We finally discuss current advances and challenges of oBRB-on-a-chip technologies for disease modelling.
Collapse
Affiliation(s)
- Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain.
| | - Marina Mesquida
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Alfredo Adan
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Instituto Clínic de Oftalmología, Hospital Clínic Barcelona, C/ Sabino de Arana 1, 08028, Barcelona, Spain
| |
Collapse
|
19
|
Gullapalli VK, Zarbin MA. New Prospects for Retinal Pigment Epithelium Transplantation. Asia Pac J Ophthalmol (Phila) 2022; 11:302-313. [PMID: 36041145 DOI: 10.1097/apo.0000000000000521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Retinal pigment epithelium (RPE) transplants rescue photoreceptors in selected animal models of retinal degenerative disease. Early clinical studies of RPE transplants as treatment for age-related macular degeneration (AMD) included autologous and allogeneic transplants of RPE suspensions and RPE sheets for atrophic and neovascular complications of AMD. Subsequent studies explored autologous RPE-Bruch membrane-choroid transplants in patients with neovascular AMD with occasional marked visual benefit, which establishes a rationale for RPE transplants in late-stage AMD. More recent work has involved transplantation of autologous and allogeneic stem cell-derived RPE for patients with AMD and those with Stargardt disease. These early-stage clinical trials have employed RPE suspensions and RPE monolayers on biocompatible scaffolds. Safety has been well documented, but evidence of efficacy is variable. Current research involves development of better scaffolds, improved modulation of immune surveillance, and modification of the extracellular milieu to improve RPE survival and integration with host retina.
Collapse
Affiliation(s)
| | - Marco A Zarbin
- Iinstitute of Ophthalmology and visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, US
| |
Collapse
|
20
|
Kandhasamy S, Zeng Y. Fabrication of vitamin K3-carnosine peptide-loaded spun silk fibroin fibers/collagen bi-layered architecture for bronchopleural fistula tissue repair and regeneration applications. BIOMATERIALS ADVANCES 2022; 137:212817. [PMID: 35929255 DOI: 10.1016/j.bioadv.2022.212817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Bronchial and pleural injuries with persistent air leak pose a threat in the repair and regeneration of pulmonary diseases. The need to arrive at a highly efficient therapy for closure of bronchopleural fistula (BPF) so as to effectively suppress inflammation, infection and repair the damaged pleural space caused by cancer as well as contractile restoration of bronchopleural scars remain a significant clinical challenge. Herein, we have designed and developed potent bioactive vitamin K3 carnosine peptide (VKC)-loaded spun SF fibroin fibers/collagen bi-layered 3D scaffold for bronchopleural fistula tissue engineering applications. The VKC drug showed excellent cell viability in human bronchial epithelial cells (HBECs), in addition to its pronounced higher cytotoxicity against the A549 lung cancer cell line with an IC50 of 5 μg/mL. Furthermore, VKC displayed a strong affinity with the catalytic site of EGFR (PDB ID: 1M17) and VEGFR2 (PDB ID: 4AGD, 4ASD) receptors in molecular docking studies. Following which the spun SF-VKC (primary layer) and collagen film (top layer) constructed bi-layered CSVKC were structurally elucidated and its morphological, physicochemical and biological characterizations were well examined. The bi-layered scaffold showed superior biocompatibility and cell migration ability in HBECs than other scaffolds. Interestingly, the CSVKC revealed rapid HBECs motility towards scratched regions for fast healing in vitro bronchial tissue engineering. In vivo biocompatibility and angiogenesis studies of the prepared scaffolds were evaluated and the results obtained demonstrated excellent new tissue formation and neovascularization in the bi-layered architecture rather than others. Therefore, our results suggest that the potent antibacterial and anticancer therapeutic agent (VKC)-impregnated silk fibroin fibers/collagen bi-layered 3D biomaterial could be useful in treating cancerous BPF and pulmonary diseases in future.
Collapse
Affiliation(s)
- Subramani Kandhasamy
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yiming Zeng
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China.
| |
Collapse
|
21
|
Majidnia E, Ahmadian M, Salehi H, Amirpour N. Development of an electrospun poly(ε-caprolactone)/collagen-based human amniotic membrane powder scaffold for culturing retinal pigment epithelial cells. Sci Rep 2022; 12:6469. [PMID: 35440610 PMCID: PMC9018818 DOI: 10.1038/s41598-022-09957-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
The common retinal diseases are age-related macular degeneration (AMD) and retinitis pigmentosa (RP). They are usually associated with the dysfunction of retinal pigment epithelial (RPE) cells and degeneration of underlying Bruch’s membrane. The RPE cell transplantation is the most promising therapeutic option to restore lost vision. This study aimed to construct an ultrathin porous fibrous film with properties similar to that of native Bruch’s membrane as carriers for the RPE cells. Human amniotic membrane powder (HAMP)/Polycaprolactone (PCL) scaffolds containing different concentrations of HAMP were fabricated by electrospinning technique. The results showed that with increasing the concentration of HAMP, the diameter of fibers increased. Moreover, hydrophilicity and degradation rate were improved from 119° to 92° and 14 to 56% after 28 days immersion in phosphate-buffered saline (PBS) solution, respectively. All scaffolds had a porosity above 85%. Proper cell adhesion was obtained one day after culture and no toxicity was observed. However, after seven days, the rate of growth and proliferation of ARPE-19 cells, a culture model of RPE, on the PCL-30HAMP scaffold (HAMP concentration in PCL 7.2% by weight) was higher compared to other scaffolds. These results indicated that PCL-30HAMP fibrous scaffold has a great potential to be used in retinal tissue engineering applications.
Collapse
Affiliation(s)
- Elahe Majidnia
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Mehdi Ahmadian
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Noushin Amirpour
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| |
Collapse
|
22
|
Wang J, Tao Z, Deng H, Cui Y, Xu Z, Lyu Q, Zhao J. Therapeutic implications of nanodrug and tissue engineering for retinal pigment epithelium-related diseases. NANOSCALE 2022; 14:5657-5677. [PMID: 35352082 DOI: 10.1039/d1nr08337f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The retinal pigment epithelium (RPE), as a single layer of cells that performs multiple functions posteriorly in the eye, is a promising target site for the prevention and treatment of several clinical diseases, including proliferative diabetic retinopathy, age-related macular degeneration, chorionic neovascularization, and retinitis pigmentosa. In recent decades, several nanodrug delivery platforms and tissue-engineered RPE have been widely developed to treat RPE-related diseases. This work summarizes the recent advances in nanoplatforms and tissue engineering scaffolds developed in these fields. The diseases associated with pathological RPE and their common therapy strategies are first introduced. Then, the recent progress made with a variety of drug delivery systems is presented, with an emphasis on the modification strategies of nanomaterials for targeted delivery. Tissue engineering-mediated RPE transplantation for treating these diseases is subsequently described. Finally, the clinical translation challenges in these fields are discussed in depth. This article will offer readers a better understanding of emerging nanotechnology and tissue engineering related to the treatment of RPE-related diseases and could facilitate their widespread use in experiments in vivo and in clinical applications.
Collapse
Affiliation(s)
- Jiao Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
| | - Zhengyang Tao
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
| | - Hongwei Deng
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Zhirong Xu
- Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Qinghua Lyu
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
- Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Zhao
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| |
Collapse
|
23
|
Seraly M, Madow B, Farkas MH. Clinical Considerations for RPE Cell Transplantation. CURRENT OPHTHALMOLOGY REPORTS 2022. [DOI: 10.1007/s40135-022-00287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Liu Z, Nan H, Jiang Y, Xu T, Gong X, Hu C. Programmable Electrodeposition of Janus Alginate/Poly-L-Lysine/Alginate (APA) Microcapsules for High-Resolution Cell Patterning and Compartmentalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106363. [PMID: 34921585 DOI: 10.1002/smll.202106363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Encapsulation of live cells in protective, semipermeable microcapsules is one of the kernel techniques for in vitro tissue regeneration, cell therapies, and pharmaceutical screening. Advanced fabrication techniques for cell encapsulation have been developed to meet different requirements. Existing cell encapsulation techniques place substantial constraints on the spatial patterning of live cells as well as on the compartmentalization of heterotypic cells. Alginate-Poly-L-lysine-alginate (APA) microcapsules that use sodium alginate as the polyanion and poly-L-lysine (PLL) as the polycation have been extensively employed for cell microencapsulation due to their excellent biocompatibility and biodegradability. This study proposes a novel method for developing programmable Janus APA microcapsules with variable shapes and sizes by using electrodeposition. By the versatile design of the microelectrode device, sequential electrodeposition is triggered to electro-address the cells at specific locations immobilized within a Janus APA microcapsule. The osteogenesis is evaluated by resembling cell compartmentalized and vascularized osteoblast-laden constructs. This technique allows precise spatial patterning of heterotypic cells inside the APA microcapsule, enabling the observation of cellular growth, interactions, and differentiation in a well-controlled chemical and mechanical microenvironment.
Collapse
Affiliation(s)
- Zeyang Liu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Stem Cell Therapy and Regenerative Medicine Lab, Tsinghua-Berkeley Shenzhen Institute (TBSI), No.1001 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, China
| | - Haochen Nan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yike Jiang
- Stem Cell Therapy and Regenerative Medicine Lab, Tsinghua-Berkeley Shenzhen Institute (TBSI), No.1001 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, China
| | - Tao Xu
- Stem Cell Therapy and Regenerative Medicine Lab, Tsinghua-Berkeley Shenzhen Institute (TBSI), No.1001 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, China
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California Berkeley, 380 Minor Ln, Berkeley, San Francisco, CA, 94720, USA
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
25
|
Raimondi R, Zollet P, De Rosa FP, Tsoutsanis P, Stravalaci M, Paulis M, Inforzato A, Romano MR. Where Are We with RPE Replacement Therapy? A Translational Review from the Ophthalmologist Perspective. Int J Mol Sci 2022; 23:ijms23020682. [PMID: 35054869 PMCID: PMC8775975 DOI: 10.3390/ijms23020682] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023] Open
Abstract
The retinal pigmented epithelium (RPE) plays a pivotal role in retinal homeostasis. It is therefore an interesting target to fill the unmet medical need of different retinal diseases, including age-related macular degeneration and Stargardt disease. RPE replacement therapy may use different cellular sources: induced pluripotent stem cells or embryonic stem cells. Cells can be transferred as suspension on a patch with different surgical approaches. Results are promising although based on very limited samples. In this review, we summarize the current progress of RPE replacement and provide a comparative assessment of different published approaches which may become standard of care in the future.
Collapse
Affiliation(s)
- Raffaele Raimondi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano–Milan, Italy; (P.Z.); (M.S.); (M.P.); (A.I.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele–Milan, Italy; (F.P.D.R.); (P.T.); (M.R.R.)
- Correspondence:
| | - Piero Zollet
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano–Milan, Italy; (P.Z.); (M.S.); (M.P.); (A.I.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele–Milan, Italy; (F.P.D.R.); (P.T.); (M.R.R.)
| | - Francesco Paolo De Rosa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele–Milan, Italy; (F.P.D.R.); (P.T.); (M.R.R.)
| | - Panagiotis Tsoutsanis
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele–Milan, Italy; (F.P.D.R.); (P.T.); (M.R.R.)
| | - Matteo Stravalaci
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano–Milan, Italy; (P.Z.); (M.S.); (M.P.); (A.I.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele–Milan, Italy; (F.P.D.R.); (P.T.); (M.R.R.)
| | - Marianna Paulis
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano–Milan, Italy; (P.Z.); (M.S.); (M.P.); (A.I.)
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, 20138 Milan, Italy
| | - Antonio Inforzato
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano–Milan, Italy; (P.Z.); (M.S.); (M.P.); (A.I.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele–Milan, Italy; (F.P.D.R.); (P.T.); (M.R.R.)
| | - Mario R. Romano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele–Milan, Italy; (F.P.D.R.); (P.T.); (M.R.R.)
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy
| |
Collapse
|
26
|
Rohiwal SS, Ellederová Z, Ardan T, Klima J. Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases. Biomedicines 2021; 9:biomedicines9081005. [PMID: 34440209 PMCID: PMC8393745 DOI: 10.3390/biomedicines9081005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
The review intends to overview a wide range of nanostructured natural, synthetic and biological membrane implants for tissue engineering to help in retinal degenerative diseases. Herein, we discuss the transplantation strategies and the new development of material in combination with cells such as induced pluripotent stem cells (iPSC), mature retinal cells, adult stem cells, retinal progenitors, fetal retinal cells, or retinal pigment epithelial (RPE) sheets, etc. to be delivered into the subretinal space. Retinitis pigmentosa and age-related macular degeneration (AMD) are the most common retinal diseases resulting in vision impairment or blindness by permanent loss in photoreceptor cells. Currently, there are no therapies that can repair permanent vision loss, and the available treatments can only delay the advancement of retinal degeneration. The delivery of cell-based nanostructure scaffolds has been presented to enrich cell survival and direct cell differentiation in a range of retinal degenerative models. In this review, we sum up the research findings on different types of nanostructure scaffolds/substrate or material-based implants, with or without cells, used to deliver into the subretinal space for retinal diseases. Though, clinical and pre-clinical trials are still needed for these transplants to be used as a clinical treatment method for retinal degeneration.
Collapse
|
27
|
Nano-Biomaterials for Retinal Regeneration. NANOMATERIALS 2021; 11:nano11081880. [PMID: 34443710 PMCID: PMC8399153 DOI: 10.3390/nano11081880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022]
Abstract
Nanoscience and nanotechnology have revolutionized key areas of environmental sciences, including biological and physical sciences. Nanoscience is useful in interconnecting these sciences to find new hybrid avenues targeted at improving daily life. Pharmaceuticals, regenerative medicine, and stem cell research are among the prominent segments of biological sciences that will be improved by nanostructure innovations. The present review was written to present a comprehensive insight into various emerging nanomaterials, such as nanoparticles, nanowires, hybrid nanostructures, and nanoscaffolds, that have been useful in mice for ocular tissue engineering and regeneration. Furthermore, the current status, future perspectives, and challenges of nanotechnology in tracking cells or nanostructures in the eye and their use in modified regenerative ophthalmology mechanisms have also been proposed and discussed in detail. In the present review, various research findings on the use of nano-biomaterials in retinal regeneration and retinal remediation are presented, and these findings might be useful for future clinical applications.
Collapse
|
28
|
Khodamoradi M, Eskandari M, Keshvari H, Zarei R. An electro-conductive hybrid scaffold as an artificial Bruch's membrane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112180. [PMID: 34082980 DOI: 10.1016/j.msec.2021.112180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022]
Abstract
Many research groups have investigated the various kinds of scaffolds to mimic the natural Bruch's membrane (BM) and support the retinal pigmented epithelial cells to form an organized cellular monolayer. While using prosthetic BM is identified as a promising treatment of age-related macular degeneration (AMD), a degenerative and progressive retinal disease, the effects of different signals such as electrical and morphological cues on the retinal pigmented epithelial (RPE) cells are still unknown. In this study, a laminated and conductive hydrogel/fiber composite scaffold by adding conductive polyaniline (PANi) to the scaffold's nanofibrous phase was prepared. This hybrid scaffold offers the closest morphology to the native structure of the human Bruch's membrane by imitating the inner and outer collagenous layer and induces the electrical signal to the scaffold to assess the electrical cue on behaviors of polarized retinal pigmented epithelial cells in the retina. The electrospun nanofibrous phase consisted of gelatin-Polyaniline in different ratios incorporated into the hydrogel precursor, a blend of gelatin and 4-armed PEG. We used a novel dual crosslinking process by incorporating the exposure of gamma irradiation and glutaraldehyde vapor treatment to construct the scaffold's hydrogel phase. The results showed the best composition was the sample which included the 40/60, Polyaniline/gelatin nanofiber sheets ratio because this scaffold revealed a 2.66 ± 0.33 MPa, Young's modulus and 1.84 ± 0.21 S/cm, electrochemical conductivity, which are close to the main features of native Bruch's membrane. In addition, this scaffold showed good biocompatibility by reaching 83.47% cell viability.
Collapse
Affiliation(s)
- Maedeh Khodamoradi
- Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Mahnaz Eskandari
- Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran.
| | - Hamid Keshvari
- Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Reza Zarei
- Farabi Eye Hospital, Eye Research Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
29
|
The Evolution of Fabrication Methods in Human Retina Regeneration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optic nerve and retinal diseases such as age-related macular degeneration and inherited retinal dystrophies (IRDs) often cause permanent sight loss. Currently, a limited number of retinal diseases can be treated. Hence, new strategies are needed. Regenerative medicine and especially tissue engineering have recently emerged as promising alternatives to repair retinal degeneration and recover vision. Here, we provide an overview of retinal anatomy and diseases and a comprehensive review of retinal regeneration approaches. In the first part of the review, we present scaffold-free approaches such as gene therapy and cell sheet technology while in the second part, we focus on fabrication techniques to produce a retinal scaffold with a particular emphasis on recent trends and advances in fabrication techniques. To this end, the use of electrospinning, 3D bioprinting and lithography in retinal regeneration was explored.
Collapse
|
30
|
Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules 2021; 26:molecules26092518. [PMID: 33925886 PMCID: PMC8123515 DOI: 10.3390/molecules26092518] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering is known to encompass multiple aspects of science, medicine and engineering. The development of systems which are able to promote the growth of new cells and tissue components are vital in the treatment of severe tissue injury and damage. This can be done through a variety of different biofabrication strategies including the use of hydrogels, 3D bioprinted scaffolds and nanotechnology. The incorporation of stem cells into these systems and the advantage of this is also discussed. Biopolymers, those which have a natural original, have been particularly advantageous in tissue engineering systems as they are often found within the extracellular matrix of the human body. The utilization of biopolymers has become increasing popular as they are biocompatible, biodegradable and do not illicit an immune response when placed into the body. Tissue engineering systems for use with the eye are also discussed. This is of particular interest as the eye is known as an immune privileged site resulting in an extremely limited ability for natural cell regeneration.
Collapse
|
31
|
Pishavar E, Luo H, Bolander J, Atala A, Ramakrishna S. Nanocarriers, Progenitor Cells, Combinational Approaches, and New Insights on the Retinal Therapy. Int J Mol Sci 2021; 22:1776. [PMID: 33579019 PMCID: PMC7916765 DOI: 10.3390/ijms22041776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Progenitor cells derived from the retinal pigment epithelium (RPECs) have shown promise as therapeutic approaches to degenerative retinal disorders including diabetic retinopathy, age-related macular degeneration and Stargardt disease. However, the degeneration of Bruch's membrane (BM), the natural substrate for the RPE, has been identified as one of the major limitations for utilizing RPECs. This degeneration leads to decreased support, survival and integration of the transplanted RPECs. It has been proposed that the generation of organized structures of nanofibers, in an attempt to mimic the natural retinal extracellular matrix (ECM) and its unique characteristics, could be utilized to overcome these limitations. Furthermore, nanoparticles could be incorporated to provide a platform for improved drug delivery and sustained release of molecules over several months to years. In addition, the incorporation of tissue-specific genes and stem cells into the nanostructures increased the stability and enhanced transfection efficiency of gene/drug to the posterior segment of the eye. This review discusses available drug delivery systems and combination therapies together with challenges associated with each approach. As the last step, we discuss the application of nanofibrous scaffolds for the implantation of RPE progenitor cells with the aim to enhance cell adhesion and support a functionally polarized RPE monolayer.
Collapse
Affiliation(s)
- Elham Pishavar
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran;
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Johanna Bolander
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Antony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117581, Singapore
| |
Collapse
|
32
|
Zhang H, Su B, Jiao L, Xu ZH, Zhang CJ, Nie J, Gao ML, Zhang YV, Jin ZB. Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: the first pre-clinical study for safety and efficacy in China. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:245. [PMID: 33708872 PMCID: PMC7940887 DOI: 10.21037/atm-20-4707] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly due in large part to age-dependent atrophy of retinal pigment epithelium (RPE) cells. RPE cells form a monolayer located between the choroid and the outer segments of photoreceptors, playing multifarious roles in maintenance of visual function. Allogeneically induced pluripotent stem cell-derived RPE (iPSC-RPE or iRPE) has become a potential approach for providing an abundant source of donors for clinical cell products. Transplantation of iRPE has been proven effective in rescuing impaired retinas in Royal College of Surgeons (RCS) rats after approximately 5 to 6 weeks. Here, we explore the long-term (19 weeks) safety and efficacy of human iRPE cell transplantation in pre-clinical animal models. Methods The expression of human RPE-specific markers in iRPE cells was determined using immunofluorescence staining. For the proliferative test, Ki-67 expression was also verified by immunofluorescence and flow cytometric analysis. Then, iRPE cells were transplanted into the subretinal space of immune-deficient NOD/SCID/IL-2Rgcnull (NSG) mice to assess their safety. To evaluate whether the transplanted cells could survive and rescue visual function, we performed color fundus photography, focal electroretinogram and immunostaining after delivering iRPE cells into the subretinal space of RCS rats. Results Human iRPE cells expressed native RPE-specific markers, such as microphthalmia-associated transcription factor (MiTF), retinal pigment epithelium-specific 65-kDa protein (RPE65) and tight-junction associated structural protein (ZO-1), and their proliferative capacity (Ki-67 expression) was poor after 25 days of induction. A tumorigenicity test revealed no tumor formation or abnormal proliferation in the immunodeficient mice after subretinal injection of 5×105 iRPE cells. The transplanted iRPE cells survived for at least 19 weeks and maintained visual function for 15 weeks. Conclusions In the present study, we provided further evidence for the use of human iRPE transplantation to treat retinal degenerative disease in pre-clinical animal models. Therefore, we consider human iRPE cells a promising source of cell replacement therapy for AMD.
Collapse
Affiliation(s)
- Hang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.,Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bingnan Su
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Luyan Jiao
- Nuwacell Biotechnologies Co., Ltd, Hefei, China
| | - Ze-Hua Xu
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chang-Jun Zhang
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jinfu Nie
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Mei-Ling Gao
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | | | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Belgio B, Boschetti F, Mantero S. Towards an In Vitro Retinal Model to Study and Develop New Therapies for Age-Related Macular Degeneration. Bioengineering (Basel) 2021; 8:bioengineering8020018. [PMID: 33499168 PMCID: PMC7911334 DOI: 10.3390/bioengineering8020018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly worldwide. So far, the etiology and the progression of AMD are not well known. Animal models have been developed to study the mechanisms involved in AMD; however, according to the "Three Rs" principle, alternative methods have been investigated. Here we present a strategy to develop a "Three Rs" compliant retinal three-dimensional (3D) in vitro model, including a Bruch's membrane model and retina pigment epithelium (RPE) layer. First, tensile testing was performed on porcine retina to set a reference for the in vitro model. The results of tensile testing showed a short linear region followed by a plastic region with peaks. Then, Bruch's membrane (BrM) was fabricated via electrospinning by using Bombyx mori silk fibroin (BMSF) and polycaprolactone (PCL). The BrM properties and ARPE-19 cell responses to BrM substrates were investigated. The BrM model displayed a thickness of 44 µm, with a high porosity and an average fiber diameter of 1217 ± 101 nm. ARPE-19 cells adhered and spread on the BMSF/PCL electrospun membranes. In conclusion, we are developing a novel 3D in vitro retinal model towards the replacement of animal models in AMD studies.
Collapse
|
34
|
Kim J, Park JY, Kong JS, Lee H, Won JY, Cho DW. Development of 3D Printed Bruch's Membrane-Mimetic Substance for the Maturation of Retinal Pigment Epithelial Cells. Int J Mol Sci 2021; 22:ijms22031095. [PMID: 33499245 PMCID: PMC7865340 DOI: 10.3390/ijms22031095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Retinal pigment epithelium (RPE) is a monolayer of the pigmented cells that lies on the thin extracellular matrix called Bruch's membrane. This monolayer is the main component of the outer blood-retinal barrier (BRB), which plays a multifunctional role. Due to their crucial roles, the damage of this epithelium causes a wide range of diseases related to retinal degeneration including age-related macular degeneration, retinitis pigmentosa, and Stargardt disease. Unfortunately, there is presently no cure for these diseases. Clinically implantable RPE for humans is under development, and there is no practical examination platform for drug development. Here, we developed porcine Bruch's membrane-derived bioink (BM-ECM). Compared to conventional laminin, the RPE cells on BM-ECM showed enhanced functionality of RPE. Furthermore, we developed the Bruch's membrane-mimetic substrate (BMS) via the integration of BM-ECM and 3D printing technology, which revealed structure and extracellular matrix components similar to those of natural Bruch's membrane. The developed BMS facilitated the appropriate functions of RPE, including barrier and clearance functions, the secretion of anti-angiogenic growth factors, and enzyme formation for phototransduction. Moreover, it could be used as a basement frame for RPE transplantation. We established BMS using 3D printing technology to grow RPE cells with functions that could be used for an in vitro model and RPE transplantation.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
| | - Ju Young Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
| | - Jeong Sik Kong
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Hyungseok Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Jae Yon Won
- Department of Ophthalmology and Visual Science, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 14662, Korea
- Correspondence: (J.Y.W.); (D.W.C.)
| | - Dong Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
- Institute of Convergence Science, Yonsei University, Seoul 03722, Korea
- Correspondence: (J.Y.W.); (D.W.C.)
| |
Collapse
|
35
|
Nguyen T, Urrutia-Cabrera D, Liou RHC, Luu CD, Guymer R, Wong RCB. New Technologies to Study Functional Genomics of Age-Related Macular Degeneration. Front Cell Dev Biol 2021; 8:604220. [PMID: 33505962 PMCID: PMC7829507 DOI: 10.3389/fcell.2020.604220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in people over 50 years old in developed countries. Currently, we still lack a comprehensive understanding of the genetic factors contributing to AMD, which is critical to identify effective therapeutic targets to improve treatment outcomes for AMD patients. Here we discuss the latest technologies that can facilitate the identification and functional study of putative genes in AMD pathology. We review improved genomic methods to identify novel AMD genes, advances in single cell transcriptomics to profile gene expression in specific retinal cell types, and summarize recent development of in vitro models for studying AMD using induced pluripotent stem cells, organoids and biomaterials, as well as new molecular technologies using CRISPR/Cas that could facilitate functional studies of AMD-associated genes.
Collapse
Affiliation(s)
- Tu Nguyen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel Urrutia-Cabrera
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Roxanne Hsiang-Chi Liou
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Bagewadi S, Parameswaran S, Krishnakumar S, Sethuraman S, Subramanian A. Tissue engineering approaches towards the regeneration of biomimetic scaffolds for age-related macular degeneration. J Mater Chem B 2021; 9:5935-5953. [PMID: 34254105 DOI: 10.1039/d1tb00976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Age-related macular degeneration (AMD) is the third major cause of blindness in people aged above 60 years. It causes dysfunction of the retinal pigment epithelium (RPE) and leads to an irreversible loss of central vision. The present clinical treatment options are more palliative in controlling the progression of the disease and do not functionally restore the degenerated RPE monolayer and photoreceptors. Currently, the clinical transplantation of RPE cells has shown poor engraftment potential due to the absence of an intact Bruch's membrane in AMD patients, thereby the vision is unable to be restored completely. Although tissue engineering strategies target the development of Bruch's membrane-mimetic substrates, the challenge still lies in the development of an ultrathin, biologically and mechanically equivalent membrane to restore visual acuity. Further, existing limitations such as cellular aggregation, surgical complications including retinal tissue damage, tissue rejection, disease transmission, inferior mechanical strength, and the loss of vision over time demand the search for an ideal strategy to restore the functional RPE. Hence, this review aims to provide insights into various approaches, from conventional cell therapy to 3D bioprinting, and their unmet challenges in treating AMD by outlining the pathophysiology of AMD and the host tissue response with respect to injury, treatment and preclinical animal models.
Collapse
Affiliation(s)
- Shambhavi Bagewadi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology Vision Research Foundation, Chennai, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology Vision Research Foundation, Chennai, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
37
|
Cell-Based Therapies for Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:265-293. [PMID: 33848006 DOI: 10.1007/978-3-030-66014-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. The pathogenesis of AMD involves dysfunction and loss of the retinal pigment epithelium (RPE), a monolayer of cells that provide nourishment and functional support for the overlying photoreceptors. RPE cells in mammals are not known to divide, renew or regenerate in vivo, and in advanced AMD, RPE loss leads to degeneration of the photoreceptors and impairment of vision. One possible therapeutic approach would be to support and replace the failing RPE cells of affected patients, and indeed moderate success of surgical procedures in which relatively healthy autologous RPE from the peripheral retina of the same eye was transplanted under the retina in the macular area suggested that RPE replacement could be a means to attenuate photoreceptor cell loss. This prompted exploration of the possibility to use pluripotent stem cells (PSCs) as a potential source for "healthy and young" RPE cells for such cell-based therapy of AMD. Various approaches ranging from the use of allogeneic embryonic stem cells to autologous induced pluripotent stem cells are now being tested within early clinical trials. Such PSC-derived RPE cells are either injected into the subretinal space as a suspension, or transplanted as a monolayer patch upon scaffold support. Although most of these approaches are at early clinical stages, safety of the RPE product has been demonstrated by several of these studies. Here, we review the concept of cell-based therapy of AMD and provide an update on current progress in the field of RPE transplantation.
Collapse
|
38
|
Jemni-Damer N, Guedan-Duran A, Fuentes-Andion M, Serrano-Bengoechea N, Alfageme-Lopez N, Armada-Maresca F, Guinea GV, Perez-Rigueiro J, Rojo F, Gonzalez-Nieto D, Kaplan DL, Panetsos F. Biotechnology and Biomaterial-Based Therapeutic Strategies for Age-Related Macular Degeneration. Part II: Cell and Tissue Engineering Therapies. Front Bioeng Biotechnol 2020; 8:588014. [PMID: 33363125 PMCID: PMC7758210 DOI: 10.3389/fbioe.2020.588014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related Macular Degeneration (AMD) is an up-to-date untreatable chronic neurodegenerative eye disease of multifactorial origin, and the main causes of blindness in over 65 y.o. people. It is characterized by a slow progression and the presence of a multitude of factors, highlighting those related to diet, genetic heritage and environmental conditions, present throughout each of the stages of the illness. Current therapeutic approaches, mainly consisting on intraocular drug delivery, are only used for symptoms relief and/or to decelerate the progression of the disease. Furthermore, they are overly simplistic and ignore the complexity of the disease and the enormous differences in the symptomatology between patients. Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, different treatment options have to be considered. Cell therapy is a very promising alternative to drug-based approaches for AMD treatment. Cells delivered to the affected tissue as a suspension have shown poor retention and low survival rate. A solution to these inconveniences has been the encapsulation of these cells on biomaterials, which contrive to their protection, gives them support, and favor their retention of the desired area. We offer a two-papers critical review of the available and under development AMD therapeutic approaches, from a biomaterials and biotechnological point of view. We highlight benefits and limitations and we forecast forthcoming alternatives based on novel biomaterials and biotechnology methods. In this second part we review the preclinical and clinical cell-replacement approaches aiming at the development of efficient AMD-therapies, the employed cell types, as well as the cell-encapsulation and cell-implant systems. We discuss their advantages and disadvantages and how they could improve the survival and integration of the implanted cells.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
| | - Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - María Fuentes-Andion
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
| | - Nora Serrano-Bengoechea
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Nuria Alfageme-Lopez
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | | | - Gustavo V. Guinea
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - José Perez-Rigueiro
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Francisco Rojo
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
39
|
Nian S, Kearns VR, Wong DSH, Bachhuka A, Vasilev K, Williams RL, Lai WW, Lo A, Sheridan CM. Plasma polymer surface modified expanded polytetrafluoroethylene promotes epithelial monolayer formation in vitro and can be transplanted into the dystrophic rat subretinal space. J Tissue Eng Regen Med 2020; 15:49-62. [PMID: 33180364 DOI: 10.1002/term.3154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 11/06/2022]
Abstract
The aim of this study was to evaluate whether the surface modification of expanded polytetrafluoroethylene (ePTFE) using an n-heptylamine (HA) plasma polymer would allow for functional epithelial monolayer formation suitable for subretinal transplant into a non-dystrophic rat model. Freshly isolated iris pigment epithelial (IPE) cells from two rat strains (Long Evans [LE] and Dark Agouti [DA]) were seeded onto HA, fibronectin-coated n-heptylamine modified (F-HA) and unmodified ePFTE and fibronectin-coated tissue culture (F-TCPS) substrates. Both F-HA ePTFE and F-TCPS substrates enabled functional monolayer formation with both strains of rat. Without fibronectin coating, only LE IPE formed a monolayer on HA-treated ePTFE. Functional assessment of both IPE strains on F-HA ePTFE demonstrated uptake of POS that increased significantly with time that was greater than control F-TCPS. Surgical optimization using Healon GV and mixtures of Healon GV: phosphate buffered saline (PBS) to induce retinal detachment demonstrated that only Healon GV:PBS allowed F-HA ePTFE substrates to be successfully transplanted into the subretinal space of Royal College of Surgeons rats, where they remained flat beneath the neural retina for up to 4 weeks. No apparent substrate-induced inflammatory response was observed by fundus microscopy or immunohistochemical analysis, indicating the potential of this substrate for future clinical applications.
Collapse
Affiliation(s)
- Shen Nian
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.,Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Victoria R Kearns
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - David S H Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.,Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Akash Bachhuka
- School of Engineering, University of South Australia, Adelaide, South Australia, Australia
| | - Krasimir Vasilev
- School of Engineering, University of South Australia, Adelaide, South Australia, Australia
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Wico W Lai
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Amy Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Carl M Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
40
|
Jemni-Damer N, Guedan-Duran A, Cichy J, Lozano-Picazo P, Gonzalez-Nieto D, Perez-Rigueiro J, Rojo F, V Guinea G, Virtuoso A, Cirillo G, Papa M, Armada-Maresca F, Largo-Aramburu C, Aznar-Cervantes SD, Cenis JL, Panetsos F. First steps for the development of silk fibroin-based 3D biohybrid retina for age-related macular degeneration (AMD). J Neural Eng 2020; 17:055003. [PMID: 32947273 DOI: 10.1088/1741-2552/abb9c0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration is an incurable chronic neurodegenerative disease, causing progressive loss of the central vision and even blindness. Up-to-date therapeutic approaches can only slow down he progression of the disease. OBJECTIVE Feasibility study for a multilayered, silk fibroin-based, 3D biohybrid retina. APPROACH Fabrication of silk fibroin-based biofilms; culture of different types of cells: retinal pigment epithelium, retinal neurons, Müller and mesenchymal stem cells ; creation of a layered structure glued with silk fibroin hydrogel. MAIN RESULTS In vitro evidence for the feasibility of layered 3D biohybrid retinas; primary culture neurons grow and develop neurites on silk fibroin biofilms, either alone or in presence of other cells cultivated on the same biomaterial; cell organization and cellular phenotypes are maintained in vitro for the seven days of the experiment. SIGNIFICANCE 3D biohybrid retina can be built using silk silkworm fibroin films and hydrogels to be used in cell replacement therapy for AMD and similar retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-computing & Neuro-robotics Research Group, Complutense University of Madrid, Spain. Innovation Research Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain. These authors equally contributed to this article
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang CJ, Ma Y, Jin ZB. The road to restore vision with photoreceptor regeneration. Exp Eye Res 2020; 202:108283. [PMID: 33010290 DOI: 10.1016/j.exer.2020.108283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/13/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Neuroretinal diseases are the predominant cause of irreversible blindness worldwide, mainly due to photoreceptor loss. Currently, there are no radical treatments to fully reverse the degeneration or even stop the disease progression. Thus, it is urgent to develop new biological therapeutics for these diseases on the clinical side. Stem cell-based treatments have become a promising therapeutic for neuroretinal diseases through the replacement of damaged cells with photoreceptors and some allied cells. To date, considerable efforts have been made to regenerate the diseased retina based on stem cell technology. In this review, we overview the current status of stem cell-based treatments for photoreceptor regeneration, including the major cell sources derived from different stem cells in pre-clinical or clinical trial stages. Additionally, we discuss herein the major challenges ahead for and potential new strategy toward photoreceptor regeneration.
Collapse
Affiliation(s)
- Chang-Jun Zhang
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
42
|
Kharaghani D, Tajbakhsh Z, Duy Nam P, Soo Kim I. Application of Nanowires for Retinal Regeneration. Regen Med 2020. [DOI: 10.5772/intechopen.90149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
43
|
Chen S, Wang J, Chen Y, Mo X, Fan C. Tenogenic adipose-derived stem cell sheets with nanoyarn scaffolds for tendon regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111506. [PMID: 33321604 DOI: 10.1016/j.msec.2020.111506] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/17/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
Tissue engineering, especially cell sheets-based engineering, offers a promising approach to tendon regeneration; however, obtaining a sufficient source of cells for tissue engineering applications is challenging. Adipose-derived stem cells (ASCs) are essential sources for tissue regeneration and have been shown to have the potential for tenogenic differentiation in vitro via induction by growth differentiation factor 5 (GDF-5). In this study, we explored the feasibility of ASCs cell sheets stimulated by GDF-5 for engineered tendon repair. As shown by quantitative polymerase chain reaction and western blotting, tenogenesis-related markers (Col I&III, TNMD, biglycan, and tenascin C) were significantly increased in GDF-5-induced ASCs cell sheets compared with the uninduced. Moreover, the levels of SMAD2/3 proteins and phospho-SMAD1/5/9 were significantly enhanced, demonstrating that GDF-5 may exert its functions through phosphorylation of SMAD1/5/9. Furthermore, the cell sheets were combined with P(LLA-CL)/Silk fibroin nanoyarn scaffolds to form constructs for tendon tissue engineering. Terminal deoxynucleotidyl transferase dUTP nick end labeling and immunofluorescence assays demonstrated favorable cell viability and tenogenesis-related marker expression in GDF-5-induced constructs. In addition, the constructs showed the potential for tendon repair in rabbit models, as demonstrated by histological, immunohistochemical, and biomechanical analyses. In our study, we successfully produced a new tissue-engineered tendon by the combination of GDF-5-induced ASCs cell sheets and nanoyarn scaffold which is valuable for tendon regeneration.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Juan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Yini Chen
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China.
| |
Collapse
|
44
|
Zanchetta FC, Trinca RB, Gomes Silva JL, Breder JDSC, Cantarutti TA, Consonni SR, Moraes ÂM, Pereira de Araújo E, Saad MJA, Adams GG, Melo Lima MH. Effects of Electrospun Fibrous Membranes of PolyCaprolactone and Chitosan/Poly(Ethylene Oxide) on Mouse Acute Skin Lesions. Polymers (Basel) 2020; 12:E1580. [PMID: 32708645 PMCID: PMC7408160 DOI: 10.3390/polym12071580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/14/2023] Open
Abstract
Polycaprolactone (PCL) is a synthetic polymer with good mechanical properties that are useful to produce biomaterials of clinical application. It can be successfully combined with chitosan, which enhances the biomaterial properties through the modulation of molecular and cellular mechanisms. The objective of this study was to evaluate the effects of the use of electrospun fibrous membranes consisting of polycaprolactone (PCL) or polycaprolactone coated with chitosan and poly(ethylene oxide) (PCL+CHI/PEO) on mouse skin lesions. Sixty four Black-57 mice were divided into PCL and PCL+CHI/PEO groups. A 1 cm2 lesion was made on the animals' backs, and the membranes were sutured in place. The tissues were extracted on the 3rd, 7th, and 14th days after the lesion. The tissues were analyzed by histology with Hematoxylin and Eosin (H&E) and Sirius Red stains, morphometry, immunohistochemistry, and Western blot. On the 3rd, 6th, and 9th days after the lesion, the PCL+CHI/PEO group showed a higher wound-healing rate (WHR). On the 3 day, the PCL+CHI/PEO group showed a greater amount of inflammatory infiltrate, greater expression of proliferating cell nuclear antigen (PCNA), and smooth muscle actin (α-SMA) (p < 0.05) compared to the PCL group. On the 7th day after the lesion, the PCL+CHI/PEO group showed a greater amount of inflammatory infiltrate, expression of Tumor Necrosis Factor (TNF-α) and PCNA (p < 0.05). In addition, it showed a greater immunolabeling of Monocyte Chemoattractant Protein-1 (MCP-1) and deposition of collagen fibers compared to the PCL group. The PCL+CHI/PEO membrane modulated the increase in the inflammatory infiltrate, the expression of MCP-1, PCNA, and α-SMA in lesions of mice.
Collapse
Affiliation(s)
- Flávia Cristina Zanchetta
- School of Nursing, University of Campinas, Campinas CEP 13083887, Brazil; (F.C.Z.); (J.L.G.S.); (J.d.S.C.B.); (T.A.C.); (E.P.d.A.)
| | - Rafael Bergamo Trinca
- Department of Engineering of Materials and of Bioprocess, School of Chemical Engineering, University of Campinas, Campinas CEP 13083852, Brazil; (R.B.T.); (Â.M.M.)
| | - Juliany Lino Gomes Silva
- School of Nursing, University of Campinas, Campinas CEP 13083887, Brazil; (F.C.Z.); (J.L.G.S.); (J.d.S.C.B.); (T.A.C.); (E.P.d.A.)
| | - Jéssica da Silva Cunha Breder
- School of Nursing, University of Campinas, Campinas CEP 13083887, Brazil; (F.C.Z.); (J.L.G.S.); (J.d.S.C.B.); (T.A.C.); (E.P.d.A.)
| | - Thiago Anselmo Cantarutti
- School of Nursing, University of Campinas, Campinas CEP 13083887, Brazil; (F.C.Z.); (J.L.G.S.); (J.d.S.C.B.); (T.A.C.); (E.P.d.A.)
| | - Sílvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas CEP 13083970, Brazil;
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocess, School of Chemical Engineering, University of Campinas, Campinas CEP 13083852, Brazil; (R.B.T.); (Â.M.M.)
| | - Eliana Pereira de Araújo
- School of Nursing, University of Campinas, Campinas CEP 13083887, Brazil; (F.C.Z.); (J.L.G.S.); (J.d.S.C.B.); (T.A.C.); (E.P.d.A.)
| | | | - Gary G. Adams
- School of Health Sciences, Faculty of Medicine, The University of Nottingham, C Floor, South Block Link, Queen’s Medical Centre, Nottingham NG7 2HA, UK
| | - Maria Helena Melo Lima
- School of Nursing, University of Campinas, Campinas CEP 13083887, Brazil; (F.C.Z.); (J.L.G.S.); (J.d.S.C.B.); (T.A.C.); (E.P.d.A.)
| |
Collapse
|
45
|
Xiang P, Wang K, Bi J, Li M, He RW, Cui D, Ma LQ. Organic extract of indoor dust induces estrogen-like effects in human breast cancer cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138505. [PMID: 32481214 DOI: 10.1016/j.scitotenv.2020.138505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Indoor dust often contains organic contaminants, which adversely impacts human health. In this study, the organic contaminants in the indoor dust from commercial offices and residential houses in Nanjing, China were extracted and their effects on human breast cancer cells (MCF-7) were investigated. Both dust extracts promoted proliferation of MCF-7 cells at ≤24 μg/100 μL, with cell viability being decreased with increasing dust concentrations. Based on LC50, house dust was less toxic than office dust. At 8 μg/100 μL, both extracts caused more MCF-7 cells into active cycling (G2/M + S) and increased intracellular Ca2+ influx, with house dust inducing stronger effects than office dust. Further, the expression of estrogen-responsive genes for TFF1 and EGR3 was enhanced by 3-9 and 4-9 folds, while the expression of cell cycle regulatory genes for cyclin D was enhanced by 2-5 folds. The results suggested that organic dust extract influenced cell viability, altered cell cycle, increased intracellular Ca2+ levels, and activated cell cycle regulatory and estrogen-responsive gene expressions, with house dust showing lower cytotoxicity but higher estrogenic potential on MCF-7 cells. The results indicate the importance of reducing organic contaminants in indoor dust to mitigate their adverse impacts on human health.
Collapse
Affiliation(s)
- Ping Xiang
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Wang
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Jue Bi
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Mengying Li
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Rui-Wen He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Daolei Cui
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
46
|
Recent developments in regenerative ophthalmology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1450-1490. [PMID: 32621058 DOI: 10.1007/s11427-019-1684-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Regenerative medicine (RM) is one of the most promising disciplines for advancements in modern medicine, and regenerative ophthalmology (RO) is one of the most active fields of regenerative medicine. This review aims to provide an overview of regenerative ophthalmology, including the range of tools and materials being used, and to describe its application in ophthalmologic subspecialties, with the exception of surgical implantation of artificial tissues or organs (e.g., contact lens, artificial cornea, intraocular lens, artificial retina, and bionic eyes) due to space limitations. In addition, current challenges and limitations of regenerative ophthalmology are discussed and future directions are highlighted.
Collapse
|
47
|
Rastoin O, Pagès G, Dufies M. Experimental Models in Neovascular Age Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21134627. [PMID: 32610682 PMCID: PMC7370120 DOI: 10.3390/ijms21134627] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Neovascular age-related macular degeneration (vAMD), characterized by the neo-vascularization of the retro-foveolar choroid, leads to blindness within few years. This disease depends on angiogenesis mediated by the vascular endothelial growth factor A (VEGF) and to inflammation. The only available treatments consist of monthly intravitreal injections of antibodies directed against VEGF or VEGF/VEGFB/PlGF decoy receptors. Despite their relative efficacy, these drugs only delay progression to blindness and 30% of the patients are insensitive to these treatments. Hence, new therapeutic strategies are urgently needed. Experimental models of vAMD are essential to screen different innovative therapeutics. The currently used in vitro and in vivo models in ophthalmic translational research and their relevance are discussed in this review.
Collapse
Affiliation(s)
- Olivia Rastoin
- Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, University Cote d’Azur (UCA), 06000 Nice, France; (O.R.); (G.P.)
| | - Gilles Pagès
- Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, University Cote d’Azur (UCA), 06000 Nice, France; (O.R.); (G.P.)
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Maeva Dufies
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco
- Correspondence:
| |
Collapse
|
48
|
Behtaj S, Öchsner A, Anissimov YG, Rybachuk M. Retinal Tissue Bioengineering, Materials and Methods for the Treatment of Glaucoma. Tissue Eng Regen Med 2020; 17:253-269. [PMID: 32390117 PMCID: PMC7260329 DOI: 10.1007/s13770-020-00254-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glaucoma, a characteristic type of optic nerve degeneration in the posterior pole of the eye, is a common cause of irreversible vision loss and the second leading cause of blindness worldwide. As an optic neuropathy, glaucoma is identified by increasing degeneration of retinal ganglion cells (RGCs), with consequential vision loss. Current treatments only postpone the development of retinal degeneration, and there are as yet no treatments available for this disability. Recent studies have shown that replacing lost or damaged RGCs with healthy RGCs or RGC precursors, supported by appropriately designed bio-material scaffolds, could facilitate the development and enhancement of connections to ganglion cells and optic nerve axons. The consequence may be an improved retinal regeneration. This technique could also offer the possibility for retinal regeneration in treating other forms of optic nerve ailments through RGC replacement. METHODS In this brief review, we describe the innovations and recent developments in retinal regenerative medicine such as retinal organoids and gene therapy which are specific to glaucoma treatment and focus on the selection of appropriate bio-engineering principles, biomaterials and cell therapies that are presently employed in this growing research area. RESULTS Identification of optimal sources of cells, improving cell survival, functional integration upon transplantation, and developing techniques to deliver cells into the retinal space without provoking immune responses are the main challenges in retinal cell replacement therapies. CONCLUSION The restoration of visual function in glaucoma patients by the RGC replacement therapies requires appropriate protocols and biotechnology methods. Tissue-engineered scaffolds, the generation of retinal organoids, and gene therapy may help to overcome some of the challenges in the generation of clinically safe RGCs.
Collapse
Affiliation(s)
- Sanaz Behtaj
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport, QLD, 4222, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- Department of Cell and Molecular Biology, Cell Science Research Centre, Royan Institute for Biotechnology, Isfahan, Iran
| | - Andreas Öchsner
- Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Kanalstrasse 33, 73728, Esslingen, Germany
| | - Yuri G Anissimov
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Parklands Drive, Southport, QLD, 4222, Australia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Maksym Rybachuk
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia.
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia.
| |
Collapse
|
49
|
Murali A, Krishnakumar S, Subramanian A, Parameswaran S. Bruch's membrane pathology: A mechanistic perspective. Eur J Ophthalmol 2020; 30:1195-1206. [PMID: 32345040 DOI: 10.1177/1120672120919337] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bruch's membrane, an extracellular matrix located between the retinal pigment epithelium and the choroid, plays a vital role as structural and functional support to the retinal pigment epithelium. Dysfunction of Bruch's membrane in both age-related macular degeneration and other ocular diseases is caused mostly by extracellular matrix degeneration, deposit formation, and angiogenesis. Although these factors are dealt in greater detail with respect to the cells that are degenerated such as the retinal pigment epithelium and the endothelial cells, the pathology involving the Bruch's membrane is often underrated. Since in most of the macular degenerations early degenerative changes are also observed in the Bruch's membrane, addressing only the cellular component without the underlying membrane will not yield an ideal clinical benefit. This review aims to discuss the factors and the mechanisms affecting the integrity of the Bruch's membrane, which would aid in developing an effective therapy for these pathologies.
Collapse
Affiliation(s)
- Aishwarya Murali
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Anuradha Subramanian
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| |
Collapse
|
50
|
Wu KC, Lv JN, Yang H, Yang FM, Lin R, Lin Q, Shen RJ, Wang JB, Duan WH, Hu M, Zhang J, He ZL, Jin ZB. Nonhuman Primate Model of Oculocutaneous Albinism with TYR and OCA2 Mutations. RESEARCH (WASHINGTON, D.C.) 2020; 2020:1658678. [PMID: 32259106 PMCID: PMC7086374 DOI: 10.34133/2020/1658678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/04/2020] [Indexed: 12/27/2022]
Abstract
Human visual acuity is anatomically determined by the retinal fovea. The ontogenetic development of the fovea can be seriously hindered by oculocutaneous albinism (OCA), which is characterized by a disorder of melanin synthesis. Although people of all ethnic backgrounds can be affected, no efficient treatments for OCA have been developed thus far, due partly to the lack of effective animal models. Rhesus macaques are genetically homologous to humans and, most importantly, exhibit structures of the macula and fovea that are similar to those of humans; thus, rhesus macaques present special advantages in the modeling and study of human macular and foveal diseases. In this study, we identified rhesus macaque models with clinical characteristics consistent with those of OCA patients according to observations of ocular behavior, fundus examination, and optical coherence tomography. Genomic sequencing revealed a biallelic p.L312I mutation in TYR and a homozygous p.S788L mutation in OCA2, both of which were further confirmed to affect melanin biosynthesis via in vitro assays. These rhesus macaque models of OCA will be useful animal resources for studying foveal development and for preclinical trials of new therapies for OCA.
Collapse
Affiliation(s)
- Kun-Chao Wu
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Ji-Neng Lv
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Hui Yang
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Feng-Mei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, And Peking Union Medical College (CAMS & PUMC), Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming 650118, China
| | - Rui Lin
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Qiang Lin
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Ren-Juan Shen
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| | - Jun-Bin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, And Peking Union Medical College (CAMS & PUMC), Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming 650118, China
| | - Wen-Hua Duan
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650021, China
| | - Min Hu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650021, China
| | - Jun Zhang
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
- Laboratory of Retinal Physiology & Disease, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhan-Long He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, And Peking Union Medical College (CAMS & PUMC), Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming 650118, China
| | - Zi-Bing Jin
- Division of Ophthalmic Genetics, The Eye Hospital, Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou 325027, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
| |
Collapse
|