1
|
Cristallini C, Rossin D, Vanni R, Barbani N, Bulgheresi C, Labardi M, Perveen S, Burchielli S, Terlizzi D, Kusmic C, Del Ry S, Cabiati M, Trouki C, Rossino D, Sergi F, Villano A, Aquaro GD, Scarpellino G, Ruffinatti FA, Amorim S, Pires RA, Reis RL, Rastaldo R, Giachino C. A biodegradable, microstructured, electroconductive and nano-integrated drug eluting patch (MENDEP) for myocardial tissue engineering. Bioact Mater 2025; 50:246-272. [PMID: 40270551 PMCID: PMC12017858 DOI: 10.1016/j.bioactmat.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/24/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025] Open
Abstract
We produced a microstructured, electroconductive and nano-functionalized drug eluting cardiac patch (MENDEP) designed to attract endogenous precursor cells, favor their differentiation and counteract adverse ventricular remodeling in situ. MENDEP showed mechanical anisotropy and biaxial strength comparable to porcine myocardium, reduced impedance, controlled biodegradability, molecular recognition ability and controlled drug release activity. In vitro, cytocompatibility and cardioinductivity were demonstrated. Migration tests showed the chemoattractive capacity of the patches and conductivity assays showed unaltered cell-cell interactions and cell beating synchronicity. MENDEP was then epicardially implanted in a rat model of ischemia/reperfusion (I/R). Histological, immunofluorescence and biomarker analysis indicated that implantation did not cause damage to the healthy myocardium. After I/R, MENDEP recruited precursor cells into the damaged myocardium and triggered their differentiation towards the vascular lineage. Under the patch, the myocardial tissue appeared well preserved and cardiac gap junctions were correctly distributed at the level of the intercalated discs. The fibrotic area measured in the I/R group was partially reduced in the patch group. Overall, these results demonstrate that MENDEP was fully retained on the epicardial surface of the left ventricle over 4-week implantation period, underwent progressive vascularization, did not perturb the healthy myocardium and showed great potential in repairing the infarcted area.
Collapse
Affiliation(s)
- Caterina Cristallini
- Institute for Chemical and Physical Processes, CNR-IPCF, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Niccoletta Barbani
- Institute for Chemical and Physical Processes, CNR-IPCF, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Chiara Bulgheresi
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Massimiliano Labardi
- Institute for Chemical and Physical Processes, CNR-IPCF, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Sadia Perveen
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | | | | | - Claudia Kusmic
- Clinical Physiology Institute, CNR-IFC, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Silvia Del Ry
- Clinical Physiology Institute, CNR-IFC, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Manuela Cabiati
- Clinical Physiology Institute, CNR-IFC, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Cheherazade Trouki
- Institute for Chemical and Physical Processes, CNR-IPCF, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Dawid Rossino
- Institute for Chemical and Physical Processes, CNR-IPCF, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Francesca Sergi
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Anthea Villano
- Institute for Chemical and Physical Processes, CNR-IPCF, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Giovanni D. Aquaro
- Academic Radiology Unit, Department of Surgical, Medical and Molecular Pathology and of the Critical Area, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Giorgia Scarpellino
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Adolfo Ferrata 9, 27100, Pavia, Italy
| | - Federico A. Ruffinatti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Sara Amorim
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ricardo A. Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| |
Collapse
|
2
|
Yajima S, Lee SH, Yang J, Vergel MD, Manna MK, Kusadokoro S, Zhu Y, Elde S, Mullis DM, Venkatesh A, Ethiraj S, Ueyama T, Takashima H, Oh SE, Huynh C, Wang H, Shudo Y, Miyagawa S, Sawa Y, Rajadas J, Woo YJ. Stromal cell-derived factor-encapsulated nanoparticles target ischemic myocardium and attenuate myocardial injury via proangiogenic effects. Biomaterials 2025; 318:123167. [PMID: 39947060 DOI: 10.1016/j.biomaterials.2025.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Lipid bilayer nanoparticles (NPs) with and without stromal cell-derived factor (SDF) were created to target and treat ischemia/reperfusion (I/R)-injured myocardium. Male Wistar rats were subjected to myocardial I/R insult and, at reperfusion, randomized to receive systemic injections of 5 mL/kg PBS, 6 μg/kg of NPs, SDF, or SDF-NPs. Four days after treatment, SDF-NPs circulated and accumulated selectively in the ischemic myocardium, with an SDF concentration roughly three times that of the other three treatments. SDF-NP-treated rats had more endothelial progenitor cells (EPCs) in the blood and preserved capillaries and arterioles in the ischemic border myocardium four weeks post-treatment, which improved microvascular perfusion, reduced fibrosis, and preserved heart function. Notably, hearts treated with SDF-NPs retained left ventricular function at four weeks compared to 1-day post-treatment, with a 2.7 ± 1.2 % increase in the ejection fraction. The other three treatments decreased left ventricular function at four weeks (PBS: -7.8 ± 1.2 %, P < 0.001; empty NPs: -3.9 ± 1.3 %, P = 0.004; SDF solution: -5.1 ± 1.3 %, P = 0.001). Hence, systemically injected SDF-NPs selectively accumulate in ischemic cardiac tissue, shielding the myocardium from I/R injury via angiogenic effects through increased EPC migration. This novel cardioprotective drug may be clinically translatable.
Collapse
Affiliation(s)
- Shin Yajima
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seung Hyun Lee
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Junkai Yang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Matthew D Vergel
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Manoj K Manna
- Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sho Kusadokoro
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Akshay Venkatesh
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Sidarth Ethiraj
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Tsuyoshi Ueyama
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Hiroyuki Takashima
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Samuel E Oh
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Chris Huynh
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jayakumar Rajadas
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Abhirami N, Sudhina S, Chandran A, Chandran M, Ayyappan JP. Targeted delivery of peptide functionalized nanoparticles for ameliorating myocardial infarction. Egypt Heart J 2025; 77:48. [PMID: 40407974 PMCID: PMC12102026 DOI: 10.1186/s43044-025-00644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 04/26/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND Myocardial infarction (MI) continues to pose a significant global healthcare burden despite advances in treatment options and their effectiveness. The incidence, prevalence, and mortality rates associated with MI are rising, emphasizing the need for improved therapeutic strategies. Traditional invasive surgical methods, aimed at recanalizing blood flow to the coronary arteries, have proven insufficient in fully addressing the complexities of MI. This ongoing challenge necessitates the exploration of novel approaches to enhance treatment efficacy and outcomes for MI patients. MAIN TEXT One promising approach is the use of nanoparticle delivery systems for targeted therapy to the infarct site. When conventional methods fail to achieve adequate permeability and retention, nanoparticle strategies offer a potential solution. Functionalizing nanoparticles is a particularly effective technique, allowing these particles to conjugate with specific ligands. These ligands possess the intrinsic ability to selectively bind to receptors that are overexpressed or uniquely present at the infarct site, thereby conferring "smartness" to the nanoparticle constructs. This review delves into the various strategies employed in nanoparticle-ligand functionalization, highlighting the versatility and potential of these approaches. It provides a detailed cross section of several ligand classes, each with unique properties and binding affinities that make them suitable for targeted delivery in the context of MI. The focus is on identifying ligands that are either unique to the infarcted myocardium or significantly upregulated during MI, ensuring precise and efficient targeting of therapeutic agents. CONCLUSION In summary, while traditional surgical methods for restoring blood flow in MI patients remain important, they are not sufficient on their own. By leveraging the specificity of these ligands, nanoparticles can be directed precisely to the infarct site, enhancing the delivery and efficacy of therapeutic agents. This review underscores the need for continued research into nanoparticle-ligand functionalization strategies, aiming to improve outcomes for MI patients and reduce the global burden of this condition.
Collapse
Affiliation(s)
- N Abhirami
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695034, India
| | - S Sudhina
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695034, India
- Centre for Advanced Cancer Research, Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695034, India
| | - Akash Chandran
- Department of Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - Mahesh Chandran
- Department of Biotechnology, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - Janeesh Plakkal Ayyappan
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695034, India.
- Centre for Advanced Cancer Research, Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695034, India.
- Department of Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India.
- Department of Biotechnology, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India.
| |
Collapse
|
4
|
Zhen P, Jiang Q, Yu F, Xu X, Wei Q, Liu X, Sun X, Liang G, Tong J. ROS-differentiated release of Apelin-13 from hydrogel comprehensively treats myocardial ischemia-reperfusion injury. J Control Release 2025; 379:609-620. [PMID: 39842726 DOI: 10.1016/j.jconrel.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Treatment of myocardial ischemia-reperfusion (MI/R) injury still faces the lack of clinically approved drugs. Apelin-13 is a highly promising drug candidate of MI/R injury, but hampered by its extremely short half-life in plasma. This calls for efficient and smart delivering system for Apelin-13 delivery, but has not been reported. Herein, a reactive oxygen species (ROS)-responsive hydrogelator YFF-TK-FFY is designed, which co-assembles with Apelin-13 to form the peptide hydrogel Apelin-13@Gel TK. This hydrogel responds to ROS at varying levels in the surrounding environment of MI/R and releases Apelin-13 at different rates. In an MI/R injury mouse model, Apelin-13@Gel TK rapidly releases Apelin-13 in response to the high ROS in the core area of MI/R injury, efficiently reducing cardiomyocyte apoptosis within three days. In the ROS-low border zone, Apelin-13@Gel TK provides a slow and sustained release of Apelin-13, promoting angiogenesis and lymphatic remodeling, and facilitating the resolution of inflammation in the later repair stage after MI/R injury. By offering a spatiotemporally controlled drug release in response to ROS gradients in the MI/R microenvironment, this smart hydrogel presents a promising therapeutic strategy for effective treatment of MI/R injury.
Collapse
Affiliation(s)
- Penghao Zhen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China
| | - Qiaochu Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Fuchao Yu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China
| | - Xuan Xu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China
| | - Qin Wei
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China.
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China.
| | - Jiayi Tong
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China.
| |
Collapse
|
5
|
Li Z, Peng X, Zhu X, Spanos M, Wu L. Traditional Chinese Medicine Monomers Are Potential Candidate Drugs for Cancer-Induced Cardiac Cachexia. Pharmacology 2024; 110:49-61. [PMID: 39250889 DOI: 10.1159/000540915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Cardiovascular diseases are now the second leading cause of death among cancer patients. Heart injury in patients with terminal cancer can lead to significant deterioration of left ventricular morphology and function. This specific heart condition is known as cancer-induced cardiac cachexia (CICC) and is characterized by cardiac dysfunction and wasting. However, an effective pharmacological treatment for CICC remains elusive. SUMMARY The development and progression of CICC are closely related to pathophysiological processes, such as protein degradation, oxidative responses, and inflammation. Traditional Chinese medicine (TCM) monomers offer unique advantages in reversing heart injury, which is the end-stage manifestation of CICC except the regular treatment. This review outlines significant findings related to the impact of eleven TCM monomers, namely Astragaloside IV, Ginsenosides Rb1, Notoginsenoside R1, Salidroside, Tanshinone II A, Astragalus polysaccharides, Salvianolate, Salvianolic acids A and B, and Ginkgolide A and B, on improving heart injury. These TCM monomers are potential therapeutic agents for CICC, each with specific mechanisms that could potentially reverse the pathological processes associated with CICC. Advanced drug delivery strategies, such as nano-delivery systems and exosome-delivery systems, are discussed as targeted administration options for the therapy of CICC. KEY MESSAGE This review summarizes the pathological mechanisms of CICC and explores the pharmacological treatment of TCM monomers that promote anti-inflammation, antioxidation, and pro-survival. It also considers pharmaceutical strategies for administering TCM monomers, highlighting their potential as therapies for CICC.
Collapse
Affiliation(s)
- Zhizheng Li
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Peng
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Zhu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Clinic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lan Wu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
6
|
Song Q, Wang X, Cao Z, Xin C, Zhang J, Li S. The Apelin/APJ System: A Potential Therapeutic Target for Sepsis. J Inflamm Res 2024; 17:313-330. [PMID: 38250143 PMCID: PMC10800090 DOI: 10.2147/jir.s436169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
Apelin is the native ligand for the G protein-coupled receptor APJ. Numerous studies have demonstrated that the Apelin/APJ system has positive inotropic, anti-inflammatory, and anti-apoptotic effects and regulates fluid homeostasis. The Apelin/APJ system has been demonstrated to play a protective role in sepsis and may serve as a promising therapeutic target for the treatment of sepsis. Better understanding of the mechanisms of the effects of the Apelin/APJ system will aid in the development of novel drugs for the treatment of sepsis. In this review, we provide a brief overview of the physiological role of the Apelin/APJ system and its role in sepsis.
Collapse
Affiliation(s)
- Qing Song
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Xi Wang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Zhenhuan Cao
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Chun Xin
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Jingyuan Zhang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Suwei Li
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| |
Collapse
|
7
|
Gil CJ, Evans CJ, Li L, Allphin AJ, Tomov ML, Jin L, Vargas M, Hwang B, Wang J, Putaturo V, Kabboul G, Alam AS, Nandwani RK, Wu Y, Sushmit A, Fulton T, Shen M, Kaiser JM, Ning L, Veneziano R, Willet N, Wang G, Drissi H, Weeks ER, Bauser-Heaton HD, Badea CT, Roeder RK, Serpooshan V. Leveraging 3D Bioprinting and Photon-Counting Computed Tomography to Enable Noninvasive Quantitative Tracking of Multifunctional Tissue Engineered Constructs. Adv Healthc Mater 2023; 12:e2302271. [PMID: 37709282 PMCID: PMC10842604 DOI: 10.1002/adhm.202302271] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Indexed: 09/16/2023]
Abstract
3D bioprinting is revolutionizing the fields of personalized and precision medicine by enabling the manufacturing of bioartificial implants that recapitulate the structural and functional characteristics of native tissues. However, the lack of quantitative and noninvasive techniques to longitudinally track the function of implants has hampered clinical applications of bioprinted scaffolds. In this study, multimaterial 3D bioprinting, engineered nanoparticles (NPs), and spectral photon-counting computed tomography (PCCT) technologies are integrated for the aim of developing a new precision medicine approach to custom-engineer scaffolds with traceability. Multiple CT-visible hydrogel-based bioinks, containing distinct molecular (iodine and gadolinium) and NP (iodine-loaded liposome, gold, methacrylated gold (AuMA), and Gd2 O3 ) contrast agents, are used to bioprint scaffolds with varying geometries at adequate fidelity levels. In vitro release studies, together with printing fidelity, mechanical, and biocompatibility tests identified AuMA and Gd2 O3 NPs as optimal reagents to track bioprinted constructs. Spectral PCCT imaging of scaffolds in vitro and subcutaneous implants in mice enabled noninvasive material discrimination and contrast agent quantification. Together, these results establish a novel theranostic platform with high precision, tunability, throughput, and reproducibility and open new prospects for a broad range of applications in the field of precision and personalized regenerative medicine.
Collapse
Affiliation(s)
- Carmen J. Gil
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Connor J. Evans
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, Materials Science and Engineering Graduate Program, University of Notre Dame, Notre Dame, IN, United States
| | - Lan Li
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, Materials Science and Engineering Graduate Program, University of Notre Dame, Notre Dame, IN, United States
| | - Alex J. Allphin
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University, Durham, NC, United States
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Merlyn Vargas
- Department of Bioengineering, George Mason University, Manassas, VA, United States
| | - Boeun Hwang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Jing Wang
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Victor Putaturo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Gabriella Kabboul
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Anjum S. Alam
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Roshni K. Nandwani
- Emory University College of Arts and Sciences, Atlanta, GA, United States
| | - Yuxiao Wu
- Emory University College of Arts and Sciences, Atlanta, GA, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Asif Sushmit
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Travis Fulton
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
| | - Ming Shen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jarred M. Kaiser
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
| | - Liqun Ning
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, United States
| | - Remi Veneziano
- Department of Bioengineering, George Mason University, Manassas, VA, United States
| | - Nick Willet
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
| | - Ge Wang
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Hicham Drissi
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Eric R. Weeks
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Holly D. Bauser-Heaton
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Sibley Heart Center at Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Cristian T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University, Durham, NC, United States
| | - Ryan K. Roeder
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, Materials Science and Engineering Graduate Program, University of Notre Dame, Notre Dame, IN, United States
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children’s Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
8
|
Rossin D, Vanni R, Lo Iacono M, Cristallini C, Giachino C, Rastaldo R. APJ as Promising Therapeutic Target of Peptide Analogues in Myocardial Infarction- and Hypertension-Induced Heart Failure. Pharmaceutics 2023; 15:pharmaceutics15051408. [PMID: 37242650 DOI: 10.3390/pharmaceutics15051408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The widely expressed G protein-coupled apelin receptor (APJ) is activated by two bioactive endogenous peptides, apelin and ELABELA (ELA). The apelin/ELA-APJ-related pathway has been found involved in the regulation of many physiological and pathological cardiovascular processes. Increasing studies are deepening the role of the APJ pathway in limiting hypertension and myocardial ischaemia, thus reducing cardiac fibrosis and adverse tissue remodelling, outlining APJ regulation as a potential therapeutic target for heart failure prevention. However, the low plasma half-life of native apelin and ELABELA isoforms lowered their potential for pharmacological applications. In recent years, many research groups focused their attention on studying how APJ ligand modifications could affect receptor structure and dynamics as well as its downstream signalling. This review summarises the novel insights regarding the role of APJ-related pathways in myocardial infarction and hypertension. Furthermore, recent progress in designing synthetic compounds or analogues of APJ ligands able to fully activate the apelinergic pathway is reported. Determining how to exogenously regulate the APJ activation could help to outline a promising therapy for cardiac diseases.
Collapse
Affiliation(s)
- Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Caterina Cristallini
- Institute for Chemical and Physical Processes, IPCF ss Pisa, CNR, 56126 Pisa, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
9
|
Rajan R, Pal K, Jayadev D, Jayan JS, U A, Appukuttan S, de Souza FG, Joseph K, Kumar SS. Polymeric Nanoparticles in Hybrid Catalytic Processing and Drug Delivery System. Top Catal 2022. [DOI: 10.1007/s11244-022-01697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Abot A, Fried S, Cani PD, Knauf C. Reactive Oxygen Species/Reactive Nitrogen Species as Messengers in the Gut: Impact on Physiology and Metabolic Disorders. Antioxid Redox Signal 2022; 37:394-415. [PMID: 34714099 DOI: 10.1089/ars.2021.0100] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: The role of reactive oxygen/nitrogen species as "friend" or "foe" messengers in the whole body is well characterized. Depending on the concentration in the tissue considered, these molecular actors exert beneficial or deleterious impacts leading to a pathological state, as observed in metabolic disorders such as type 2 diabetes and obesity. Recent Advances: Among the tissues impacted by oxidation and inflammation in this pathological state, the intestine is a site of dysfunction that can establish diabetic symptoms, such as alterations in the intestinal barrier, gut motility, microbiota composition, and gut/brain axis communication. In the intestine, reactive oxygen/nitrogen species (from the host and/or microbiota) are key factors that modulate the transition from physiological to pathological signaling. Critical Issues: Controlling the levels of intestinal reactive oxygen/nitrogen species is a complicated balance between positive and negative impacts that is in constant equilibrium. Here, we describe the synthesis and degradation of intestinal reactive oxygen/nitrogen species and their interactions with the host. The development of novel redox-based therapeutics that alter these processes could restore intestinal health in patients with metabolic disorders. Future Directions: Deciphering the mode of action of reactive oxygen/nitrogen species in the gut of obese/diabetic patients could result in a future therapeutic strategy that combines nutritional and pharmacological approaches. Consequently, preventive and curative treatments must take into account one of the first sites of oxidative and inflammatory dysfunctions in the body, that is, the intestine. Antioxid. Redox Signal. 37, 394-415.
Collapse
Affiliation(s)
- Anne Abot
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Steven Fried
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Patrice D Cani
- International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France.,UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Claude Knauf
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| |
Collapse
|
11
|
Gil CJ, Li L, Hwang B, Cadena M, Theus AS, Finamore TA, Bauser-Heaton H, Mahmoudi M, Roeder RK, Serpooshan V. Tissue engineered drug delivery vehicles: Methods to monitor and regulate the release behavior. J Control Release 2022; 349:143-155. [PMID: 35508223 DOI: 10.1016/j.jconrel.2022.04.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022]
Abstract
Tissue engineering is a rapidly evolving, multidisciplinary field that aims at generating or regenerating 3D functional tissues for in vitro disease modeling and drug screening applications or for in vivo therapies. A variety of advanced biological and engineering methods are increasingly being used to further enhance and customize the functionality of tissue engineered scaffolds. To this end, tunable drug delivery and release mechanisms are incorporated into tissue engineering modalities to promote different therapeutic processes, thus, addressing challenges faced in the clinical applications. In this review, we elaborate the mechanisms and recent developments in different drug delivery vehicles, including the quantum dots, nano/micro particles, and molecular agents. Different loading strategies to incorporate the therapeutic reagents into the scaffolding structures are explored. Further, we discuss the main mechanisms to tune and monitor/quantify the release kinetics of embedded drugs from engineered scaffolds. We also survey the current trend of drug delivery using stimuli driven biopolymer scaffolds to enable precise spatiotemporal control of the release behavior. Recent advancements, challenges facing current scaffold-based drug delivery approaches, and areas of future research are discussed.
Collapse
Affiliation(s)
- Carmen J Gil
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Lan Li
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Melissa Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Andrea S Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Tyler A Finamore
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Sibley Heart Center at Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48864, USA
| | - Ryan K Roeder
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
12
|
Liu Q, Zhou S, Wang X, Gu C, Guo Q, Li X, Zhang C, Zhang N, Zhang L, Huang F. Apelin alleviated neuroinflammation and promoted endogenous neural stem cell proliferation and differentiation after spinal cord injury in rats. J Neuroinflammation 2022; 19:160. [PMID: 35725619 PMCID: PMC9208139 DOI: 10.1186/s12974-022-02518-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Background Spinal cord injury (SCI) causes devastating neurological damage, including secondary injuries dominated by neuroinflammation. The role of Apelin, an endogenous ligand that binds the G protein-coupled receptor angiotensin-like receptor 1, in SCI remains unclear. Thus, our aim was to investigate the effects of Apelin in inflammatory responses and activation of endogenous neural stem cells (NSCs) after SCI. Methods Apelin expression was detected in normal and injured rats, and roles of Apelin in primary NSCs were examined. In addition, we used induced pluripotent stem cells (iPSCs) as a carrier to prolong the effective duration of Apelin and evaluate its effects in a rat model of SCI. Results Co-immunofluorescence staining suggested that Apelin was expressed in both astrocytes, neurons and microglia. Following SCI, Apelin expression decreased from 1 to 14 d and re-upregulated at 28 d. In vitro, Apelin promoted NSCs proliferation and differentiation into neurons. In vivo, lentiviral-transfected iPSCs were used as a carrier to prolong the effective duration of Apelin. Transplantation of transfected iPSCs in situ immediately after SCI reduced polarization of M1 microglia and A1 astrocytes, facilitated recovery of motor function, and promoted the proliferation and differentiation of endogenous NSCs in rats. Conclusion Apelin alleviated neuroinflammation and promoted the proliferation and differentiation of endogenous NSCs after SCI, suggesting that it might be a promising target for treatment of SCI.
Collapse
Affiliation(s)
- Qing Liu
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Shuai Zhou
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Xiao Wang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Chengxu Gu
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Qixuan Guo
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Xikai Li
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Chunlei Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Naili Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Luping Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
| | - Fei Huang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China. .,School of Health and Life Sciences, University of Health and Rehabilitation Sciences, 17 Shandong Road, Qingdao, 266071, China.
| |
Collapse
|
13
|
Gonciar D, Mocan T, Agoston-Coldea L. Nanoparticles Targeting the Molecular Pathways of Heart Remodeling and Regeneration. Pharmaceutics 2022; 14:pharmaceutics14040711. [PMID: 35456545 PMCID: PMC9028351 DOI: 10.3390/pharmaceutics14040711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022] Open
Abstract
Cardiovascular diseases are the main cause of death worldwide, a trend that will continue to grow over the next decade. The heart consists of a complex cellular network based mainly on cardiomyocytes, but also on endothelial cells, smooth muscle cells, fibroblasts, and pericytes, which closely communicate through paracrine factors and direct contact. These interactions serve as valuable targets in understanding the phenomenon of heart remodeling and regeneration. The advances in nanomedicine in the controlled delivery of active pharmacological agents are remarkable and may provide substantial contribution to the treatment of heart diseases. This review aims to summarize the main mechanisms involved in cardiac remodeling and regeneration and how they have been applied in nanomedicine.
Collapse
Affiliation(s)
- Diana Gonciar
- 2nd Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca 400000, Romania; (D.G.); (L.A.-C.)
| | - Teodora Mocan
- Physiology Department, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca 400000, Romania
- Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
- Correspondence:
| | - Lucia Agoston-Coldea
- 2nd Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca 400000, Romania; (D.G.); (L.A.-C.)
| |
Collapse
|
14
|
Marson D, Aulic S, Fermeglia A, Laurini E, Pricl S. Nanovesicles for the delivery of cardiovascular drugs. APPLICATIONS OF NANOVESICULAR DRUG DELIVERY 2022:341-369. [DOI: 10.1016/b978-0-323-91865-7.00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Doyen C, Larquet E, Coureux PD, Frances O, Herman F, Sablé S, Burnouf JP, Sizun C, Lescop E. Nuclear Magnetic Resonance Spectroscopy: A Multifaceted Toolbox to Probe Structure, Dynamics, Interactions, and Real-Time In Situ Release Kinetics in Peptide-Liposome Formulations. Mol Pharm 2021; 18:2521-2539. [PMID: 34151567 DOI: 10.1021/acs.molpharmaceut.1c00037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Liposomal formulations represent attractive biocompatible and tunable drug delivery systems for peptide drugs. Among the tools to analyze their physicochemical properties, nuclear magnetic resonance (NMR) spectroscopy, despite being an obligatory technique to characterize molecular structure and dynamics in chemistry as well as in structural biology, yet appears to be rather sparsely used to study drug-liposome formulations. In this work, we exploited several facets of liquid-state NMR spectroscopy to characterize liposomal delivery systems for the apelin-derived K14P peptide and K14P modified by Nα-fatty acylation. Various liposome compositions and preparation modes were analyzed. Using NMR, in combination with cryo-electron microscopy and dynamic light scattering, we determined structural, dynamic, and self-association properties of these peptides in solution and probed their interactions with liposomes. Using 31P and 1H NMR, we characterized membrane fluidity and thermotropic phase transitions in empty and loaded liposomes. Based on diffusion and 1H NMR experiments, we localized and quantified peptides with respect to the interior/exterior of liposomes and changes over time and upon thermal treatments. Finally, we assessed the release kinetics of several solutes and compared various formulations. Taken together, this work shows that NMR has the potential to assist the design of peptide/liposome systems and more generally drug delivery systems.
Collapse
Affiliation(s)
- Camille Doyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France.,Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France
| | - Eric Larquet
- Laboratoire de Physique de la Matière Condensée (LPMC), Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Oriane Frances
- Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France
| | | | - Serge Sablé
- Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France
| | | | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| |
Collapse
|
16
|
Castan-Laurell I, Dray C, Valet P. The therapeutic potentials of apelin in obesity-associated diseases. Mol Cell Endocrinol 2021; 529:111278. [PMID: 33838166 DOI: 10.1016/j.mce.2021.111278] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 01/23/2023]
Abstract
Apelin, a peptide with several active isoforms ranging from 36 to 12 amino acids and its receptor APJ, a G-protein-coupled receptor, are widely distributed. However, apelin has emerged as an adipokine more than fifteen years ago, integrating the field of inter-organs interactions. The apelin/APJ system plays important roles in several physiological functions both in rodent and humans such as fluid homeostasis, cardiovascular physiology, angiogenesis, energy metabolism. Thus the apelin/APJ system has generated great interest as a potential therapeutic target in different pathologies. The present review will consider the effects of apelin in metabolic diseases such as obesity and diabetes with a focus on diabetic cardiomyopathy among the complications associated with diabetes and APJ agonists or antagonists of interest in these diseases.
Collapse
Affiliation(s)
- I Castan-Laurell
- Restore UMR1301 Inserm, 5070 CNRS, Université Paul Sabatier, France.
| | - C Dray
- Restore UMR1301 Inserm, 5070 CNRS, Université Paul Sabatier, France
| | - P Valet
- Restore UMR1301 Inserm, 5070 CNRS, Université Paul Sabatier, France
| |
Collapse
|
17
|
Guerrero-Beltrán CE, Mijares-Rojas IA, Salgado-Garza G, Garay-Gutiérrez NF, Carrión-Chavarría B. Peptidic vaccines: The new cure for heart diseases? Pharmacol Res 2020; 164:105372. [PMID: 33316382 DOI: 10.1016/j.phrs.2020.105372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/12/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease continues to be the most common cause of death worldwide. The global burden is so high that numerous organizations are providing counseling recommendations and annual revisions of current pharmacological and non-pharmacological treatments as well as risk prediction for disease prevention and further progression. Although primary preventive interventions targeting risk factors such as obesity, hypertension, smoking, and sedentarism have led to a global decline in hospitalization rates, the aging population has overwhelmed these efforts on a global scale. This review focuses on peptidic vaccines, with the known and not well-known autoantigens in atheroma formation or acquired cardiac diseases, as novel potential immunotherapy approaches to counteract harmful heart disease continuance. We summarize how cancer immunomodulatory strategies started novel approaches to modulate the innate and adaptive immune responses, and how they can be targeted for therapeutic purposes in the cardiovascular system. Brief descriptions focused on the processes that start as either immunologic or non-immunologic, and the ultimate loss of cardiac muscle cell contractility as the outcome, are discussed. We conclude debating how novel strategies with nanoparticles and nanovaccines open a promising therapeutic option to reduce or prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Carlos Enrique Guerrero-Beltrán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico; Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, San Pedro Garza García, N.L., Mexico.
| | - Iván Alfredo Mijares-Rojas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| | - Gustavo Salgado-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| | - Noé Francisco Garay-Gutiérrez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| | - Belinda Carrión-Chavarría
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| |
Collapse
|
18
|
Light-induced release of the cardioprotective peptide angiotensin-(1–9) from thermosensitive liposomes with gold nanoclusters. J Control Release 2020; 328:859-872. [DOI: 10.1016/j.jconrel.2020.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/11/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022]
|
19
|
Pala R, Anju VT, Dyavaiah M, Busi S, Nauli SM. Nanoparticle-Mediated Drug Delivery for the Treatment of Cardiovascular Diseases. Int J Nanomedicine 2020; 15:3741-3769. [PMID: 32547026 PMCID: PMC7266400 DOI: 10.2147/ijn.s250872] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the foremost causes of high morbidity and mortality globally. Preventive, diagnostic, and treatment measures available for CVDs are not very useful, which demands promising alternative methods. Nanoscience and nanotechnology open a new window in the area of CVDs with an opportunity to achieve effective treatment, better prognosis, and less adverse effects on non-target tissues. The application of nanoparticles and nanocarriers in the area of cardiology has gathered much attention due to the properties such as passive and active targeting to the cardiac tissues, improved target specificity, and sensitivity. It has reported that more than 50% of CVDs can be treated effectively through the use of nanotechnology. The main goal of this review is to explore the recent advancements in nanoparticle-based cardiovascular drug carriers. This review also summarizes the difficulties associated with the conventional treatment modalities in comparison to the nanomedicine for CVDs.
Collapse
Affiliation(s)
- Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA92618, USA
- Department of Medicine, University of California Irvine, Irvine, CA92868, USA
| | - V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA92618, USA
- Department of Medicine, University of California Irvine, Irvine, CA92868, USA
| |
Collapse
|
20
|
Ni T, Lin N, Huang X, Lu W, Sun Z, Zhang J, Lin H, Chi J, Guo H. Icariin Ameliorates Diabetic Cardiomyopathy Through Apelin/Sirt3 Signalling to Improve Mitochondrial Dysfunction. Front Pharmacol 2020; 11:256. [PMID: 32265695 PMCID: PMC7106769 DOI: 10.3389/fphar.2020.00256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Myocardial contractile dysfunction in diabetic cardiomyocytes is a significant promoter of heart failure. Herein, we investigated the effect of icariin, a flavonoid monomer isolated from Epimedium, on diabetic cardiomyopathy (DCM) and explored the mechanisms underlying its unique pharmacological cardioprotective functions. High glucose (HG) conditions were simulated in vitro using cardiomyocytes isolated from neonatal C57 mice, while DCM was stimulated in vivo in db/db mice. Mice and cardiomyocytes were treated with icariin, with or without overexpression or silencing of Apelin and Sirt3 via transfection with adenoviral vectors (Ad-RNA) and specific small hairpin RNAs (Ad-sh-RNA), respectively. Icariin markedly improved mitochondrial function both in vivo and in vitro, as evidenced by an increased level of mitochondrial-related proteins via western blot analysis (PGC-1α, Mfn2, and Cyt-b) and an increased mitochondrial membrane potential, as observed via JC-1 staining. Further, icariin treatment decreased cardiac fibrogenesis (Masson staining), and inhibited apoptosis (TUNEL staining). Together, these changes improved cardiac function, according to multiple transthoracic echocardiography parameters, including LVEF, LVSF, LVESD, and LVEDD. Moreover, icariin significantly activated Apelin and Sirt3, which were inhibited by HG and DCM. Importantly, when Ad-sh-Apelin and Ad-sh-Sirt3 were transfected in cardiomyocytes or injected into the heart of db/db mice, the cardioprotective effects of icariin were abolished and mitochondrial homeostasis was disrupted. Further, it was postulated that since Ad-Apelin induced different results following increased Sirt3 expression, icariin may have attenuated DCM development by preventing mitochondrial dysfunction through the Apelin/Sirt3 pathway. Hence, protection against mitochondrial dysfunction using icariin may prove to be a promising therapeutic strategy against DCM in diabetes.
Collapse
Affiliation(s)
- Tingjuan Ni
- Department of Cardiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Lin
- Department of Cardiology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingxiao Huang
- Department of Cardiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenqiang Lu
- Department of Cardiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenzhu Sun
- Department of Cardiology, The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jie Zhang
- Department of Cardiology, The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Hui Lin
- Department of Cardiology, The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing people's Hospital (Shaoxing hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing people's Hospital (Shaoxing hospital, Zhejiang University School of Medicine), Shaoxing, China
| |
Collapse
|
21
|
Marsault E, Llorens-Cortes C, Iturrioz X, Chun HJ, Lesur O, Oudit GY, Auger-Messier M. The apelinergic system: a perspective on challenges and opportunities in cardiovascular and metabolic disorders. Ann N Y Acad Sci 2019; 1455:12-33. [PMID: 31236974 PMCID: PMC6834863 DOI: 10.1111/nyas.14123] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
The apelinergic pathway has been generating increasing interest in the past few years for its potential as a therapeutic target in several conditions associated with the cardiovascular and metabolic systems. Indeed, preclinical and, more recently, clinical evidence both point to this G protein-coupled receptor as a target of interest in the treatment of not only cardiovascular disorders such as heart failure, pulmonary arterial hypertension, atherosclerosis, or septic shock, but also of additional conditions such as water retention/hyponatremic disorders, type 2 diabetes, and preeclampsia. While it is a peculiar system with its two classes of endogenous ligand, the apelins and Elabela, its intricacies are a matter of continuing investigation to finely pinpoint its potential and how it enables crosstalk between the vasculature and organ systems of interest. In this perspective article, we first review the current knowledge on the role of the apelinergic pathway in the above systems, as well as the associated therapeutic indications and existing pharmacological tools. We also offer a perspective on the challenges and potential ahead to advance the apelinergic system as a target for therapeutic intervention in several key areas.
Collapse
Affiliation(s)
- Eric Marsault
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Catherine Llorens-Cortes
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Xavier Iturrioz
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Hyung J. Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Departments of Internal Medicine and Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Olivier Lesur
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Intensive Care Units, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gavin Y. Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Mannix Auger-Messier
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Cardiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
22
|
Tan S, Tao Z, Loo S, Su L, Chen X, Ye L. Non-viral vector based gene transfection with human induced pluripotent stem cells derived cardiomyocytes. Sci Rep 2019; 9:14404. [PMID: 31591436 PMCID: PMC6779884 DOI: 10.1038/s41598-019-50980-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Non-viral transfection of mammalian cardiomyocytes (CMs) is challenging. The current study aims to characterize and determine the non-viral vector based gene transfection efficiency with human induced pluripotent stem cells (hiPSCs) derived cardiomyocytes (hiPSC-CMs). hiPSC-CMs differentiated from PCBC hiPSCs were used as a cell model to be transfected with plasmids carrying green fluorescence protein (pGFP) using polyethylenimine (PEI), including Transporter 5 Transfection Reagent (TR5) and PEI25, and liposome, including lipofectamine-2000 (Lipo2K), lipofectamine-3000 (Lipo3K), and Lipofectamine STEM (LipoSTEM). The gene transfection efficiency and cell viability were quantified by flow cytometry. We found that the highest gene transfection efficiency in hiPSC-CMs on day 14 of contraction can be achieved by LipoSTEM which was about 32.5 ± 6.7%. However, it also cuased poor cell viability (60.1 ± 4.5%). Furthermore, a prolonged culture of (transfection on day 23 of contraction) hiPSC-CMs not only improved gene transfection (54.5 ± 8.9%), but also enhanced cell viability (74 ± 4.9%) by LipoSTEM. Based on this optimized gene transfection condition, the highest gene transfection efficiency was 55.6 ± 7.8% or 34.1 ± 4%, respectively, for P1C1 or DP3 hiPSC line that was derived from healthy donor (P1C1) or patient with diabetes (DP3). The cell viability was 80.8 ± 5.2% or 92.9 ± 2.24%, respectively, for P1C1 or DP3. LipoSTEM is a better non-viral vector for gene transfection of hiPSC-CMs. The highest pGFP gene transfection efficiency can reach >50% for normal hiPSC-CMs or >30% for diabetic hiPSC-CMs.
Collapse
Affiliation(s)
- Shihua Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Zhonghao Tao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Szejie Loo
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Read C, Nyimanu D, Williams TL, Huggins DJ, Sulentic P, Macrae RGC, Yang P, Glen RC, Maguire JJ, Davenport AP. International Union of Basic and Clinical Pharmacology. CVII. Structure and Pharmacology of the Apelin Receptor with a Recommendation that Elabela/Toddler Is a Second Endogenous Peptide Ligand. Pharmacol Rev 2019; 71:467-502. [PMID: 31492821 PMCID: PMC6731456 DOI: 10.1124/pr.119.017533] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The predicted protein encoded by the APJ gene discovered in 1993 was originally classified as a class A G protein-coupled orphan receptor but was subsequently paired with a novel peptide ligand, apelin-36 in 1998. Substantial research identified a family of shorter peptides activating the apelin receptor, including apelin-17, apelin-13, and [Pyr1]apelin-13, with the latter peptide predominating in human plasma and cardiovascular system. A range of pharmacological tools have been developed, including radiolabeled ligands, analogs with improved plasma stability, peptides, and small molecules including biased agonists and antagonists, leading to the recommendation that the APJ gene be renamed APLNR and encode the apelin receptor protein. Recently, a second endogenous ligand has been identified and called Elabela/Toddler, a 54-amino acid peptide originally identified in the genomes of fish and humans but misclassified as noncoding. This precursor is also able to be cleaved to shorter sequences (32, 21, and 11 amino acids), and all are able to activate the apelin receptor and are blocked by apelin receptor antagonists. This review summarizes the pharmacology of these ligands and the apelin receptor, highlights the emerging physiologic and pathophysiological roles in a number of diseases, and recommends that Elabela/Toddler is a second endogenous peptide ligand of the apelin receptor protein.
Collapse
Affiliation(s)
- Cai Read
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - David J Huggins
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Petra Sulentic
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robyn G C Macrae
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Peiran Yang
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robert C Glen
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| |
Collapse
|
24
|
Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure. Nat Commun 2019; 10:2760. [PMID: 31235787 PMCID: PMC6591478 DOI: 10.1038/s41467-019-10591-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
Heart failure is a leading cause of mortality, yet our understanding of the genetic interactions underlying this disease remains incomplete. Here, we harvest 1352 healthy and failing human hearts directly from transplant center operating rooms, and obtain genome-wide genotyping and gene expression measurements for a subset of 313. We build failing and non-failing cardiac regulatory gene networks, revealing important regulators and cardiac expression quantitative trait loci (eQTLs). PPP1R3A emerges as a regulator whose network connectivity changes significantly between health and disease. RNA sequencing after PPP1R3A knockdown validates network-based predictions, and highlights metabolic pathway regulation associated with increased cardiomyocyte size and perturbed respiratory metabolism. Mice lacking PPP1R3A are protected against pressure-overload heart failure. We present a global gene interaction map of the human heart failure transition, identify previously unreported cardiac eQTLs, and demonstrate the discovery potential of disease-specific networks through the description of PPP1R3A as a central regulator in heart failure. The genetic and pathogenetic basis of heart failure is incompletely understood. Here, the authors present a high-fidelity tissue collection from rapidly preserved failing and non-failing control hearts which are used for eQTL mapping and network analysis, resulting in the prioritization of PPP1R3A as a heart failure gene.
Collapse
|
25
|
Tang M, Huang Z, Luo X, Liu M, Wang L, Qi Z, Huang S, Zhong J, Chen JX, Li L, Wu D, Chen L. Ferritinophagy activation and sideroflexin1-dependent mitochondria iron overload is involved in apelin-13-induced cardiomyocytes hypertrophy. Free Radic Biol Med 2019; 134:445-457. [PMID: 30731113 DOI: 10.1016/j.freeradbiomed.2019.01.052] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/18/2023]
Abstract
Excess iron accumulation and cardiac oxidative stress have been shown as important mediators of cardiac hypertrophy, whereas it remains largely elusive about the occurrence of mitochondrial iron overload and its significance during cardiac hypertrophy. In the present study, we aim to investigate the role of NCOA4-mediated ferritinophagy and SFXN1-dependent mitochondria iron overload in apelin-13-induced cardiomyocytes hypertrophy. Apelin-13 significantly promotes ferric citrate (FAC)-induced total cellular and mitochondria ion production, as well as mitochondria ROS contents. Mechanistically, apelin-13 effectively induces the expression of SFXN1, a mitochondria iron transporting protein and NCOA4, a cargo receptor of ferritinophagy in dose and time-dependent manner. Conversely, blockade of APJ by F13A abolishes these stimulatory effects. In addition, apelin-13-triggered mitochondria iron overload is reversed by the genetic inhibition of SFXN1 and NCOA4. NCOA4 deficiency via its silencing also interferes with the enhanced expression of SFXN1 evoked by apelin-13. In apelin-13-treated H9c2 cells, the promotion in cell diameter, volume as well as protein contents are obviously suppressed by the knockdown of NCOA4 and SFXN1 with their corresponding siRNAs. Remarkably, the human and murine hypertrophic hearts models, as well as apelin-13-injected mice models, present evident cardiac mitochondrial iron deposition and raised expressions of NCOA4 and SFXN1. Taken together, these results provide experimental evidences that NCOA4-mediated ferritinophagy might be defined as an essential mechanism leading to apelin-13-cardiomyocytes hypertrophy in SFXN1-dependent mitochondria iron overload manners.
Collapse
Affiliation(s)
- Mingzhu Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Zhen Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Xuling Luo
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Meiqing Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Lingzhi Wang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Zhihao Qi
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Shifang Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China.
| | - Di Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China.
| |
Collapse
|
26
|
Castan-Laurell I, Masri B, Valet P. The apelin/APJ system as a therapeutic target in metabolic diseases. Expert Opin Ther Targets 2019; 23:215-225. [PMID: 30570369 DOI: 10.1080/14728222.2019.1561871] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Apelin, a bioactive peptide, is the endogenous ligand of APJ, a G protein-coupled receptor which is widely expressed in peripheral tissues and in the central nervous system. The apelin/APJ system is involved in the regulation of various physiological functions and is a therapeutic target in different pathologies; the development of APJ agonists and antagonists has thus increased. Area covered: This review focuses on the in vitro and in vivo metabolic effects of apelin in physiological conditions and in the context of metabolic diseases. Expert opinion: In experimental models, novel APJ agonists are efficient in vivo, to treat metabolic diseases and associated complications. However, more clinical trials are necessary to determine whether molecules that target APJ could become an alternative therapeutic strategy in the treatment of metabolic diseases and associated complications.
Collapse
Affiliation(s)
- Isabelle Castan-Laurell
- a Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM U1048 , Université de Toulouse , Toulouse , France
| | - Bernard Masri
- a Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM U1048 , Université de Toulouse , Toulouse , France
| | - Philippe Valet
- a Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM U1048 , Université de Toulouse , Toulouse , France
| |
Collapse
|
27
|
Parikh VN, Liu J, Shang C, Woods C, Chang AC, Zhao M, Charo DN, Grunwald Z, Huang Y, Seo K, Tsao PS, Bernstein D, Ruiz-Lozano P, Quertermous T, Ashley EA. Apelin and APJ orchestrate complex tissue-specific control of cardiomyocyte hypertrophy and contractility in the hypertrophy-heart failure transition. Am J Physiol Heart Circ Physiol 2018; 315:H348-H356. [PMID: 29775410 PMCID: PMC6139625 DOI: 10.1152/ajpheart.00693.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
Abstract
The G protein-coupled receptor APJ is a promising therapeutic target for heart failure. Constitutive deletion of APJ in the mouse is protective against the hypertrophy-heart failure transition via elimination of ligand-independent, β-arrestin-dependent stretch transduction. However, the cellular origin of this stretch transduction and the details of its interaction with apelin signaling remain unknown. We generated mice with conditional elimination of APJ in the endothelium (APJendo-/-) and myocardium (APJmyo-/-). No baseline difference was observed in left ventricular function in APJendo-/-, APJmyo-/-, or control (APJendo+/+, APJmyo+/+) mice. After exposure to transaortic constriction, APJendo-/- mice displayed decreased left ventricular systolic function and increased wall thickness, whereas APJmyo-/- mice were protected. At the cellular level, carbon fiber stretch of freshly isolated single cardiomyocytes demonstrated decreased contractile responses to stretch in APJ-/- cardiomyocytes compared with APJ+/+ cardiomyocytes. Ca2+ transients did not change with stretch in either APJ-/- or APJ+/+ cardiomyocytes. Application of apelin to APJ+/+ cardiomyocytes resulted in decreased Ca2+ transients. Furthermore, hearts of mice treated with apelin exhibited decreased phosphorylation in cardiac troponin I NH2-terminal residues (Ser22 and Ser23) consistent with increased Ca2+ sensitivity. These data establish that APJ stretch transduction is mediated specifically by myocardial APJ, that APJ is necessary for stretch-induced increases in contractility, and that apelin opposes APJ's stretch-mediated hypertrophy signaling by lowering Ca2+ transients while maintaining contractility through myofilament Ca2+ sensitization. These findings underscore apelin's unique potential as a therapeutic agent that can simultaneously support cardiac function and protect against the hypertrophy-heart failure transition. NEW & NOTEWORTHY These data address fundamental gaps in our understanding of apelin-APJ signaling in heart failure by localizing APJ's ligand-independent stretch sensing to the myocardium, identifying a novel mechanism of apelin-APJ inotropy via myofilament Ca2+ sensitization, and identifying potential mitigating effects of apelin in APJ stretch-induced hypertrophic signaling.
Collapse
Affiliation(s)
- Victoria N Parikh
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Jing Liu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Ching Shang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | | | - Alex C Chang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Mingming Zhao
- Department of Pediatric Cardiology, Lucile Packard Children's Hospital of Stanford University , Palo Alto, California
| | - David N Charo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Zachary Grunwald
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Yong Huang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Kinya Seo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Daniel Bernstein
- Department of Pediatric Cardiology, Lucile Packard Children's Hospital of Stanford University , Palo Alto, California
| | | | - Thomas Quertermous
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Euan A Ashley
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
- Department of Genetics, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
28
|
Zhang ZZ, Wang W, Jin HY, Chen X, Cheng YW, Xu YL, Song B, Penninger JM, Oudit GY, Zhong JC. Apelin Is a Negative Regulator of Angiotensin II-Mediated Adverse Myocardial Remodeling and Dysfunction. Hypertension 2017; 70:1165-1175. [PMID: 28974565 DOI: 10.1161/hypertensionaha.117.10156] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/22/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
The apelin pathway has emerged as a critical regulator of cardiovascular homeostasis and disease. However, the exact role of pyr1-apelin-13 in angiotensin (Ang) II-mediated heart disease remains unclear. We used apelin-deficient (APLN-/y) and apolipoprotein E knockout mice to evaluate the regulatory roles of pyr1-apelin-13. The 1-year aged APLN-/y mice developed myocardial hypertrophy and dysfunction with reduced angiotensin-converting enzyme 2 levels. Ang II infusion (1.5 mg kg-1 d-1) for 4 weeks potentiated oxidative stress, pathological hypertrophy, and myocardial fibrosis in young APLN-/y hearts resulting in exacerbation of cardiac dysfunction. Importantly, daily administration of 100 μg/kg pyr1-apelin-13 resulted in upregulated angiotensin-converting enzyme 2 levels, decreased superoxide production and expression of hypertrophy- and fibrosis-related genes leading to attenuated myocardial hypertrophy, fibrosis, and dysfunction in the Ang II-infused apolipoprotein E knockout mice. In addition, pyr1-apelin-13 treatment largely attenuated Ang II-induced apoptosis and ultrastructural injury in the apolipoprotein E knockout mice by activating Akt and endothelial nitric oxide synthase phosphorylation signaling. In cultured neonatal rat cardiomyocytes and cardiofibroblasts, exposure of Ang II decreased angiotensin-converting enzyme 2 protein and increased superoxide generation, cellular proliferation, and migration, which were rescued by pyr1-apelin-13, and Akt and endothelial nitric oxide synthase agonist stimulation. The increased superoxide generation and apoptosis in cultured cardiofibroblasts in response to Ang II were strikingly prevented by pyr1-apelin-13 which was partially reversed by cotreatment with the Akt inhibitor MK2206. In conclusion, pyr1-apelin-13 peptide pathway is a negative regulator of aging-mediated and Ang II-mediated adverse myocardial remodeling and dysfunction and represents a potential candidate to prevent and treat heart disease.
Collapse
Affiliation(s)
- Zhen-Zhou Zhang
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Wang Wang
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Hai-Yan Jin
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Xueyi Chen
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Yu-Wen Cheng
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Ying-Le Xu
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Bei Song
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Josef M Penninger
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.)
| | - Gavin Y Oudit
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.).
| | - Jiu-Chang Zhong
- From the State Key Laboratory of Medical Genomics and Shanghai Institute of Hypertension (Z.-Z.Z., Y.-W.C., Y.-L.X., B.S., J.-C.Z.) and Department of Mental Health (H.-Y.J.), Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (Z.-Z.Z., J.-C.Z.); Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute (W.W., X.C., G.Y.O.) and Department of Physiology (W.W., X.C., G.Y.O.), University of Alberta, Edmonton, Canada; and Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (J.M.P.).
| |
Collapse
|
29
|
Wu D, Xie F, Xiao L, Feng F, Huang S, He L, Liu M, Zhou Q, Li L, Chen L. Caveolin-1-Autophagy Pathway Mediated Cardiomyocyte Hypertrophy Induced by Apelin-13. DNA Cell Biol 2017; 36:611-618. [DOI: 10.1089/dna.2016.3574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Di Wu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Feng Xie
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Ling Xiao
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Fen Feng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Shifang Huang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lu He
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Meiqing Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Qun Zhou
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|
30
|
Apelin Compared With Dobutamine Exerts Cardioprotection and Extends Survival in a Rat Model of Endotoxin-Induced Myocardial Dysfunction. Crit Care Med 2017; 45:e391-e398. [PMID: 27571457 DOI: 10.1097/ccm.0000000000002097] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Dobutamine is the currently recommended β-adrenergic inotropic drug for supporting sepsis-induced myocardial dysfunction when cardiac output index remains low after preload correction. Better and safer therapies are nonetheless mandatory because responsiveness to dobutamine is limited with numerous side effects. Apelin-13 is a powerful inotropic candidate that could be considered as an alternative noncatecholaminergic support in the setting of inflammatory cardiovascular dysfunction. DESIGN Interventional controlled experimental animal study. SETTING Tertiary care university-based research institute. SUBJECTS One hundred ninety-eight adult male rats. INTERVENTIONS Using a rat model of "systemic inflammation-induced cardiac dysfunction" induced by intraperitoneal lipopolysaccharide injection (10 mg/kg), hemodynamic efficacy, cardioprotection, and biomechanics were assessed under IV osmotic pump infusions of apelin-13 (0.25 μg/kg/min) or dobutamine (7.5 μg/kg/min). MEASUREMENTS AND MAIN RESULTS In this model and in both in vivo and ex vivo studies, apelin-13 compared with dobutamine provoked distinctive effects on cardiac function: 1) optimized cardiac energy-dependent workload with improved cardiac index and lower vascular resistance, 2) upgraded hearts' apelinergic responsiveness, and 3) consecutive downstream advantages, including increased urine output, enhanced plasma volume, reduced weight loss, and substantially improved overall outcomes. In vitro studies confirmed that these apelin-13-driven processes encompassed a significant and rapid reduction in systemic cytokine release with dampening of myocardial inflammation, injury, and apoptosis and resolution of associated molecular pathways. CONCLUSIONS In this inflammatory cardiovascular dysfunction, apelin-13 infusion delivers distinct and optimized hemodynamic support (including positive fluid balance), along with cardioprotective effects, modulation of circulatory inflammation and extended survival.
Collapse
|
31
|
Bazban-Shotorbani S, Hasani-Sadrabadi MM, Karkhaneh A, Serpooshan V, Jacob KI, Moshaverinia A, Mahmoudi M. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J Control Release 2017; 253:46-63. [DOI: 10.1016/j.jconrel.2017.02.021] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/23/2017] [Accepted: 02/19/2017] [Indexed: 12/17/2022]
|
32
|
Sato T, Sato C, Kadowaki A, Watanabe H, Ho L, Ishida J, Yamaguchi T, Kimura A, Fukamizu A, Penninger JM, Reversade B, Ito H, Imai Y, Kuba K. ELABELA-APJ axis protects from pressure overload heart failure and angiotensin II-induced cardiac damage. Cardiovasc Res 2017; 113:760-769. [DOI: 10.1093/cvr/cvx061] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/22/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Teruki Sato
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
- Department of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine, Japan
| | - Chitose Sato
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Ayumi Kadowaki
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Hiroyuki Watanabe
- Department of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine, Japan
| | - Lena Ho
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A*STAR, Singapore, Singapore
| | - Junji Ishida
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan
| | - Josef M. Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Bruno Reversade
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A*STAR, Singapore, Singapore
| | - Hiroshi Ito
- Department of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine, Japan
| | - Yumiko Imai
- Department of Biological Informatics and Experimental Therapeutics, Akita University Graduate School of Medicine, Japan
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
- JST-PRESTO, Tokyo, Japan
| |
Collapse
|
33
|
Lu L, Wu D, Li L, Chen L. Apelin/APJ system: A bifunctional target for cardiac hypertrophy. Int J Cardiol 2017; 230:164-170. [DOI: 10.1016/j.ijcard.2016.11.215] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/06/2016] [Indexed: 12/26/2022]
|
34
|
Hajimashhadi Z, Aboutaleb N, Nasirinezhad F. Chronic administration of [Pyr 1] apelin-13 attenuates neuropathic pain after compression spinal cord injury in rats. Neuropeptides 2017; 61:15-22. [PMID: 27686494 DOI: 10.1016/j.npep.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
Apelin is an endogenous ligand for apelin receptor (APJ) with analgesic effect on visceral, analgesic and proanalgesic influences on acute pains in animal models. The purpose of this study was to determine the possible analgesic effects of [Pyr1] apelin-13 on chronic pain after spinal cord injury (SCI) in rats. Animals were randomly divided into three major groups as intact, sham and SCI. The SCI group randomly allocated to four subgroups as no treatment, vehicle-treatment (normal saline: 10μl, intrathecally) and two subgroups with intrathecal injection (i.t) of 1μg and 5μg of [Pyr1] apelin-13. After laminectomy at T6-T8 level, spinal cord compression injury was induced using an aneurysm clip. Vehicle or [Pyr1] apelin-13 injected from day1 post SCI and continued for a week on a daily basis. Pain behaviors and locomotor activity were monitored up to 8weeks. At the end of the experiments, intracardial paraformaldehyde perfusion was made under deep anesthesia in some animals for histological and immunohistochemistry evaluations. Western blot technique was also done to detect caspase-3 in fresh spinal cord tissues. SCI decreased nociceptive thresholds and locomotor scores. Administration of [Pyr1] apelin-13 (1μg and 5μg) improved locomotor activity and reduced pain symptoms, cavity size and caspase-3 levels. Results showed long-term beneficial effects of [Pyr1] apelin-13 on neuropathic pain and locomotion. Therefore, we may suggest [Pyr1] apelin-13 as a new option for further neuropathic pain research and a suitable candidate for ensuing clinical trials in spinal cord injury arena.
Collapse
Affiliation(s)
- Zahra Hajimashhadi
- Department of Physiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Medical School, Iran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Medical School, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
|
36
|
Evans CW, Iyer KS, Hool LC. The potential for nanotechnology to improve delivery of therapy to the acute ischemic heart. Nanomedicine (Lond) 2016; 11:817-32. [PMID: 26980180 DOI: 10.2217/nnm.16.7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Treatment of acute cardiac ischemia remains an area in which there are opportunities for therapeutic improvement. Despite significant advances, many patients still progress to cardiac hypertrophy and heart failure. Timely reperfusion is critical in rescuing vulnerable ischemic tissue and is directly related to patient outcome, but reperfusion of the ischemic myocardium also contributes to damage. Overproduction of reactive oxygen species, initiation of an inflammatory response and deregulation of calcium homeostasis all contribute to injury, and difficulties in delivering a sufficient quantity of drug to the affected tissue in a controlled manner is a limitation of current therapies. Nanotechnology may offer significant improvements in this respect. Here, we review recent examples of how nanoparticles can be used to improve delivery to the ischemic myocardium, and suggest some approaches that may lead to improved therapies for acute cardiac ischemia.
Collapse
Affiliation(s)
- Cameron W Evans
- School of Chemistry & Biochemistry, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - K Swaminathan Iyer
- School of Chemistry & Biochemistry, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Livia C Hool
- School of Anatomy, Physiology & Human Biology, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.,Victor Chang Cardiac Research Institute, 405 Liverpool St, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
37
|
Si Z, Hu K, Wang C, Jia L, Zhang X, Wang A. The effects of neuromuscular facilitation techniques on osteoporosis of hemiplegia limbs and serum leptin level in patients or rats with cerebral infarction. Brain Inj 2016; 30:474-479. [PMID: 26963737 DOI: 10.3109/02699052.2016.1140809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVE This study was to investigate the effect of proprioceptive neuromuscular facilitation techniques (NFT) on osteoporosis and serum leptin level in cerebral infarction patients or rats. RESEARCH DESIGN Forty cerebral infarction rats were randomly grouped into control, sham operation, conventional treatment (CT) group and CT+NFT group. Fifty-two stroke patients with hemiplegia were included in this study. METHODS AND PROCEDURES The bone mineral densities (BMD) of proximal hemiplegia limbs and serum ALP, BALP, BGP, IL-6 and leptin levels were detected using commercial kits. MAIN OUTCOMES AND RESULTS In cerebral infarction rats, the BMD, BGP, BALP, ALP and leptin concentrations in the CT+NFT group was higher compared with the control and CT group, while serum IL-6 level was more reduced by CT+NFT than control and CT. In cerebral infarction patients, both CT and CT+NFT increased the BMD, ALP, BGP and leptin levels. In addition, compared with CT, the BMD, ALP, BGP and leptin levels were markedly increased by CT+NFT. C Conclusion: NFC elevated the BMD of hemiplegia limbs, serum ALP, BGP, IL-6 and leptin levels and, thus, alleviated osteoporosis in rats and patients with cerebral infarction.
Collapse
Affiliation(s)
| | - Ke Hu
- b Department of Emergency Internal Medicine , Qianfoshan Hospital Affiliated to Shandong University , Jinan , Shandong , PR China
| | - Congcong Wang
- c Shandong University School of Medicine , Jinan , Shandong , PR China
| | | | | | | |
Collapse
|
38
|
Samura M, Morikage N, Suehiro K, Tanaka Y, Nakamura T, Nishimoto A, Ueno K, Hosoyama T, Hamano K. Combinatorial Treatment with Apelin-13 Enhances the Therapeutic Efficacy of a Preconditioned Cell-Based Therapy for Peripheral Ischemia. Sci Rep 2016; 6:19379. [PMID: 26763337 PMCID: PMC4725909 DOI: 10.1038/srep19379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/08/2015] [Indexed: 11/23/2022] Open
Abstract
Hypoxic pretreatment of peripheral blood mononuclear cells (PBMNCs) enhances therapeutic angiogenesis in ischemic tissues after cell transplantation. However, newly formed vessels generated using this approach are immature and insufficient for promoting functional recovery from severe ischemia. In this study, we examined whether apelin-13, a regulator of vessel maturation, could be an effective promoter of therapeutic angiogenesis, following severe limb ischemia. Combinatorial treatment of hypoxic preconditioned PBMNCs with apelin-13 resulted in increased blood perfusion and vascular reactivity in ischemic mouse hindlimbs compared with a monotherapy comprising each factor. Apelin-13 upregulated expression of PDGF-BB and TGF-β1 in hypoxic PBMNCs, as well as that of PDGFR-β in vascular smooth muscle cells (VSMCs). Proliferation and migration of VSMCs treated with apelin-13 was accelerated in the presence of PDGF-BB. Interestingly, expression of an apelin receptor, APJ, in PBMNC was increased under hypoxia but not under normoxia. In addition, an in vitro angiogenesis assay using a co-culture model comprising mouse thoracic aorta, hypoxic PBMNCs, and apelin-13 demonstrated that combinatorial treatment recruited mural cells to sprouted vessel outgrowths from the aortic ring, thereby promoting neovessel maturation. Thus, combinatorial injection of hypoxic PBMNCs and apelin-13 could be an effective therapeutic strategy for patients with severe ischemic diseases.
Collapse
Affiliation(s)
- Makoto Samura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Noriyasu Morikage
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Kotaro Suehiro
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Yuya Tanaka
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Tamami Nakamura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Arata Nishimoto
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Koji Ueno
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan.,Center for Regenerative Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Tohru Hosoyama
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan.,Center for Regenerative Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| |
Collapse
|
39
|
Novakova V, Sandhu GS, Dragomir-Daescu D, Klabusay M. Apelinergic system in endothelial cells and its role in angiogenesis in myocardial ischemia. Vascul Pharmacol 2016; 76:1-10. [DOI: 10.1016/j.vph.2015.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
|
40
|
Optimization of Phospholipid Nanoparticle Formulations Using Response Surface Methodology. J SURFACTANTS DETERG 2015. [DOI: 10.1007/s11743-015-1757-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|