1
|
Naghib SM, Ahmadi B, Mikaeeli Kangarshahi B, Mozafari MR. Chitosan-based smart stimuli-responsive nanoparticles for gene delivery and gene therapy: Recent progresses on cancer therapy. Int J Biol Macromol 2024; 278:134542. [PMID: 39137858 DOI: 10.1016/j.ijbiomac.2024.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Recent cancer therapy research has found that chitosan (Ch)-based nanoparticles show great potential for targeted gene delivery. Chitosan, a biocompatible and biodegradable polymer, has exceptional properties, making it an ideal carrier for therapeutic genes. These nanoparticles can respond to specific stimuli like pH, temperature, and enzymes, enabling precise delivery and regulated release of genes. In cancer therapy, these nanoparticles have proven effective in delivering genes to tumor cells, slowing tumor growth. Adjusting the nanoparticle's surface, encapsulating protective agents, and using targeting ligands have also improved gene delivery efficiency. Smart nanoparticles based on chitosan have shown promise in improving outcomes by selectively releasing genes in response to tumor conditions, enhancing targeted delivery, and reducing off-target effects. Additionally, targeting ligands on the nanoparticles' surface increases uptake and effectiveness. Although further investigation is needed to optimize the structure and composition of these nanoparticles and assess their long-term safety, these advancements pave the way for innovative gene-focused cancer therapies.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Bahar Ahmadi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Desai N, Rana D, Salave S, Benival D, Khunt D, Prajapati BG. Achieving Endo/Lysosomal Escape Using Smart Nanosystems for Efficient Cellular Delivery. Molecules 2024; 29:3131. [PMID: 38999083 PMCID: PMC11243486 DOI: 10.3390/molecules29133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The delivery of therapeutic agents faces significant hurdles posed by the endo-lysosomal pathway, a bottleneck that hampers clinical effectiveness. This comprehensive review addresses the urgent need to enhance cellular delivery mechanisms to overcome these obstacles. It focuses on the potential of smart nanomaterials, delving into their unique characteristics and mechanisms in detail. Special attention is given to their ability to strategically evade endosomal entrapment, thereby enhancing therapeutic efficacy. The manuscript thoroughly examines assays crucial for understanding endosomal escape and cellular uptake dynamics. By analyzing various assessment methods, we offer nuanced insights into these investigative approaches' multifaceted aspects. We meticulously analyze the use of smart nanocarriers, exploring diverse mechanisms such as pore formation, proton sponge effects, membrane destabilization, photochemical disruption, and the strategic use of endosomal escape agents. Each mechanism's effectiveness and potential application in mitigating endosomal entrapment are scrutinized. This paper provides a critical overview of the current landscape, emphasizing the need for advanced delivery systems to navigate the complexities of cellular uptake. Importantly, it underscores the transformative role of smart nanomaterials in revolutionizing cellular delivery strategies, leading to a paradigm shift towards improved therapeutic outcomes.
Collapse
Affiliation(s)
- Nimeet Desai
- Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India;
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (D.B.)
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (D.B.)
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (D.B.)
| | - Dignesh Khunt
- School of Pharmacy, Gujarat Technological University, Gandhinagar 382027, Gujarat, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
3
|
Abstract
Many RNA delivery strategies require efficient endosomal uptake and release. To monitor this process, we developed a 2'-OMe RNA-based ratiometric pH probe with a pH-invariant 3'-Cy5 and 5'-FAM whose pH sensitivity is enhanced by proximal guanines. The probe, in duplex with a DNA complement, exhibits a 48.9-fold FAM fluorescence enhancement going from pH 4.5 to pH 8.0 and reports on both endosomal entrapment and release when delivered to HeLa cells. In complex with an antisense RNA complement, the probe constitutes an siRNA mimic capable of protein knockdown in HEK293T cells. This illustrates a general approach for measuring the localization and pH microenvironment of any oligonucleotide.
Collapse
Affiliation(s)
- Madison R. Herling
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104-6323, U.S.A
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104-6323, U.S.A
| |
Collapse
|
4
|
Kong S, Moharil P, Handly‐Santana A, Boehnke N, Panayiotou R, Gomerdinger V, Covarrubias G, Pires IS, Zervantonakis I, Brugge J, Hammond PT. Synergistic combination therapy delivered via layer-by-layer nanoparticles induces solid tumor regression of ovarian cancer. Bioeng Transl Med 2023; 8:e10429. [PMID: 36925689 PMCID: PMC10013771 DOI: 10.1002/btm2.10429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
The majority of patients with high grade serous ovarian cancer (HGSOC) develop recurrent disease and chemotherapy resistance. To identify drug combinations that would be effective in treatment of chemotherapy resistant disease, we examined the efficacy of drug combinations that target the three antiapoptotic proteins most commonly expressed in HGSOC-BCL2, BCL-XL, and MCL1. Co-inhibition of BCL2 and BCL-XL (ABT-263) with inhibition of MCL1 (S63845) induces potent synergistic cytotoxicity in multiple HGSOC models. Since this drug combination is predicted to be toxic to patients due to the known clinical morbidities of each drug, we developed layer-by-layer nanoparticles (LbL NPs) that co-encapsulate these inhibitors in order to target HGSOC tumor cells and reduce systemic toxicities. We show that the LbL NPs can be designed to have high association with specific ovarian tumor cell types targeted in these studies, thus enabling a more selective uptake when delivered via intraperitoneal injection. Treatment with these LbL NPs displayed better potency than free drugs in vitro and resulted in near-complete elimination of solid tumor metastases of ovarian cancer xenografts. Thus, these results support the exploration of LbL NPs as a strategy to deliver potent drug combinations to recurrent HGSOC. While these findings are described for co-encapsulation of a BCL2/XL and a MCL1 inhibitor, the modular nature of LbL assembly provides flexibility in the range of therapies that can be incorporated, making LbL NPs an adaptable vehicle for delivery of additional combinations of pathway inhibitors and other oncology drugs.
Collapse
Affiliation(s)
- Stephanie Kong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUnited States
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUnited States
| | - Pearl Moharil
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUnited States
| | | | - Natalie Boehnke
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUnited States
| | - Richard Panayiotou
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUnited States
| | - Victoria Gomerdinger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUnited States
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUnited States
| | - Gil Covarrubias
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUnited States
| | - Ivan S. Pires
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUnited States
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUnited States
| | - Ioannis Zervantonakis
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUnited States
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUnited States
| | - Joan Brugge
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUnited States
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUnited States
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUnited States
| |
Collapse
|
5
|
Liu QY, Bu ZQ, Quan MX, Wu Y, Ding X, Xia LQ, Lu JY, Huang WT. A molecular paradigm: “Plug-and-play” chemical sensing and crypto-steganography based on molecular recognition and selective response. Biosens Bioelectron 2022; 209:114260. [DOI: 10.1016/j.bios.2022.114260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/29/2023]
|
6
|
Hashimoto Y, Yamashita A, Negishi J, Kimura T, Funamoto S, Kishida A. 4-Arm PEG-Functionalized Decellularized Pericardium for Effective Prevention of Postoperative Adhesion in Cardiac Surgery. ACS Biomater Sci Eng 2021; 8:261-272. [PMID: 34937336 DOI: 10.1021/acsbiomaterials.1c00990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Postoperative adhesions are a very common and serious complication in cardiac surgery, and the development of an effective anti-adhesion membrane showing resistance to the physical stimulus generated by the pulsation of the heart is desirable. In this study, an anti-adhesion material was developed through amine coupling between decellularized bovine pericardia (dBPCs) and 4-arm poly(ethylene glycol) succinimidyl glutarate (4-arm PEG-NHS) for the postoperative care of cardiac surgical patients. The efficacy of the 4-arm PEG-functionalized dBPCs in the prevention of adhesions after cardiac surgery was investigated in a rabbit heart adhesion model. The dBPCs meet the requirements for biocompatibility, flexibility, and sufficient suturable strength, and the 4-arm PEG moieties provide an anti-adhesion effect by the high excluded volume interactions of the PEG chains with proteins. The 4-arm PEG-functionalized dBPCs had a significantly greater anti-adhesion effect than the other materials tested and showed re-establishment of the mesothelial monolayer. These results suggested that the 4-arm PEG-functionalized dBPCs are a favorable material for an anti-adhesion membrane.
Collapse
Affiliation(s)
- Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akitatsu Yamashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Jun Negishi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.,Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Seiichi Funamoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
7
|
Peerzade SAMA, Makarova N, Sokolov I. Ultrabright Fluorescent Silica Nanoparticles for Dual pH and Temperature Measurements. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1524. [PMID: 34207605 PMCID: PMC8228773 DOI: 10.3390/nano11061524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/29/2021] [Accepted: 06/05/2021] [Indexed: 11/22/2022]
Abstract
The mesoporous nature of silica nanoparticles provides a novel platform for the development of ultrabright fluorescent particles, which have organic molecular fluorescent dyes physically encapsulated inside the silica pores. The close proximity of the dye molecules, which is possible without fluorescence quenching, gives an advantage of building sensors using FRET coupling between the encapsulated dye molecules. Here we present the use of this approach to demonstrate the assembly of ultrabright fluorescent ratiometric sensors capable of simultaneous acidity (pH) and temperature measurements. FRET pairs of the temperature-responsive, pH-sensitive and reference dyes are physically encapsulated inside the silica matrix of ~50 nm particles. We demonstrate that the particles can be used to measure both the temperature in the biologically relevant range (20 to 50 °C) and pH within 4 to 7 range with the error (mean absolute deviation) of 0.54 °C and 0.09, respectively. Stability of the sensor is demonstrated. The sensitivity of the sensor ranges within 0.2-3% °C-1 for the measurements of temperature and 2-6% pH-1 for acidity.
Collapse
Affiliation(s)
| | - Nadezhda Makarova
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA;
| | - Igor Sokolov
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA;
- Department of Physics, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
8
|
Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles. J Control Release 2021; 335:465-480. [PMID: 34077782 DOI: 10.1016/j.jconrel.2021.05.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Non-viral vehicles hold therapeutic promise in advancing the delivery of a variety of cargos in vitro and in vivo, including small molecule drugs, biologics, and especially nucleic acids. However, their efficacy at the cellular level is limited by several delivery barriers, with endolysosomal degradation being most significant. The entrapment of vehicles and their cargo in the acidified endosome prevents access to the cytosol, nucleus, and other subcellular compartments. Understanding the factors that contribute to uptake and intracellular trafficking, especially endosomal entrapment and release, is key to overcoming delivery obstacles within cells. In this review, we summarize and compare experimental techniques for assessing the extent of endosomal escape of a variety of non-viral vehicles and describe proposed escape mechanisms for different classes of lipid-, polymer-, and peptide-based delivery agents. Based on this evaluation, we present forward-looking strategies utilizing information gained from mechanistic studies to inform the rational design of efficient delivery vehicles.
Collapse
|
9
|
Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021; 260:117809. [PMID: 33712155 DOI: 10.1016/j.carbpol.2021.117809] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging and promising strategy in cancer therapy where small interfering RNA (siRNA) system has been deployed for down-regulation of targeted gene and subsequent inhibition in cancer progression; some issues with siRNA, however, linger namely, its off-targeting property and degradation by enzymes. Nanoparticles can be applied for the encapsulation of siRNA thus enhancing its efficacy in gene silencing where chitosan (CS), a linear alkaline polysaccharide derived from chitin, with superb properties such as biodegradability, biocompatibility, stability and solubility, can play a vital role. Herein, the potential of CS nanoparticles has been discussed for the delivery of siRNA in cancer therapy; proliferation, metastasis and chemoresistance are suppressed by siRNA-loaded CS nanoparticles, especially the usage of pH-sensitive CS nanoparticles. CS nanoparticles can provide a platform for the co-delivery of siRNA and anti-tumor agents with their enhanced stability via chemical modifications. As pre-clinical experiments are in agreement with potential of CS-based nanoparticles for siRNA delivery, and these carriers possess biocompatibiliy and are safe, further studies can focus on evaluating their utilization in cancer patients.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Farid Hashemi
- PhD Student of Pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morteza Bagherian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
10
|
Boehnke N, Correa S, Hao L, Wang W, Straehla JP, Bhatia SN, Hammond PT. Theranostic Layer-by-Layer Nanoparticles for Simultaneous Tumor Detection and Gene Silencing. Angew Chem Int Ed Engl 2020; 59:2776-2783. [PMID: 31747099 DOI: 10.1002/anie.201911762] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/28/2019] [Indexed: 12/28/2022]
Abstract
Layer-by-layer nanoparticles (NPs) are modular drug delivery vehicles that incorporate multiple functional materials through sequential deposition of polyelectrolytes onto charged nanoparticle cores. Herein, we combined the multicomponent features and tumor targeting capabilities of layer-by-layer assembly with functional biosensing peptides to create a new class of nanotheranostics. These NPs encapsulate a high weight percentage of siRNA while also carrying a synthetic biosensing peptide on the surface that is cleaved into a urinary reporter upon exposure to specific proteases overexpressed in the tumor microenvironment. Importantly, this biosensor reports back on a molecular signature characteristic to metastatic tumors and associated with poor prognosis, MMP9 protease overexpression. This nanotheranostic mediates noninvasive urinary-based diagnostics in mouse models of three different cancers with simultaneous gene silencing in flank and metastatic mouse models of ovarian cancer.
Collapse
Affiliation(s)
- Natalie Boehnke
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Santiago Correa
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Bioengineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Current address: Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Liangliang Hao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wade Wang
- Department of Chemistry, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Joelle P Straehla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02139, USA.,Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
11
|
Boehnke N, Correa S, Hao L, Wang W, Straehla JP, Bhatia SN, Hammond PT. Theranostic Layer‐by‐Layer Nanoparticles for Simultaneous Tumor Detection and Gene Silencing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Natalie Boehnke
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Santiago Correa
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Bioengineering Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Current address: Materials Science and Engineering Stanford University 496 Lomita Mall Stanford CA 94305 USA
| | - Liangliang Hao
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Wade Wang
- Department of Chemistry Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Joelle P. Straehla
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Pediatric Oncology Dana-Farber/Boston Children's Cancer and Blood Disorders Center Boston MA 02115 USA
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA 02115 USA
- Broad Institute of Massachusetts Institute of Technology and Harvard Cambridge MA 02139 USA
- Howard Hughes Medical Institute Cambridge MA 02139 USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
12
|
Rosch JG, Landry MR, Thomas CR, Sun C. Enhancing chemoradiation of colorectal cancer through targeted delivery of raltitrexed by hyaluronic acid coated nanoparticles. NANOSCALE 2019; 11:13947-13960. [PMID: 31305836 PMCID: PMC7213297 DOI: 10.1039/c9nr04320a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Combined modality therapy incorporating raltitrexed (RTX), a thymidylate synthase inhibitor, and radiation can lead to improved outcome for rectal cancer patients. To increase delivery and treatment efficacy, we formulated a hyaluronic acid (HA) coated nanoparticle encapsulating RTX (HARPs) through layer-by-layer assembly. These particles were determined to have a diameter of ∼115 nm, with a polydispersity index of 0.112 and a zeta potential of -22 mV. Cell uptake in CT26 cells determined through flow cytometry showed a ∼5-fold increase between untargeted and HA-coated particles. Through viability and DNA damage assays, we assessed the potency of the free RTX and HARPs, and found increased DNA damage in cells treated with the RTX-loaded nanoparticles administered concurrently with radiation. In vivo efficacy through tumor growth inhibition was investigated in a syngeneic murine colorectal cancer model. Nanoparticle treatment showed no acute toxicity in vivo, and all treatments showed survival benefits for their respective groups compared to controls. HARPs alone slowed tumor growth, although not significantly. Radiation alone and in combination with the HARPs showed significant growth delay. Notably, the combination treatment significantly hindered tumor progression relative to the HARPs highlighting the benefit of this multipronged treatment. These results provide a foundation for loading RTX in a nanoparticle formulation, and establish a combined radiation and drug dosing schedule to determine optimal tumor growth delay and subsequent treatment efficacy.
Collapse
Affiliation(s)
- Justin G Rosch
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Madeleine R Landry
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Charles R Thomas
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA and Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
13
|
Shamsipur M, Barati A, Nematifar Z. Fluorescent pH nanosensors: Design strategies and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Smith SA, Selby LI, Johnston APR, Such GK. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjug Chem 2018; 30:263-272. [PMID: 30452233 DOI: 10.1021/acs.bioconjchem.8b00732] [Citation(s) in RCA: 421] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many emerging therapies rely on the delivery of biological cargo into the cytosol. Nanoparticle delivery systems hold great potential to deliver these therapeutics but are hindered by entrapment and subsequent degradation in acidic compartments of the endo/lysosomal pathway. Engineering polymeric delivery systems that are able to escape the endosome has significant potential to address this issue. However, the development of safe and effective delivery systems that can reliably deliver cargo to the cytosol is still a challenge. Greater understanding of the properties that govern endosomal escape and how it can be quantified is important for the development of more efficient nanoparticle delivery systems. This Topical Review highlights the current understanding of the mechanisms by which nanoparticles escape the endosome, and the emerging techniques to improve the quantification of endosomal escape.
Collapse
Affiliation(s)
- Samuel A Smith
- The School of Chemistry , The University of Melbourne , Parkville , Victoria , Australia , 3010
| | - Laura I Selby
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria , Australia , 3052
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria , Australia , 3052
| | - Georgina K Such
- The School of Chemistry , The University of Melbourne , Parkville , Victoria , Australia , 3010
| |
Collapse
|
15
|
Xia T, Zhu F, Jiang K, Cui Y, Yang Y, Qian G. A luminescent ratiometric pH sensor based on a nanoscale and biocompatible Eu/Tb-mixed MOF. Dalton Trans 2018; 46:7549-7555. [PMID: 28573278 DOI: 10.1039/c7dt01604b] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The precise and real-time monitoring of localized pH changes is of great importance in many engineering and environmental fields, especially for monitoring small pH changes in biological environments and living cells. Metal-organic frameworks (MOFs) with their nanoscale processability show very promising applications in bioimaging and biomonitoring, but the fabrication of nanoscale MOFs is still a challenge. In this study, we synthesized a nanoscale mixed-lanthanide metal-organic framework by a microemulsion method. The morphology and size of the NMOF can be simply adjusted by the addition of different amounts of the CTAB surfactant. This NMOF exhibits significant pH-dependent luminescence emission, which can act as a self-referenced pH sensor based on two emissions of Tb3+ at 545 nm and Eu3+ at 618 nm in the pH range from 3.00 to 7.00. The MTT assay and optical microscopy assay demonstrate the low cytotoxicity and good biocompatibility of the nanosensor.
Collapse
Affiliation(s)
- Tifeng Xia
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | |
Collapse
|
16
|
Battistella C, Klok HA. Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Claudia Battistella
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| |
Collapse
|
17
|
A needle-like Cu2CdSnS4 alloy nanostructure-based integrated electrochemical biosensor for detecting the DNA of Dengue serotype 2. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2249-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Sun P, Huang W, Kang L, Jin M, Fan B, Jin H, Wang QM, Gao Z. siRNA-loaded poly(histidine-arginine) 6-modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis. Int J Nanomedicine 2017; 12:3221-3234. [PMID: 28458542 PMCID: PMC5402910 DOI: 10.2147/ijn.s129436] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An ideal carrier that delivers small interfering RNA (siRNA) should be designed based on two criteria: cellular-mediated internalization and endosomal escape. Poly(histidine-arginine)6(H6R6) peptide was introduced into chitosan (CS) to create a new CS derivative for siRNA delivery, 6-polyarginine (R6) as cell-penetrating peptides facilitated nanoparticle cellular internalization has been proved in our previous research, and 6-polyhistidine (H6) mediated the nanoparticle endosome escape resulted in the siRNA rapid releasing into tumor cytoplasm. H6R6-modified CS nanoparticles showed higher transfection efficiency and better endosomal escape capacity compared to ungroomed CS nanoparticle in vitro. Noticeably, H6R6-modified CS nanoparticles effectively inhibited tumor cell growth and metastases in vivo and significantly improved survival ratio. Therefore, we concluded that H6R6-modified CS copolymer can act as an ideal carrier for siRNA delivery and as a promising candidate in breast cancer therapy.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Lin Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Bo Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Hongyan Jin
- Yanbian University Hospital, Jilin, People's Republic of China
| | - Qi-Ming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| |
Collapse
|
19
|
Sacchetti F, D'Arca D, Genovese F, Pacifico S, Maretti E, Hanuskova M, Iannuccelli V, Costi MP, Leo E. Conveying a newly designed hydrophilic anti-human thymidylate synthase peptide to cisplatin resistant cancer cells: are pH-sensitive liposomes more effective than conventional ones? Drug Dev Ind Pharm 2016; 43:465-473. [DOI: 10.1080/03639045.2016.1262870] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Francesca Sacchetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico D'Arca
- Department of Biomedical, Metabolical and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Genovese
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Modena, Italy
| | - Salvatore Pacifico
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, 44100, Italy
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Miriam Hanuskova
- Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
20
|
Wang Z, Luo M, Mao C, Wei Q, Zhao T, Li Y, Huang G, Gao J. A Redox-Activatable Fluorescent Sensor for the High-Throughput Quantification of Cytosolic Delivery of Macromolecules. Angew Chem Int Ed Engl 2016; 56:1319-1323. [PMID: 27981718 DOI: 10.1002/anie.201610302] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 12/19/2022]
Abstract
Efficient delivery of biomacromolecules (e.g., proteins, nucleic acids) into cell cytosol remains a critical challenge for the development of macromolecular therapeutics or diagnostics. To date, most common approaches to assess cytosolic delivery rely on fluorescent labeling of macromolecules with an "always on" reporter and subcellular imaging of endolysosomal escape by confocal microscopy. This strategy is limited by poor signal-to-noise ratio and only offers low throughput, qualitative information. Herein we describe a quantitative redox-activatable sensor (qRAS) for the real-time monitoring of cytosolic delivery of macromolecules. qRAS-labeled macromolecules are silent (off) inside the intact endocytic organelles, but can be turned on by redox activation after endolysosomal disruption and delivery into the cytosol, thereby greatly improving the detection accuracy. In addition to confocal microscopy, this quantitative sensing technology allowed for a high-throughput screening of a panel of polymer carriers toward efficient cytosolic delivery of model proteins on a plate reader. The simple and versatile qRAS design offers a useful tool for the investigation of new strategies for endolysosomal escape of biomacromolecules to facilitate the development of macromolecular therapeutics for a variety of disease indications.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Min Luo
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Chengqiong Mao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Qi Wei
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Tian Zhao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Yang Li
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Gang Huang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Jinming Gao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| |
Collapse
|
21
|
Wang Z, Luo M, Mao C, Wei Q, Zhao T, Li Y, Huang G, Gao J. A Redox‐Activatable Fluorescent Sensor for the High‐Throughput Quantification of Cytosolic Delivery of Macromolecules. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhaohui Wang
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Min Luo
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Chengqiong Mao
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Qi Wei
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Tian Zhao
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Yang Li
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Gang Huang
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Jinming Gao
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| |
Collapse
|
22
|
Kongkatigumjorn N, Cortez-Jugo C, Czuba E, Wong ASM, Hodgetts RY, Johnston APR, Such GK. Probing Endosomal Escape Using pHlexi Nanoparticles. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/29/2016] [Indexed: 12/13/2022]
Affiliation(s)
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| | - Ewa Czuba
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| | - Adelene S. M. Wong
- School of Chemistry; The University of Melbourne; Parkville Victoria 3010 Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| | - Rebecca Y. Hodgetts
- School of Chemistry; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Angus P. R. Johnston
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| | - Georgina K. Such
- School of Chemistry; The University of Melbourne; Parkville Victoria 3010 Australia
| |
Collapse
|