1
|
Abstract
The lifetime of neural implants is strongly dependent on packaging due to the aqueous and biochemically aggressive nature of the body. Over the last decade, there has been a drive towards neuromodulatory implants which are wireless and approaching millimeter-scales with increasing electrode count. A so-far unrealized goal for these new types of devices is an in-vivo lifetime comparable to a sizable fraction of a healthy patient's lifetime (>10-20 years). Existing, approved medical implants commonly encapsulate components in metal enclosures (e.g. titanium) with brazed ceramic inserts for electrode feedthrough. It is unclear how amenable the traditional approach is to the simultaneous goals of miniaturization, increased channel count, and wireless communication. Ceramic materials have also played a significant role in traditional medical implants due to their dielectric properties, corrosion resistance, biocompatibility, and high strength, but are not as commonly used for housing materials due to their brittleness and the difficulty they present in creating complex housing geometries. However, thin-film technology has opened new opportunities for ceramics processing. Thin films derived largely from the semiconductor industry can be deposited and patterned in new ways, have conductivities which can be altered during manufacturing to provide conductors as well as insulators, and can be used to fabricate flexible substrates. In this review, we give an overview of packaging for neural implants, with an emphasis on how ceramic materials have been utilized in medical device packaging, as well as how ceramic thin-film micromachining and processing may be further developed to create truly reliable, miniaturized, neural implants.
Collapse
Affiliation(s)
- Konlin Shen
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, United States of America
| | | |
Collapse
|
2
|
Ahnood A, Cheriton R, Bruneau A, Belcourt JA, Ndabakuranye JP, Lemaire W, Hilkes R, Fontaine R, Cook JPD, Hinzer K, Prawer S. Laser Driven Miniature Diamond Implant for Wireless Retinal Prostheses. ACTA ACUST UNITED AC 2020; 4:e2000055. [PMID: 33084251 DOI: 10.1002/adbi.202000055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/03/2020] [Indexed: 01/16/2023]
Abstract
The design and benchtop operation of a wireless miniature epiretinal stimulator implant is reported. The implant is optically powered and controlled using safe illumination at near-infrared wavelengths. An application-specific integrated circuit (ASIC) hosting a digital control unit is used to control the implant's electrodes. The ASIC is powered using an advanced photovoltaic (PV) cell and programmed using a single photodiode. Diamond packaging technology is utilized to achieve high-density integration of the implant optoelectronic circuitry, as well as individual connections between a stimulator chip and 256 electrodes, within a 4.6 mm × 3.7 mm × 0.9 mm implant package. An ultrahigh efficiency PV cell with a monochromatic power conversion efficiency of 55% is used to power the implant. On-board photodetection circuity with a bandwidth of 3.7 MHz is used for forward data telemetry of stimulation parameters. In comparison to implants which utilize inductively coupled coils, laser power delivery enables a high degree of miniaturization and lower surgical complexity. The device presented combines the benefits of implant miniaturization and a flexible stimulation strategy provided by a dedicated stimulator chip. This development provides a route to fully wireless miniaturized minimally invasive implants with sophisticated functionalities.
Collapse
Affiliation(s)
- Arman Ahnood
- School of Physics, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ross Cheriton
- National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada.,iBIONICS, Ottawa, ON, K2H 8S9, Canada
| | | | - James A Belcourt
- School of Physics, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - William Lemaire
- Interdisciplinary Institute for Technological Innovation, Université de Sherbrooke, Sherbrooke, QC, J1K 0A5, Canada
| | - Rob Hilkes
- iBIONICS, Ottawa, ON, K2H 8S9, Canada.,Gezell Inc. Gatineau, Gatineau, QC, J9A1L8, Canada
| | - Réjean Fontaine
- Interdisciplinary Institute for Technological Innovation, Université de Sherbrooke, Sherbrooke, QC, J1K 0A5, Canada
| | - John P D Cook
- Centre for Research in Photonics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Karin Hinzer
- Centre for Research in Photonics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Steven Prawer
- School of Physics, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
3
|
He Q, Zhang Y, Duan N, Huang H, Mu D, Liao X. Wetting behaviours and interfacial characteristics of Co-binder sintered polycrystalline diamond by Sn Ti active solder. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.08.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Shivdasani MN, Evans M, Burns O, Yeoh J, Allen PJ, Nayagam DAX, Villalobos J, Abbott CJ, Luu CD, Opie NL, Sabu A, Saunders AL, McPhedran M, Cardamone L, McGowan C, Maxim V, Williams RA, Fox KE, Cicione R, Garrett DJ, Ahnood A, Ganesan K, Meffin H, Burkitt AN, Prawer S, Williams CE, Shepherd RK. In vivo feasibility of epiretinal stimulation using ultrananocrystalline diamond electrodes. J Neural Eng 2020; 17:045014. [PMID: 32659750 DOI: 10.1088/1741-2552/aba560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Due to their increased proximity to retinal ganglion cells (RGCs), epiretinal visual prostheses present the opportunity for eliciting phosphenes with low thresholds through direct RGC activation. This study characterised the in vivo performance of a novel prototype monolithic epiretinal prosthesis, containing Nitrogen incorporated ultrananocrystalline (N-UNCD) diamond electrodes. APPROACH A prototype implant containing up to twenty-five 120 × 120 µm N-UNCD electrodes was implanted into 16 anaesthetised cats and attached to the retina either using a single tack or via magnetic coupling with a suprachoroidally placed magnet. Multiunit responses to retinal stimulation using charge-balanced biphasic current pulses were recorded acutely in the visual cortex using a multichannel planar array. Several stimulus parameters were varied including; the stimulating electrode, stimulus polarity, phase duration, return configuration and the number of electrodes stimulated simultaneously. MAIN RESULTS The rigid nature of the device and its form factor necessitated complex surgical procedures. Surgeries were considered successful in 10/16 animals and cortical responses to single electrode stimulation obtained in eight animals. Clinical imaging and histological outcomes showed severe retinal trauma caused by the device in situ in many instances. Cortical measures were found to significantly depend on the surgical outcomes of individual experiments, phase duration, return configuration and the number of electrodes stimulated simultaneously, but not stimulus polarity. Cortical thresholds were also found to increase over time within an experiment. SIGNIFICANCE The study successfully demonstrated that an epiretinal prosthesis containing diamond electrodes could produce cortical activity with high precision, albeit only in a small number of cases. Both surgical approaches were highly challenging in terms of reliable and consistent attachment to and stabilisation against the retina, and often resulted in severe retinal trauma. There are key challenges (device form factor and attachment technique) to be resolved for such a device to progress towards clinical application, as current surgical techniques are unable to address these issues.
Collapse
Affiliation(s)
- Mohit N Shivdasani
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2033, Australia. The Bionics Institute of Australia, East Melbourne, VIC 3002, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Stamp MEM, Tong W, Ganesan K, Prawer S, Ibbotson MR, Garrett DJ. 3D Diamond Electrode Array for High-Acuity Stimulation in Neural Tissue. ACS APPLIED BIO MATERIALS 2020; 3:1544-1552. [DOI: 10.1021/acsabm.9b01165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Melanie E. M. Stamp
- School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Wei Tong
- School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria 3053, Australia
- Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kumaravelu Ganesan
- School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Steven Prawer
- School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria 3053, Australia
| | - David J. Garrett
- School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
6
|
Shen K, Maharbiz MM. Design of Ceramic Packages for Ultrasonically Coupled Implantable Medical Devices. IEEE Trans Biomed Eng 2019; 67:2230-2240. [PMID: 31825858 DOI: 10.1109/tbme.2019.2957732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Ultrasonic acoustic power transfer is an efficient mechanism for coupling energy to millimeter and sub-millimeter implants in the body. To date, published ultrasonically powered implants have been encapsulated with thin film polymers that are susceptible to well-documented failure modes in vivo, including water penetration and attack by the body. As with all medical implants, packaging with ceramic or metallic materials can reduce water vapor transmission and improve biostability to provide decadal device lifetime. In this paper, we evaluate methods of coupling ultrasonic energy to the interior of ceramic packages. METHODS The classic wave approach and modal expansion are used to obtain analytical expressions for ultrasonic transmission through two different package designs and these approaches are validated experimentally. A candidate package design is demonstrated using alumina packages and titanium lids, designed to be acoustically transparent at ultrasonic frequencies. RESULTS Bulk modes are shown to be more effective at coupling ultrasonic energy to a piezoelectric receiver than flexural modes. Using bulk modes, packaged motes have an overall link efficiency of roughly 10%, compared to 25% for unpackaged motes. Packaging does not have a significant effect on translational misalignment penalties, but does increase angular misalignment penalties. Passive amplitude-modulated backscatter communication is demonstrated. CONCLUSION Thin lids enable the use of ultrasonically coupled devices even with package materials of very different acoustic impedance. SIGNIFICANCE This work provides an analysis and method for designing packages that enable ultrasonic coupling with implantable medical devices, which could facilitate clinical translation.
Collapse
|
7
|
Yang H, Wu T, Zhao S, Xiong S, Peng B, Humayun MS. Chronically Implantable Package Based on Alumina Ceramics and Titanium with High-density Feedthroughs for Medical Implants. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:3382-3385. [PMID: 30441113 DOI: 10.1109/embc.2018.8513004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Implantable package to hermetically encapsulate electronics inside human body is critical for active implant devices such as neuroprothesestextbf. To meet the demanding package requirement for smaller size and higher feedthrough density, we propose a high-density (100+ feedthroughs for 10 mm diameter) ceramic/metal composite package with helium leakage rate on the 10-10 Pa m3/s, at the same time possessing the best cytotoxicity level of Grade 0, which enable the chronic implant in human. Pure alumina substrate co-sintered with platinum (Pt) paste filled in micrometer holes have demonstrated extremely good hermetical seal and biocompatibility, then its braze joint with a titanium(Ti) ring was achieved, followed by the laser welding with a Ti cap. Standard helium leakage rate and cytotoxicity experiments have shown each component and joint interface are qualified for 100-year chronic implant, which is significant for various active implant instruments.
Collapse
|
8
|
Ahn SH, Jeong J, Kim SJ. Emerging Encapsulation Technologies for Long-Term Reliability of Microfabricated Implantable Devices. MICROMACHINES 2019; 10:E508. [PMID: 31370259 PMCID: PMC6723304 DOI: 10.3390/mi10080508] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/20/2019] [Accepted: 07/29/2019] [Indexed: 01/11/2023]
Abstract
The development of reliable long-term encapsulation technologies for implantable biomedical devices is of paramount importance for the safe and stable operation of implants in the body over a period of several decades. Conventional technologies based on titanium or ceramic packaging, however, are not suitable for encapsulating microfabricated devices due to their limited scalability, incompatibility with microfabrication processes, and difficulties with miniaturization. A variety of emerging materials have been proposed for encapsulation of microfabricated implants, including thin-film inorganic coatings of Al2O3, HfO2, SiO2, SiC, and diamond, as well as organic polymers of polyimide, parylene, liquid crystal polymer, silicone elastomer, SU-8, and cyclic olefin copolymer. While none of these materials have yet been proven to be as hermetic as conventional metal packages nor widely used in regulatory approved devices for chronic implantation, a number of studies have demonstrated promising outcomes on their long-term encapsulation performance through a multitude of fabrication and testing methodologies. The present review article aims to provide a comprehensive, up-to-date overview of the long-term encapsulation performance of these emerging materials with a specific focus on publications that have quantitatively estimated the lifetime of encapsulation technologies in aqueous environments.
Collapse
Affiliation(s)
- Seung-Hee Ahn
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Joonsoo Jeong
- Department of Biomedical Engineering, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Sung June Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
- Institute of Aging, College of Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
9
|
Zeng Q, Zhao S, Yang H, Zhang Y, Wu T. Micro/Nano Technologies for High-Density Retinal Implant. MICROMACHINES 2019; 10:E419. [PMID: 31234507 PMCID: PMC6630275 DOI: 10.3390/mi10060419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/10/2023]
Abstract
During the past decades, there have been leaps in the development of micro/nano retinal implant technologies, which is one of the emerging applications in neural interfaces to restore vision. However, higher feedthroughs within a limited space are needed for more complex electronic systems and precise neural modulations. Active implantable medical electronics are required to have good electrical and mechanical properties, such as being small, light, and biocompatible, and with low power consumption and minimal immunological reactions during long-term implantation. For this purpose, high-density implantable packaging and flexible microelectrode arrays (fMEAs) as well as high-performance coating materials for retinal stimulation are crucial to achieve high resolution. In this review, we mainly focus on the considerations of the high-feedthrough encapsulation of implantable biomedical components to prolong working life, and fMEAs for different implant sites to deliver electrical stimulation to targeted retinal neuron cells. In addition, the functional electrode materials to achieve superior stimulation efficiency are also reviewed. The existing challenge and future research directions of micro/nano technologies for retinal implant are briefly discussed at the end of the review.
Collapse
Affiliation(s)
- Qi Zeng
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Saisai Zhao
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Hangao Yang
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Yi Zhang
- Shenzhen CAS-Envision Medical Technology Co. Ltd., Shenzhen 518100, China.
| | - Tianzhun Wu
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| |
Collapse
|
10
|
Wong YT, Ahnood A, Maturana MI, Kentler W, Ganesan K, Grayden DB, Meffin H, Prawer S, Ibbotson MR, Burkitt AN. Feasibility of Nitrogen Doped Ultrananocrystalline Diamond Microelectrodes for Electrophysiological Recording From Neural Tissue. Front Bioeng Biotechnol 2018; 6:85. [PMID: 29988378 PMCID: PMC6024013 DOI: 10.3389/fbioe.2018.00085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/05/2018] [Indexed: 01/19/2023] Open
Abstract
Neural prostheses that can monitor the physiological state of a subject are becoming clinically viable through improvements in the capacity to record from neural tissue. However, a significant limitation of current devices is that it is difficult to fabricate electrode arrays that have both high channel counts and the appropriate electrical properties required for neural recordings. In earlier work, we demonstrated nitrogen doped ultrananocrystalline diamond (N-UNCD) can provide efficacious electrical stimulation of neural tissue, with high charge injection capacity, surface stability and biocompatibility. In this work, we expand on this functionality to show that N-UNCD electrodes can also record from neural tissue owing to its low electrochemical impedance. We show that N-UNCD electrodes are highly flexible in their application, with successful recordings of action potentials from single neurons in an in vitro retina preparation, as well as local field potential responses from in vivo visual cortex tissue. Key properties of N-UNCD films, combined with scalability of electrode array fabrication with custom sizes for recording or stimulation along with integration through vertical interconnects to silicon based integrated circuits, may in future form the basis for the fabrication of versatile closed-loop neural prostheses that can both record and stimulate.
Collapse
Affiliation(s)
- Yan T. Wong
- Department of Physiology and Department of Electrical and Computer Systems Engineering, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Arman Ahnood
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| | - Matias I. Maturana
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC, Australia
| | - William Kentler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | | | - David B. Grayden
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Hamish Meffin
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Science University of Melbourne, Melbourne, VIC, Australia
| | - Steven Prawer
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Science University of Melbourne, Melbourne, VIC, Australia
| | - Anthony N. Burkitt
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Sikder MKU, Fallon J, Shivdasani MN, Ganesan K, Seligman P, Garrett DJ. Wireless induction coils embedded in diamond for power transfer in medical implants. Biomed Microdevices 2017; 19:79. [PMID: 28844084 DOI: 10.1007/s10544-017-0220-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Wireless power and data transfer to medical implants is a research area where improvements in current state-of-the-art technologies are needed owing to the continuing efforts for miniaturization. At present, lithographical patterning of evaporated metals is widely used for miniature coil fabrication. This method produces coils that are limited to low micron or nanometer thicknesses leading to high impedance values and thus limiting their potential quality. In the present work we describe a novel technique, whereby trenches were milled into a diamond substrate and filled with silver active braze alloy, enabling the manufacture of small, high cross-section, low impedance microcoils capable of transferring up to 10 mW of power up to a distance of 6 mm. As a substitute for a metallic braze line used for hermetic sealing, a continuous metal loop when placed parallel and close to the coil surface reduced power transfer efficiency by 43%, but not significantly, when placed perpendicular to the microcoil surface. Encapsulation of the coil by growth of a further layer of diamond reduced the quality factor by an average of 38%, which can be largely avoided by prior oxygen plasma treatment. Furthermore, an accelerated ageing test after encapsulation showed that these coils are long lasting. Our results thus collectively highlight the feasibility of fabricating a high-cross section, biocompatible and long lasting miniaturized microcoil that could be used in either a neural recording or neuromuscular stimulation device.
Collapse
Affiliation(s)
- Md Kabir Uddin Sikder
- Department of Medical Bionics, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
- Bionics Institute, 384 Albert St, East Melbourne, VIC, 3002, Australia
- Department of Physics, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - James Fallon
- Department of Medical Bionics, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
- Bionics Institute, 384 Albert St, East Melbourne, VIC, 3002, Australia
- Department of Otolaryngology, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Mohit N Shivdasani
- Department of Medical Bionics, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
- Bionics Institute, 384 Albert St, East Melbourne, VIC, 3002, Australia
| | - Kumaravelu Ganesan
- Department of Physics, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Peter Seligman
- Bionics Institute, 384 Albert St, East Melbourne, VIC, 3002, Australia
| | - David J Garrett
- Bionics Institute, 384 Albert St, East Melbourne, VIC, 3002, Australia.
- Department of Physics, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
12
|
Carabelli V, Marcantoni A, Picollo F, Battiato A, Bernardi E, Pasquarelli A, Olivero P, Carbone E. Planar Diamond-Based Multiarrays to Monitor Neurotransmitter Release and Action Potential Firing: New Perspectives in Cellular Neuroscience. ACS Chem Neurosci 2017; 8:252-264. [PMID: 28027435 DOI: 10.1021/acschemneuro.6b00328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
High biocompatibility, outstanding electrochemical responsiveness, inertness, and transparency make diamond-based multiarrays (DBMs) first-rate biosensors for in vitro detection of electrochemical and electrical signals from excitable cells together, with potential for in vivo applications as neural interfaces and prostheses. Here, we will review the electrochemical and physical properties of various DBMs and how these devices have been employed for recording released neurotransmitter molecules and all-or-none action potentials from living cells. Specifically, we will overview how DBMs can resolve localized exocytotic events from subcellular compartments using high-density microelectrode arrays (MEAs), or monitoring oxidizable neurotransmitter release from populations of cells in culture and tissue slices using low-density MEAs. Interfacing DBMs with excitable cells is currently leading to the promising opportunity of recording electrical signals as well as creating neuronal interfaces through the same device. Given the recent increasingly growing development of newly available DBMs of various geometries to monitor electrical activity and neurotransmitter release in a variety of excitable and neuronal tissues, the discussion will be limited to planar DBMs.
Collapse
Affiliation(s)
- Valentina Carabelli
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| | - Andrea Marcantoni
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| | - Federico Picollo
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Alfio Battiato
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Ettore Bernardi
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Alberto Pasquarelli
- Institute
of Electron Devices and Circuits, Ulm University, 89081 Ulm, Germany
| | - Paolo Olivero
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Emilio Carbone
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| |
Collapse
|
13
|
Ahnood A, Meffin H, Garrett DJ, Fox K, Ganesan K, Stacey A, Apollo NV, Wong YT, Lichter SG, Kentler W, Kavehei O, Greferath U, Vessey KA, Ibbotson MR, Fletcher EL, Burkitt AN, Prawer S. Diamond Devices for High Acuity Prosthetic Vision. ACTA ACUST UNITED AC 2016; 1:e1600003. [DOI: 10.1002/adbi.201600003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/27/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Arman Ahnood
- School of Physics University of Melbourne Victoria 3010 Australia
| | - Hamish Meffin
- National Vision Research Institute Australian College of Optometry Victoria 3053 Australia
- ARC Centre of Excellence for Integrative Brain Function Department of Optometry and Vision Science University of Melbourne Victoria 3010 Australia
| | - David J. Garrett
- School of Physics University of Melbourne Victoria 3010 Australia
| | - Kate Fox
- School of Physics University of Melbourne Victoria 3010 Australia
- School of Engineering RMIT University Melbourne 3000 Australia
| | | | - Alastair Stacey
- School of Physics University of Melbourne Victoria 3010 Australia
| | | | - Yan T. Wong
- National Vision Research Institute Australian College of Optometry Victoria 3053 Australia
- Department of Electrical & Electronic Engineering The University of Melbourne Victoria 3010 Australia
| | | | - William Kentler
- Department of Electrical & Electronic Engineering The University of Melbourne Victoria 3010 Australia
| | - Omid Kavehei
- School of Engineering RMIT University Melbourne 3000 Australia
| | - Ursula Greferath
- Department of Anatomy and Neuroscience University of Melbourne Victoria 3010 Australia
| | - Kirstan A. Vessey
- Department of Anatomy and Neuroscience University of Melbourne Victoria 3010 Australia
| | - Michael R. Ibbotson
- National Vision Research Institute Australian College of Optometry Victoria 3053 Australia
- ARC Centre of Excellence for Integrative Brain Function Department of Optometry and Vision Science University of Melbourne Victoria 3010 Australia
| | - Erica L. Fletcher
- Department of Anatomy and Neuroscience University of Melbourne Victoria 3010 Australia
| | - Anthony N. Burkitt
- Department of Electrical & Electronic Engineering The University of Melbourne Victoria 3010 Australia
| | - Steven Prawer
- School of Physics University of Melbourne Victoria 3010 Australia
| |
Collapse
|
14
|
Diamond encapsulated photovoltaics for transdermal power delivery. Biosens Bioelectron 2016; 77:589-97. [DOI: 10.1016/j.bios.2015.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/03/2015] [Accepted: 10/08/2015] [Indexed: 11/21/2022]
|
15
|
Fox K, Meffin H, Burns O, Abbott CJ, Allen PJ, Opie NL, McGowan C, Yeoh J, Ahnood A, Luu CD, Cicione R, Saunders AL, McPhedran M, Cardamone L, Villalobos J, Garrett DJ, Nayagam DAX, Apollo NV, Ganesan K, Shivdasani MN, Stacey A, Escudie M, Lichter S, Shepherd RK, Prawer S. Development of a Magnetic Attachment Method for Bionic Eye Applications. Artif Organs 2015; 40:E12-24. [DOI: 10.1111/aor.12582] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kate Fox
- School of Physics; University of Melbourne; Melbourne Victoria Australia
- School of Aerospace, Mechanical and Manufacturing Engineering; RMIT University; Melbourne Victoria Australia
| | - Hamish Meffin
- Department of Electrical and Electronic Engineering; University of Melbourne; Melbourne Victoria Australia
- National Vision Research Institute; Australian College of Optometry; Melbourne Victoria Australia
| | - Owen Burns
- The Bionics Institute; Melbourne Victoria Australia
| | - Carla J. Abbott
- Centre for Eye Research Australia (CERA) Royal Victorian Eye and Ear Hospital; Melbourne Victoria Australia
| | - Penelope J. Allen
- Centre for Eye Research Australia (CERA) Royal Victorian Eye and Ear Hospital; Melbourne Victoria Australia
| | - Nicholas L. Opie
- Centre for Eye Research Australia (CERA) Royal Victorian Eye and Ear Hospital; Melbourne Victoria Australia
| | | | - Jonathan Yeoh
- Centre for Eye Research Australia (CERA) Royal Victorian Eye and Ear Hospital; Melbourne Victoria Australia
| | - Arman Ahnood
- School of Physics; University of Melbourne; Melbourne Victoria Australia
| | - Chi D. Luu
- Centre for Eye Research Australia (CERA) Royal Victorian Eye and Ear Hospital; Melbourne Victoria Australia
| | - Rosemary Cicione
- School of Physics; University of Melbourne; Melbourne Victoria Australia
| | | | | | | | | | - David J. Garrett
- School of Physics; University of Melbourne; Melbourne Victoria Australia
- The Bionics Institute; Melbourne Victoria Australia
| | | | - Nicholas V. Apollo
- School of Physics; University of Melbourne; Melbourne Victoria Australia
- The Bionics Institute; Melbourne Victoria Australia
| | - Kumaravelu Ganesan
- School of Physics; University of Melbourne; Melbourne Victoria Australia
| | | | - Alastair Stacey
- School of Physics; University of Melbourne; Melbourne Victoria Australia
| | - Mathilde Escudie
- School of Physics; University of Melbourne; Melbourne Victoria Australia
| | - Samantha Lichter
- School of Physics; University of Melbourne; Melbourne Victoria Australia
| | | | - Steven Prawer
- School of Physics; University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|