1
|
Yang L, Meng B, Gong X, Jiang Y, Shentu X, Xue Z. Investigation of the synergistic effect mechanism underlying sequential use of palbociclib and cisplatin through integral proteomic and glycoproteomic analysis. Anticancer Drugs 2024; 35:806-816. [PMID: 39011652 PMCID: PMC11392100 DOI: 10.1097/cad.0000000000001633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Chemoresistance largely hampers the clinical use of chemodrugs for cancer patients, combination or sequential drug treatment regimens have been designed to minimize chemotoxicity and resensitize chemoresistance. In this work, the cytotoxic effect of cisplatin was found to be enhanced by palbociclib pretreatment in HeLa cells. With the integration of liquid chromatography-mass spectrometry-based proteomic and N-glycoproteomic workflow, we found that palbociclib alone mainly enhanced the N-glycosylation alterations in HeLa cells, while cisplatin majorly increased the different expression proteins related to apoptosis pathways. As a result, the sequential use of two drugs induced a higher expression level of apoptosis proteins BAX and BAK. Those altered N-glycoproteins induced by palbociclib were implicated in pathways that were closely associated with cell membrane modification and drug sensitivity. Specifically, the top four frequently glycosylated proteins FOLR1, L1CAM, CD63, and LAMP1 were all associated with drug resistance or drug sensitivity. It is suspected that palbociclib-induced N-glycosylation on the membrane protein allowed the HeLa cell to become more vulnerable to cisplatin treatment. Our study provides new insights into the mechanisms underlying the sequential use of target drugs and chemotherapy drugs, meanwhile suggesting a high-efficiency approach that involves proteomic and N-glycoproteomic to facilitate drug discovery.
Collapse
Affiliation(s)
- Lulu Yang
- Faculty of Life Sciences, China Jiliang University, Hangzhou
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xuping Shentu
- Faculty of Life Sciences, China Jiliang University, Hangzhou
| | - Zhichao Xue
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| |
Collapse
|
2
|
So WY, Wong CS, Azubuike UF, Paul CD, Sangsari PR, Gordon PB, Gong H, Maity TK, Lim P, Yang Z, Haryanto CA, Batchelor E, Jenkins LM, Morgan NY, Tanner K. YAP localization mediates mechanical adaptation of human cancer cells during extravasation in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567015. [PMID: 38076880 PMCID: PMC10705547 DOI: 10.1101/2023.11.14.567015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Biophysical profiling of primary tumors has revealed that individual tumor cells fall along a highly heterogeneous continuum of mechanical phenotypes. One idea is that a subset of tumor cells is "softer" to facilitate detachment and escape from the primary site, a step required to initiate metastasis. However, it has also been postulated that cells must be able to deform and generate sufficient force to exit into distant sites. Here, we aimed to dissect the mechanical changes that occur during extravasation and organ colonization. Using multiplexed methods of intravital microscopy and optical tweezer based active microrheology, we obtained longitudinal images and mechanical profiles of cells during organ colonization in vivo. We determined that cells were softer, more liquid like upon exit of the vasculature but stiffened and became more solid like once in the new organ microenvironment. We also determined that a YAP mediated mechanogenotype influenced the global dissemination in our in vivo and in vitro models and that reducing mechanical heterogeneity could reduce extravasation. Moreover, our high throughput analysis of mechanical phenotypes of patient samples revealed that this mechanics was in part regulated by the external hydrodynamic forces that the cancer cells experienced within capillary mimetics. Our findings indicate that disseminated cancer cells can keep mutating with a continuum landscape of mechano-phenotypes, governed by the YAP-mediated mechanosensing of hydrodynamic flow.
Collapse
Affiliation(s)
- Woong Young So
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Claudia S. Wong
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | | | - Colin D. Paul
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Paniz Rezvan Sangsari
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
| | | | - Hyeyeon Gong
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Tapan K. Maity
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Perry Lim
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Zhilin Yang
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | | | | | - Lisa M. Jenkins
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Nicole Y. Morgan
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
| | - Kandice Tanner
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| |
Collapse
|
3
|
De Stefano P, Bianchi E, Dubini G. The impact of microfluidics in high-throughput drug-screening applications. BIOMICROFLUIDICS 2022; 16:031501. [PMID: 35646223 PMCID: PMC9142169 DOI: 10.1063/5.0087294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/02/2022] [Indexed: 05/05/2023]
Abstract
Drug discovery is an expensive and lengthy process. Among the different phases, drug discovery and preclinical trials play an important role as only 5-10 of all drugs that begin preclinical tests proceed to clinical trials. Indeed, current high-throughput screening technologies are very expensive, as they are unable to dispense small liquid volumes in an accurate and quick way. Moreover, despite being simple and fast, drug screening assays are usually performed under static conditions, thus failing to recapitulate tissue-specific architecture and biomechanical cues present in vivo even in the case of 3D models. On the contrary, microfluidics might offer a more rapid and cost-effective alternative. Although considered incompatible with high-throughput systems for years, technological advancements have demonstrated how this gap is rapidly reducing. In this Review, we want to further outline the role of microfluidics in high-throughput drug screening applications by looking at the multiple strategies for cell seeding, compartmentalization, continuous flow, stimuli administration (e.g., drug gradients or shear stresses), and single-cell analyses.
Collapse
Affiliation(s)
- Paola De Stefano
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| | - Elena Bianchi
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| |
Collapse
|
4
|
Chhetri A, Rispoli JV, Lelièvre SA. 3D Cell Culture for the Study of Microenvironment-Mediated Mechanostimuli to the Cell Nucleus: An Important Step for Cancer Research. Front Mol Biosci 2021; 8:628386. [PMID: 33644116 PMCID: PMC7902798 DOI: 10.3389/fmolb.2021.628386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
The discovery that the stiffness of the tumor microenvironment (TME) changes during cancer progression motivated the development of cell culture involving extracellular mechanostimuli, with the intent of identifying mechanotransduction mechanisms that influence cell phenotypes. Collagen I is a main extracellular matrix (ECM) component used to study mechanotransduction in three-dimensional (3D) cell culture. There are also models with interstitial fluid stress that have been mostly focusing on the migration of invasive cells. We argue that a major step for the culture of tumors is to integrate increased ECM stiffness and fluid movement characteristic of the TME. Mechanotransduction is based on the principles of tensegrity and dynamic reciprocity, which requires measuring not only biochemical changes, but also physical changes in cytoplasmic and nuclear compartments. Most techniques available for cellular rheology were developed for a 2D, flat cell culture world, hence hampering studies requiring proper cellular architecture that, itself, depends on 3D tissue organization. New and adapted measuring techniques for 3D cell culture will be worthwhile to study the apparent increase in physical plasticity of cancer cells with disease progression. Finally, evidence of the physical heterogeneity of the TME, in terms of ECM composition and stiffness and of fluid flow, calls for the investigation of its impact on the cellular heterogeneity proposed to control tumor phenotypes. Reproducing, measuring and controlling TME heterogeneity should stimulate collaborative efforts between biologists and engineers. Studying cancers in well-tuned 3D cell culture platforms is paramount to bring mechanomedicine into the realm of oncology.
Collapse
Affiliation(s)
- Apekshya Chhetri
- Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Joseph V Rispoli
- Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
5
|
ADAMTS-15 Has a Tumor Suppressor Role in Prostate Cancer. Biomolecules 2020; 10:biom10050682. [PMID: 32354091 PMCID: PMC7277637 DOI: 10.3390/biom10050682] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular matrix remodeling has emerged as an important factor in many cancers. Proteoglycans, including versican (VCAN), are regulated via cleavage by the proteolytic actions of A Disintegrin-like And Metalloproteinase domain with Thrombospondin-1 motif (ADAMTS) family members. Alterations in the balance between Proteoglycans and ADAMTS enzymes have been proposed to contribute to cancer progression. Here, we analyzed the expression of ADAMTS-15 in human prostate cancer, and investigated the effects of enforced expression in prostate cancer cell lines. ADAMTS-15 was found to be expressed in human prostate cancer biopsies with evidence of co-localization with VCAN and its bioactive cleavage fragment versikine. Enforced expression of ADAMTS-15, but not a catalytically-inactive version, decreased cell proliferation and migration of the ‘castrate-resistant’ PC3 prostate cancer cell line in vitro, with survival increased. Analysis of ‘androgen-responsive’ LNCaP prostate cancer cells in vivo in NOD/SCID mice revealed that ADAMTS-15 expression caused slower growing tumors, which resulted in increased survival. This was not observed in castrated mice or with cells expressing catalytically-inactive ADAMTS-15. Collectively, this research identifies the enzymatic function of ADAMTS-15 as having a tumor suppressor role in prostate cancer, possibly in concert with androgens, and that VCAN represents a likely key substrate, highlighting potential new options for the clinic.
Collapse
|
6
|
A novel ex vivo tumor system identifies Src-mediated invasion and metastasis in mesenchymal tumor cells in non-small cell lung cancer. Sci Rep 2019; 9:4819. [PMID: 30894630 PMCID: PMC6427036 DOI: 10.1038/s41598-019-41301-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/01/2019] [Indexed: 01/16/2023] Open
Abstract
Lung cancer is the foremost cause of cancer related deaths in the U.S. It is a heterogeneous disease composed of genetically and phenotypically distinct tumor cells surrounded by heterotypic cells and extracellular matrix dynamically interacting with the tumor cells. Research in lung cancer is often restricted to patient-derived tumor specimens, in vitro cell cultures and limited animal models, which fail to capture the cellular or microenvironment heterogeneity of the tumor. Therefore, our knowledge is primarily focused on cancer-cell autonomous aberrations. For a fundamental understanding of lung cancer progression and an exploration of therapeutic options, we focused our efforts to develop an Ex Vivo Tumor platform to culture tumors in 3D matrices, which retains tumor cell heterogeneity arising due to in vivo selection pressure and environmental influences and recapitulate responses of tumor cells to external manipulations. To establish this model, implanted syngeneic murine tumors from a mutant KRAS/p53 model were harvested to yield multicellular tumor aggregates followed by culture in 3D extracellular matrices. Using this system, we identified Src signaling as an important driver of invasion and metastasis in lung cancer and demonstrate that EVTs are a robust experimental tool bridging the gap between conventional in vitro and in vivo models.
Collapse
|
7
|
Intersection of Brain Development and Paediatric Diffuse Midline Gliomas: Potential Role of Microenvironment in Tumour Growth. Brain Sci 2018; 8:brainsci8110200. [PMID: 30453529 PMCID: PMC6266894 DOI: 10.3390/brainsci8110200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/03/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a devastating and incurable paediatric brain tumour with a median overall survival of 9 months. Until recently, DIPGs were treated similarly to adult gliomas, but due to the advancement in molecular and imaging technologies, our understanding of these tumours has increased dramatically. While extensive research is being undertaken to determine the function of the molecular aberrations in DIPG, there are significant gaps in understanding the biology and the influence of the tumour microenvironment on DIPG growth, specifically in regards to the developing pons. The precise orchestration and co-ordination of the development of the brain, the most complex organ in the body, is still not fully understood. Herein, we present a brief overview of brainstem development, discuss the developing microenvironment in terms of DIPG growth, and provide a basis for the need for studies focused on bridging pontine development and DIPG microenvironment. Conducting investigations in the context of a developing brain will lead to a better understanding of the role of the tumour microenvironment and will help lead to identification of drivers of tumour growth and therapeutic resistance.
Collapse
|
8
|
Tanner K. Perspective: The role of mechanobiology in the etiology of brain metastasis. APL Bioeng 2018; 2:031801. [PMID: 31069312 PMCID: PMC6324204 DOI: 10.1063/1.5024394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor latency and dormancy are obstacles to effective cancer treatment. In brain
metastases, emergence of a lesion can occur at varying intervals from diagnosis
and in some cases following successful treatment of the primary tumor. Genetic
factors that drive brain metastases have been identified, such as those involved
in cell adhesion, signaling, extravasation, and metabolism. From this wealth of
knowledge, vexing questions still remain; why is there a difference in strategy
to facilitate outgrowth and why is there a difference in latency? One missing
link may be the role of tissue biophysics of the brain microenvironment in
infiltrating cells. Here, I discuss the mechanical cues that may influence
disseminated tumor cells in the brain, as a function of age and disease. I
further discuss in vitro and in vivo
preclinical models such as 3D culture systems and zebrafish to study the role of
the mechanical environment in brain metastasis in an effort of providing novel
targeted therapeutics.
Collapse
Affiliation(s)
- Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Sun T, Yao S, Liu M, Yang Y, Ji Y, Cui W, Qu Y, Guo X. Composite Scaffolds of Mineralized Natural Extracellular Matrix on True Bone Ceramic Induce Bone Regeneration Through Smad1/5/8 and ERK1/2 Pathways. Tissue Eng Part A 2018; 24:502-515. [PMID: 28602124 DOI: 10.1089/ten.tea.2017.0179] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Yao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Taikang Tongji Hospital, Wuhan, China
| | - Yushi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Yanhui Ji
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanzhen Qu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Abstract
The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.
Collapse
Affiliation(s)
- Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical Engineering, David H. Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories of Tumour Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Cox 7, Boston, Massachusetts 02114, USA
| | - Robert Langer
- Department of Chemical Engineering, David H. Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
11
|
Peng W, Datta P, Ayan B, Ozbolat V, Sosnoski D, Ozbolat IT. 3D bioprinting for drug discovery and development in pharmaceutics. Acta Biomater 2017; 57:26-46. [PMID: 28501712 DOI: 10.1016/j.actbio.2017.05.025] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 02/08/2023]
Abstract
Successful launch of a commercial drug requires significant investment of time and financial resources wherein late-stage failures become a reason for catastrophic failures in drug discovery. This calls for infusing constant innovations in technologies, which can give reliable prediction of efficacy, and more importantly, toxicology of the compound early in the drug discovery process before clinical trials. Though computational advances have resulted in more rationale in silico designing, in vitro experimental studies still require gaining industry confidence and improving in vitro-in vivo correlations. In this quest, due to their ability to mimic the spatial and chemical attributes of native tissues, three-dimensional (3D) tissue models have now proven to provide better results for drug screening compared to traditional two-dimensional (2D) models. However, in vitro fabrication of living tissues has remained a bottleneck in realizing the full potential of 3D models. Recent advances in bioprinting provide a valuable tool to fabricate biomimetic constructs, which can be applied in different stages of drug discovery research. This paper presents the first comprehensive review of bioprinting techniques applied for fabrication of 3D tissue models for pharmaceutical studies. A comparative evaluation of different bioprinting modalities is performed to assess the performance and ability of fabricating 3D tissue models for pharmaceutical use as the critical selection of bioprinting modalities indeed plays a crucial role in efficacy and toxicology testing of drugs and accelerates the drug development cycle. In addition, limitations with current tissue models are discussed thoroughly and future prospects of the role of bioprinting in pharmaceutics are provided to the reader. STATEMENT OF SIGNIFICANCE Present advances in tissue biofabrication have crucial role to play in aiding the pharmaceutical development process achieve its objectives. Advent of three-dimensional (3D) models, in particular, is viewed with immense interest by the community due to their ability to mimic in vivo hierarchical tissue architecture and heterogeneous composition. Successful realization of 3D models will not only provide greater in vitro-in vivo correlation compared to the two-dimensional (2D) models, but also eventually replace pre-clinical animal testing, which has their own shortcomings. Amongst all fabrication techniques, bioprinting- comprising all the different modalities (extrusion-, droplet- and laser-based bioprinting), is emerging as the most viable fabrication technique to create the biomimetic tissue constructs. Notwithstanding the interest in bioprinting by the pharmaceutical development researchers, it can be seen that there is a limited availability of comparative literature which can guide the proper selection of bioprinting processes and associated considerations, such as the bioink selection for a particular pharmaceutical study. Thus, this work emphasizes these aspects of bioprinting and presents them in perspective of differential requirements of different pharmaceutical studies like in vitro predictive toxicology, high-throughput screening, drug delivery and tissue-specific efficacies. Moreover, since bioprinting techniques are mostly applied in regenerative medicine and tissue engineering, a comparative analysis of similarities and differences are also expounded to help researchers make informed decisions based on contemporary literature.
Collapse
|
12
|
Lovitt CJ, Shelper TB, Avery VM. Cancer drug discovery: recent innovative approaches to tumor modeling. Expert Opin Drug Discov 2017; 11:885-94. [PMID: 27454169 DOI: 10.1080/17460441.2016.1214562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Cell culture models have been at the heart of anti-cancer drug discovery programs for over half a century. Advancements in cell culture techniques have seen the rapid evolution of more complex in vitro cell culture models investigated for use in drug discovery. Three-dimensional (3D) cell culture research has become a strong focal point, as this technique permits the recapitulation of the tumor microenvironment. Biologically relevant 3D cellular models have demonstrated significant promise in advancing cancer drug discovery, and will continue to play an increasing role in the future. AREAS COVERED In this review, recent advances in 3D cell culture techniques and their application in tumor modeling and anti-cancer drug discovery programs are discussed. The topics include selection of cancer cells, 3D cell culture assays (associated endpoint measurements and analysis), 3D microfluidic systems and 3D bio-printing. EXPERT OPINION Although advanced cancer cell culture models and techniques are becoming commonplace in many research groups, the use of these approaches has yet to be fully embraced in anti-cancer drug applications. Furthermore, limitations associated with analyzing information-rich biological data remain unaddressed.
Collapse
Affiliation(s)
- Carrie J Lovitt
- a Discovery Biology, Eskitis Institute for Drug Discovery , Griffith University , Nathan , Australia
| | - Todd B Shelper
- a Discovery Biology, Eskitis Institute for Drug Discovery , Griffith University , Nathan , Australia
| | - Vicky M Avery
- a Discovery Biology, Eskitis Institute for Drug Discovery , Griffith University , Nathan , Australia
| |
Collapse
|
13
|
|
14
|
Binder MJ, McCoombe S, Williams ED, McCulloch DR, Ward AC. The extracellular matrix in cancer progression: Role of hyalectan proteoglycans and ADAMTS enzymes. Cancer Lett 2016; 385:55-64. [PMID: 27838414 DOI: 10.1016/j.canlet.2016.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023]
Abstract
Remodelling of the extracellular matrix (ECM) has emerged as a key factor in cancer progression. Proteoglycans, including versican and other hyalectans, represent major structural elements of the ECM where they interact with other important molecules, including the glycosaminoglycan hyaluronan and the CD44 cell surface receptor. The hyalectan proteoglycans are regulated through cleavage by the proteolytic actions of A Disintegrin-like And Metalloproteinase domain with Thrombospondin-1 motif (ADAMTS) family members. Alteration in the balance between hyalectan proteoglycans and ADAMTS enzymes has been proposed to be a crucial factor in cancer progression either in a positive or negative manner depending on the context. Further complexity arises due to the formation of bioactive cleavage products, such as versikine, which may also play a role, and non-enzymatic functions for ADAMTS proteins. This research is providing fresh insights into cancer biology and opportunities for the development of new diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Marley J Binder
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Scott McCoombe
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland 4000, Australia
| | - Daniel R McCulloch
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
15
|
Fong ELS, Harrington DA, Farach-Carson MC, Yu H. Heralding a new paradigm in 3D tumor modeling. Biomaterials 2016; 108:197-213. [PMID: 27639438 DOI: 10.1016/j.biomaterials.2016.08.052] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/14/2022]
Abstract
Numerous studies to date have contributed to a paradigm shift in modeling cancer, moving from the traditional two-dimensional culture system to three-dimensional (3D) culture systems for cancer cell culture. This led to the inception of tumor engineering, which has undergone rapid advances over the years. In line with the recognition that tumors are not merely masses of proliferating cancer cells but rather, highly complex tissues consisting of a dynamic extracellular matrix together with stromal, immune and endothelial cells, significant efforts have been made to better recapitulate the tumor microenvironment in 3D. These approaches include the development of engineered matrices and co-cultures to replicate the complexity of tumor-stroma interactions in vitro. However, the tumor engineering and cancer biology fields have traditionally relied heavily on the use of cancer cell lines as a cell source in tumor modeling. While cancer cell lines have contributed to a wealth of knowledge in cancer biology, the use of this cell source is increasingly perceived as a major contributing factor to the dismal failure rate of oncology drugs in drug development. Backing this notion is the increasing evidence that tumors possess intrinsic heterogeneity, which predominantly homogeneous cancer cell lines poorly reflect. Tumor heterogeneity contributes to therapeutic resistance in patients. To overcome this limitation, cancer cell lines are beginning to be replaced by primary tumor cell sources, in the form of patient-derived xenografts and organoids cultures. Moving forward, we propose that further advances in tumor engineering would require that tumor heterogeneity (tumor variants) be taken into consideration together with tumor complexity (tumor-stroma interactions). In this review, we provide a comprehensive overview of what has been achieved in recapitulating tumor complexity, and discuss the importance of incorporating tumor heterogeneity into 3D in vitro tumor models. This work carves out the roadmap for 3D tumor engineering and highlights some of the challenges that need to be addressed as we move forward into the next chapter.
Collapse
Affiliation(s)
- Eliza L S Fong
- Department of Physiology, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore.
| | | | | | - Hanry Yu
- Department of Physiology, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore; Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Li M, He P, Wu Y, Zhang Y, Xia H, Zheng Y, Han Y. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway. Sci Rep 2016; 6:32323. [PMID: 27580744 PMCID: PMC5007487 DOI: 10.1038/srep32323] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/05/2016] [Indexed: 12/30/2022] Open
Abstract
The influence of Mg-1Ca-xwt.% Sr (x = 0.2, 0.5, 1.0, 2.0) alloys on the osteogenic differentiation and mineralization of pre-osteoblast MC3T3-E1 were studied through typical differentiation markers, such as intracellular alkaline phosphatase (ALP) activity, extracellular collagen secretion and calcium nodule formation. It was shown that Mg-1Ca alloys with different content of Sr promoted cell viability and enhanced the differentiation and mineralization levels of osteoblasts, and Mg-1Ca-2.0Sr alloy had the most remarkable and significant effect among all. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the mRNA expression level of osteogenesis-related genes and intracellular signaling pathways involved in osteogenesis, respectively. RT-PCR results showed that Mg-1Ca-2.0Sr alloy significantly up-regulated the expressions of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), Integrin subunits, as well as alkaline phosphatase (ALP), Bone sialoprotein (BSP), Collagen I (COL I), Osteocalcin (OCN) and Osteopontin (OPN). Western Blotting results suggested that Mg-1Ca-2.0Sr alloy rapidly induced extracellular signal-regulated kinase (ERK) activation but showed no obvious effects on c-Jun N terminal kinase (JNK) and p38 kinase of MAPK. Taken together, our results demonstrated that Mg-1Ca-2.0Sr alloy had excellent biocompatibility and osteogenesis via the ERK pathway and is expected to be promising as orthopedic implants and bone repair materials.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Peng He
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, 305 zhongshandong road, Nanjing 210002, China
| | - Yuanhao Wu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Guangzhou General Hospital of Guangzhou military command, 111 Liuhua Road, Guangzhou 510010, China
| | - Hong Xia
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Guangzhou General Hospital of Guangzhou military command, 111 Liuhua Road, Guangzhou 510010, China
| | - Yufeng Zheng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
17
|
Del Bufalo F, Manzo T, Hoyos V, Yagyu S, Caruana I, Jacot J, Benavides O, Rosen D, Brenner MK. 3D modeling of human cancer: A PEG-fibrin hydrogel system to study the role of tumor microenvironment and recapitulate the in vivo effect of oncolytic adenovirus. Biomaterials 2016; 84:76-85. [DOI: 10.1016/j.biomaterials.2016.01.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/08/2016] [Accepted: 01/15/2016] [Indexed: 01/29/2023]
|
18
|
Afasizheva A, Devine A, Tillman H, Fung KL, Vieira WD, Blehm BH, Kotobuki Y, Busby B, Chen EI, Tanner K. Mitogen-activated protein kinase signaling causes malignant melanoma cells to differentially alter extracellular matrix biosynthesis to promote cell survival. BMC Cancer 2016; 16:186. [PMID: 26944546 PMCID: PMC4779217 DOI: 10.1186/s12885-016-2211-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intrinsic and acquired resistance to drug therapies remains a challenge for malignant melanoma patients. Intratumoral heterogeneities within the tumor microenvironment contribute additional complexity to the determinants of drug efficacy and acquired resistance. METHODS We use 3D biomimetic platforms to understand dynamics in extracellular matrix (ECM) biogenesis following pharmaceutical intervention against mitogen-activated protein kinases (MAPK) signaling. We further determined temporal evolution of secreted ECM components by isogenic melanoma cell clones. RESULTS We found that the cell clones differentially secrete and assemble a myriad of ECM molecules into dense fibrillar and globular networks. We show that cells can modulate their ECM biosynthesis in response to external insults. Fibronectin (FN) is one of the key architectural components, modulating the efficacy of a broad spectrum of drug therapies. Stable cell lines engineered to secrete minimal levels of FN showed a concomitant increase in secretion of Tenascin-C and became sensitive to BRAF(V600E) and ERK inhibition as clonally- derived 3D tumor aggregates. These cells failed to assemble exogenous FN despite maintaining the integrin machinery to facilitate cell- ECM cross-talk. We determined that only clones that increased FN production via p38 MAPK and β1 integrin survived drug treatment. CONCLUSIONS These data suggest that tumor cells engineer drug resistance by altering their ECM biosynthesis. Therefore, drug treatment may induce ECM biosynthesis, contributing to de novo resistance.
Collapse
Affiliation(s)
- Anna Afasizheva
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA.
| | - Alexus Devine
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA.
| | - Heather Tillman
- Laboratories of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, 20892, MD, USA.
| | - King Leung Fung
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA.
| | - Wilfred D Vieira
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA.
| | - Benjamin H Blehm
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA.
| | - Yorihisa Kotobuki
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA.
| | - Ben Busby
- National Centers for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20892, MD, USA.
| | - Emily I Chen
- Proteomics Shared Resource at the Herbert Irving Comprehensive Cancer Center & Department of Pharmacology, Columbia University Medical Center, New York, 10032, NY, USA.
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Holle AW, Young JL, Spatz JP. In vitro cancer cell-ECM interactions inform in vivo cancer treatment. Adv Drug Deliv Rev 2016; 97:270-9. [PMID: 26485156 DOI: 10.1016/j.addr.2015.10.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/05/2015] [Accepted: 10/11/2015] [Indexed: 02/07/2023]
Abstract
The general progression of cancer drug development involves in vitro testing followed by safety and efficacy evaluation in clinical trials. Due to the expense of bringing candidate drugs to trials, in vitro models of cancer cells and tumor biology are required to screen drugs. There are many examples of drugs exhibiting cytotoxic behavior in cancer cells in vitro but losing efficacy in vivo, and in many cases, this is the result of poorly understood chemoresistant effects conferred by the cancer microenvironment. To address this, improved methods for culturing cancer cells in biomimetic scaffolds have been developed; along the way, a great deal about the nature of cancer cell-extracellular matrix (ECM) interactions has been discovered. These discoveries will continue to be leveraged both in the development of novel drugs targeting these interactions and in the fabrication of biomimetic substrates for efficient cancer drug screening in vitro.
Collapse
|
20
|
Blehm BH, Devine A, Staunton JR, Tanner K. In vivo tissue has non-linear rheological behavior distinct from 3D biomimetic hydrogels, as determined by AMOTIV microscopy. Biomaterials 2015; 83:66-78. [PMID: 26773661 DOI: 10.1016/j.biomaterials.2015.12.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
Abstract
Variation in matrix elasticity has been shown to determine cell fate in both differentiation and development of malignant phenotype. The tissue microenvironment provides complex biochemical and biophysical signals in part due to the architectural heterogeneities found in extracellular matrices (ECMs). Three dimensional cell cultures can partially mimic in vivo tissue architecture, but to truly understand the role of viscoelasticity on cell fate, we must first determine in vivo tissue mechanical properties to improve in vitro models. We employed Active Microrheology by Optical Trapping InVivo (AMOTIV), using in situ calibration to measure in vivo zebrafish tissue mechanics. Previously used trap calibration methods overestimate complex moduli by ∼ 2-20 fold compared to AMOTIV. Applying differential microscale stresses and strains showed that hyaluronic acid (HA) gels display semi-flexible polymer behavior, while laminin-rich ECM hydrogels display flexible polymer behavior. In contrast, zebrafish tissues displayed different moduli at different stresses, with higher power law exponents at lower stresses, indicating that living tissue has greater stress dependence than the 3D hydrogels examined. To our knowledge, this work is the first vertebrate tissue rheological characterization performed in vivo. Our fundamental observations are important for the development and refinement of in vitro platforms.
Collapse
Affiliation(s)
- Benjamin H Blehm
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| | - Alexus Devine
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| | - Jack R Staunton
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Kim J, Tanner K. Recapitulating the Tumor Ecosystem Along the Metastatic Cascade Using 3D Culture Models. Front Oncol 2015; 5:170. [PMID: 26284194 PMCID: PMC4518327 DOI: 10.3389/fonc.2015.00170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/08/2015] [Indexed: 12/26/2022] Open
Abstract
Advances in cancer research have shown that a tumor can be likened to a foreign species that disrupts delicately balanced ecological interactions, compromising the survival of normal tissue ecosystems. In efforts to mitigate tumor expansion and metastasis, experimental approaches from ecology are becoming more frequently and successfully applied by researchers from diverse disciplines to reverse engineer and re-engineer biological systems in order to normalize the tumor ecosystem. We present a review on the use of 3D biomimetic platforms to recapitulate biotic and abiotic components of the tumor ecosystem, in efforts to delineate the underlying mechanisms that drive evolution of tumor heterogeneity, tumor dissemination, and acquisition of drug resistance.
Collapse
Affiliation(s)
- Jiyun Kim
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Nano System Institute, Seoul National University, Seoul, South Korea
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|