1
|
Morgun E, Zhu J, Almunif S, Bobbala S, Aguilar MS, Wang J, Conner K, Cui Y, Cao L, Seshadri C, Scott EA, Wang CR. Vaccination with mycobacterial lipid loaded nanoparticle leads to lipid antigen persistence and memory differentiation of antigen-specific T cells. eLife 2023; 12:RP87431. [PMID: 37877801 PMCID: PMC10599656 DOI: 10.7554/elife.87431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection elicits both protein and lipid antigen-specific T cell responses. However, the incorporation of lipid antigens into subunit vaccine strategies and formulations has been underexplored, and the characteristics of vaccine-induced Mtb lipid-specific memory T cells have remained elusive. Mycolic acid (MA), a major lipid component of the Mtb cell wall, is presented by human CD1b molecules to unconventional T cell subsets. These MA-specific CD1b-restricted T cells have been detected in the blood and disease sites of Mtb-infected individuals, suggesting that MA is a promising lipid antigen for incorporation into multicomponent subunit vaccines. In this study, we utilized the enhanced stability of bicontinuous nanospheres (BCN) to efficiently encapsulate MA for in vivo delivery to MA-specific T cells, both alone and in combination with an immunodominant Mtb protein antigen (Ag85B). Pulmonary administration of MA-loaded BCN (MA-BCN) elicited MA-specific T cell responses in humanized CD1 transgenic mice. Simultaneous delivery of MA and Ag85B within BCN activated both MA- and Ag85B-specific T cells. Notably, pulmonary vaccination with MA-Ag85B-BCN resulted in the persistence of MA, but not Ag85B, within alveolar macrophages in the lung. Vaccination of MA-BCN through intravenous or subcutaneous route, or with attenuated Mtb likewise reproduced MA persistence. Moreover, MA-specific T cells in MA-BCN-vaccinated mice differentiated into a T follicular helper-like phenotype. Overall, the BCN platform allows for the dual encapsulation and in vivo activation of lipid and protein antigen-specific T cells and leads to persistent lipid depots that could offer long-lasting immune responses.
Collapse
Affiliation(s)
- Eva Morgun
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Jennifer Zhu
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Sultan Almunif
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Melissa S Aguilar
- Department of Medicine, University of Washington School of MedicineSeattleUnited States
| | - Junzhong Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Kathleen Conner
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Yongyong Cui
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of MedicineSeattleUnited States
| | - Evan A Scott
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
2
|
Morgun E, Zhu J, Almunif S, Bobbala S, Aguilar MS, Wang J, Conner K, Cui Y, Cao L, Seshadri C, Scott EA, Wang CR. Vaccination with mycobacterial lipid loaded nanoparticle leads to lipid antigen persistence and memory differentiation of antigen-specific T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531489. [PMID: 36945395 PMCID: PMC10028924 DOI: 10.1101/2023.03.07.531489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mycobacterium tuberculosis (Mtb) infection elicits both protein and lipid antigen-specific T cell responses. However, the incorporation of lipid antigens into subunit vaccine strategies and formulations has been underexplored, and the characteristics of vaccine-induced Mtb lipid-specific memory T cells have remained elusive. Mycolic acid (MA), a major lipid component of the Mtb cell wall, is presented by human CD1b molecules to unconventional T cell subsets. These MA-specific CD1b-restricted T cells have been detected in the blood and disease sites of Mtb-infected individuals, suggesting that MA is a promising lipid antigen for incorporation into multicomponent subunit vaccines. In this study, we utilized the enhanced stability of bicontinuous nanospheres (BCN) to efficiently encapsulate MA for in vivo delivery to MA-specific T cells, both alone and in combination with an immunodominant Mtb protein antigen (Ag85B). Pulmonary administration of MA-loaded BCN (MA-BCN) elicited MA-specific T cell responses in humanized CD1 transgenic mice. Simultaneous delivery of MA and Ag85B within BCN activated both MA- and Ag85B-specific T cells. Notably, pulmonary vaccination with MA-Ag85B-BCN resulted in the persistence of MA, but not Ag85B, within alveolar macrophages in the lung. Vaccination of MA-BCN through intravenous or subcutaneous route, or with attenuated Mtb likewise reproduced MA persistence. Moreover, MA-specific T cells in MA-BCN-vaccinated mice differentiated into a T follicular helper-like phenotype. Overall, the BCN platform allows for the dual encapsulation and in vivo activation of lipid and protein antigen-specific T cells and leads to persistent lipid depots that could offer long-lasting immune responses.
Collapse
Affiliation(s)
- Eva Morgun
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jennifer Zhu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sultan Almunif
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Melissa S. Aguilar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Junzhong Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kathleen Conner
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yongyong Cui
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Evan A. Scott
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Sadeghi M, Asadirad A, Koushki K, Keshavarz Shahbaz S, Dehnavi S. Recent advances in improving intranasal allergen-specific immunotherapy; focus on delivery systems and adjuvants. Int Immunopharmacol 2022; 113:109327. [PMID: 36257257 DOI: 10.1016/j.intimp.2022.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Allergen-specific Immunotherapy (AIT) is the main therapeutic strategy to control and treat allergic disorders. Intranasal Immunotherapy (INIT) was introduced as a needle-free, noninvasive, and efficient approach among various routes of allergen administration. Since direct exposure of nasal mucosa to allergen extracts could induce local and systemic reactions, recent studies focus on establishing novel formulations using various delivery systems and adjuvants to improve INIT efficacy. This review categorizes and describes natural and synthetic micro/nanoparticles such as chitosan, PLGA, liposome, exosome, and nano-emulation droplets used as delivery systems or immunomodulatory and immune-regulatory agents. Also, multiple microbial agents, including probiotics, mycobacterial and viral components, TLR ligands, and biologic agents, i.e., antibody fragments, recombinant cytokines, vitamin A, and pulsed dendritic cells (DCs), are other platforms that are discussed. In addition, future perspectives and proposed strategies to help INIT were provided.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum, and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Koushki
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Chapla R, Huynh KT, Schutt CE. Microbubble–Nanoparticle Complexes for Ultrasound-Enhanced Cargo Delivery. Pharmaceutics 2022; 14:pharmaceutics14112396. [PMID: 36365214 PMCID: PMC9698658 DOI: 10.3390/pharmaceutics14112396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Targeted delivery of therapeutics to specific tissues is critically important for reducing systemic toxicity and optimizing therapeutic efficacy, especially in the case of cytotoxic drugs. Many strategies currently exist for targeting systemically administered drugs, and ultrasound-controlled targeting is a rapidly advancing strategy for externally-stimulated drug delivery. In this non-invasive method, ultrasound waves penetrate through tissue and stimulate gas-filled microbubbles, resulting in bubble rupture and biophysical effects that power delivery of attached cargo to surrounding cells. Drug delivery capabilities from ultrasound-sensitive microbubbles are greatly expanded when nanocarrier particles are attached to the bubble surface, and cargo loading is determined by the physicochemical properties of the nanoparticles. This review serves to highlight and discuss current microbubble–nanoparticle complex component materials and designs for ultrasound-mediated drug delivery. Nanocarriers that have been complexed with microbubbles for drug delivery include lipid-based, polymeric, lipid–polymer hybrid, protein, and inorganic nanoparticles. Several schemes exist for linking nanoparticles to microbubbles for efficient nanoparticle delivery, including biotin–avidin bridging, electrostatic bonding, and covalent linkages. When compared to unstimulated delivery, ultrasound-mediated cargo delivery enables enhanced cell uptake and accumulation of cargo in target organs and can result in improved therapeutic outcomes. These ultrasound-responsive delivery complexes can also be designed to facilitate other methods of targeting, including bioactive targeting ligands and responsivity to light or magnetic fields, and multi-level targeting can enhance therapeutic efficacy. Microbubble–nanoparticle complexes present a versatile platform for controlled drug delivery via ultrasound, allowing for enhanced tissue penetration and minimally invasive therapy. Future perspectives for application of this platform are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Chapla
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
| | - Katherine T. Huynh
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carolyn E. Schutt
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
5
|
Kooiman K, Roovers S, Langeveld SAG, Kleven RT, Dewitte H, O'Reilly MA, Escoffre JM, Bouakaz A, Verweij MD, Hynynen K, Lentacker I, Stride E, Holland CK. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1296-1325. [PMID: 32165014 PMCID: PMC7189181 DOI: 10.1016/j.ultrasmedbio.2020.01.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 05/03/2023]
Abstract
Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood-brain and blood-spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments.
Collapse
Affiliation(s)
- Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Silke Roovers
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Simone A G Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Medical School of the Vrije Universiteit Brussel, Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Christy K Holland
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
6
|
Corthésy B, Bioley G. Lipid-Based Particles: Versatile Delivery Systems for Mucosal Vaccination against Infection. Front Immunol 2018; 9:431. [PMID: 29563912 PMCID: PMC5845866 DOI: 10.3389/fimmu.2018.00431] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Vaccination is the process of administering immunogenic formulations in order to induce or harness antigen (Ag)-specific antibody and T cell responses in order to protect against infections. Important successes have been obtained in protecting individuals against many deleterious pathological situations after parenteral vaccination. However, one of the major limitations of the current vaccination strategies is the administration route that may not be optimal for the induction of immunity at the site of pathogen entry, i.e., mucosal surfaces. It is now well documented that immune responses along the genital, respiratory, or gastrointestinal tracts have to be elicited locally to ensure efficient trafficking of effector and memory B and T cells to mucosal tissues. Moreover, needle-free mucosal delivery of vaccines is advantageous in terms of safety, compliance, and ease of administration. However, the quest for mucosal vaccines is challenging due to (1) the fact that Ag sampling has to be performed across the epithelium through a relatively limited number of portals of entry; (2) the deleterious acidic and proteolytic environment of the mucosae that affect the stability, integrity, and retention time of the applied Ags; and (3) the tolerogenic environment of mucosae, which requires the addition of adjuvants to elicit efficient effector immune responses. Until now, only few mucosally applicable vaccine formulations have been developed and successfully tested. In animal models and clinical trials, the use of lipidic structures such as liposomes, virosomes, immune stimulating complexes, gas-filled microbubbles and emulsions has proven efficient for the mucosal delivery of associated Ags and the induction of local and systemic immune reponses. Such particles are suitable for mucosal delivery because they protect the associated payload from degradation and deliver concentrated amounts of Ags via specialized sampling cells (microfold cells) within the mucosal epithelium to underlying antigen-presenting cells. The review aims at summarizing recent development in the field of mucosal vaccination using lipid-based particles. The modularity ensured by tailoring the lipidic design and content of particles, and their known safety as already established in humans, make the continuing appraisal of these vaccine candidates a promising development in the field of targeted mucosal vaccination.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Gilles Bioley
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
7
|
Single dose HBsAg CS-γ-PGA nanogels induce potent protective immune responses against HBV infection. Eur J Pharm Biopharm 2017; 124:82-88. [PMID: 29247691 DOI: 10.1016/j.ejpb.2017.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/28/2017] [Indexed: 01/04/2023]
Abstract
Hepatitis B virus (HBV) infection is a severe threat to public health, which can be prevented by prophylactic vaccination. Here, we tested nanogels carriers in the prophylactic effect of hepatitis B surface antigen (HBsAg) vaccine. HBsAg nanogels (Ng) were prepared using chitosan (CS) and poly-γ-glutamic acid (γ-PGA). Positively charged Ng (+) and negatively charged Ng (-) were prepared by adjusting the CS and γ-PGA proportion. Dendritic cells (DCs) maturation in mice immunized with HBsAg Ng (+) and HBsAg Ng (-) could be augmented in response to pAAV/HBV1.2 plasmid challenge. Single-dose immunization with HBsAg Ng (+) induced HBsAg specific-antibodies. HBsAg Ng (+) immunized mice cleared HBsAg and restored anti-HBs production after pAAV/HBV1.2 plasmid challenge. Single-dose HBsAg Ng (+) induced humoral and cellular immunity, and could induce effector memory T cells. Single-dose HBsAg Ng (-) favored the induction of cellular immunity, and induced central memory T cells and effector memory T cells. However, HBsAg elimination was similar between HBsAg Ng (+)- and HBsAg Ng (+) plus HBsAg Ng (-)-immunized mice. Zeta potential measurements showed that HBsAg Ng (+) were more stable than HBsAg Ng (-). Therefore, Ng (+) are desirable HBsAg prophylactic vaccine carriers, providing long-term protection against HBV, and are a good choice to study and apply weakly immunostimulatory antigens.
Collapse
|
8
|
Corthésy B, Bioley G. Therapeutic intranasal instillation of allergen-loaded microbubbles suppresses experimental allergic asthma in mice. Biomaterials 2017; 142:41-51. [PMID: 28727997 DOI: 10.1016/j.biomaterials.2017.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022]
Abstract
Despite proven efficiency, subcutaneous immunotherapy for aeroallergens is impaired by the duration of the protocol, the repeated injections and potential side-effects associated with the doses of allergen administered. Intranasal delivery of immunotherapeutic agents may overcome several of these drawbacks, provided that an efficient allergen delivery vehicle can be identified. This study evaluates whether intranasally delivered gas-filled microbubble (MB)-associated ovalbumin (OVA), used as a model allergen, can serve as a therapeutic treatment in a mouse model of established allergic asthma. Lung and systemic production of pro-tolerogenic markers, including Foxp3+ CD4 T cells, IL-10, and TGF-β, as well as the Th1-type cytokine IFN-γ, was observed after intranasal immunization with OVA-MB. Post-treatment, aerosol-sensitized mice exhibited the same pattern of markers. Moreover, decrease of eosinophils and neutrophils in BALs, lower frequencies of Th2 cytokine- and IL-17-producing CD4 T cells in lungs and reduced specific IgE in BALs and sera after allergen challenge were observed. Concomitantly, lung resistance and mucus production diminished in OVA-MB-treated animals. Thus, therapeutic intranasal administration of OVA-MBs in established experimental allergic asthma allows modulating pathology-associated immune and physiological parameters usually triggered after exposure to the allergen.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, University State Hospital (CHUV), Epalinges, Switzerland
| | - Gilles Bioley
- R&D Laboratory, Division of Immunology and Allergy, University State Hospital (CHUV), Epalinges, Switzerland.
| |
Collapse
|
9
|
Corthésy B, Bioley G. Gas-filled microbubbles: Novel mucosal antigen-delivery system for induction of anti-pathogen's immune responses in the gut. Gut Microbes 2017; 8:511-519. [PMID: 28541767 PMCID: PMC5628650 DOI: 10.1080/19490976.2017.1334032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Despite important success in protecting individuals against many pathogenic infections, parenteral vaccination is not optimal to induce immunity at the site of pathogen entry, i.e. mucosal surfaces. Moreover, designing adequate delivery systems and safe adjuvants to overcome the inherent tolerogenic environment of the mucosal tissue is challenging, in particular in the gastrointestinal tract prone to antigen degradation. We recently demonstrated that intranasal administration of a Salmonella-derived antigen associated with gas-filled microbubbles induced specific Ab and T cell responses in the gut and was associated with a reduction in local and systemic bacterial load after oral Salmonella infection. Building on these promising data, the adequate choice of antigen(s) to be administered and how to make it suitable for possible human application are discussed. We additionally present novel data dealing with oral administration of microbubbles and describe research strategies to direct them to mucosal sampling/inductive sites.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, University State Hospital (CHUV), Epalinges, Switzerland
| | - Gilles Bioley
- R&D Laboratory, Division of Immunology and Allergy, University State Hospital (CHUV), Epalinges, Switzerland,CONTACT Dr. Gilles Bioley R&D Laboratory, Division of Immunology and Allergy, University State Hospital (CHUV), CLE-D2–205, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| |
Collapse
|
10
|
Corthésy B, Lassus A, Terrettaz J, Tranquart F, Bioley G. Efficacy of a therapeutic treatment using gas-filled microbubble-associated phospholipase A2 in a mouse model of honeybee venom allergy. Allergy 2016; 71:957-66. [PMID: 26850222 DOI: 10.1111/all.12859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Venom immunotherapy is efficient to desensitize people suffering from insect sting allergies. However, the numerous injections required over several years and important risks of severe side reactions complicate the widespread use of immunotherapy. In the search for novel approaches to blunt the overwhelming pro-allergic Th2 response, we evaluated the therapeutic efficacy of a treatment based on a denatured form of the major allergen, phospholipase A2, associated with microbubbles (PLA2denat -MB) in a mouse model of honeybee venom allergy. METHODS Antibodies measured by ELISA, T-cell responses assessed by CFSE-based proliferation assays and ELISA, and basophil degranulation were examined after PLA2denat -MB-based therapeutic treatment of sensitized mice. Mice were challenged with a lethal dose of PLA2 to evaluate protection against anaphylaxis. RESULTS Therapeutic subcutaneous administration of two different PLA2denat -MB formulations, in contrast to PLA2denat alone, reduced allergic symptoms and protected all mice from anaphylaxis-mediated death after allergen challenge. At the functional level, the use of PLA2denat decreased IgE-mediated basophil degranulation as compared to the native form of the allergen. In comparison with PLA2denat alone, both PLA2denat -MB formulations decreased allergen-specific Th2 CD4 T-cell reactivity. At the mechanistic level, PLA2denat -MB containing 20% palmitic acid and PEG induced PLA2-specific IgA and increased Foxp3(+) Treg frequencies and TGF-β production, whereas the formulation bearing 80% palmitic acid triggered the production of IFN-γ, IgG2a, and IgG3. CONCLUSIONS In contrast to conventional PLA2 subcutaneous immunotherapy, the therapeutic administration of PLA2-MB treatment to mice that already had established allergy to PLA2 protects all subsequently challenged animals.
Collapse
Affiliation(s)
- B. Corthésy
- R&D Laboratory; Division of Immunology and Allergy; University State Hospital (CHUV); Epalinges Switzerland
| | - A. Lassus
- Bracco Suisse SA; Plan-Les-Ouates Switzerland
| | | | | | - G. Bioley
- R&D Laboratory; Division of Immunology and Allergy; University State Hospital (CHUV); Epalinges Switzerland
| |
Collapse
|
11
|
Pigny F, Lassus A, Terrettaz J, Tranquart F, Corthésy B, Bioley G. Intranasal Vaccination WithSalmonella-Derived Serodominant Secreted Effector Protein B Associated With Gas-Filled Microbubbles Partially Protects Against Gut Infection in Mice. J Infect Dis 2016; 214:438-46. [DOI: 10.1093/infdis/jiw162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
|
12
|
Dhama K, Karthik K, Tiwari R, Shabbir MZ, Barbuddhe S, Malik SVS, Singh RK. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: a comprehensive review. Vet Q 2015; 35:211-35. [PMID: 26073265 DOI: 10.1080/01652176.2015.1063023] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Listeriosis is an infectious and fatal disease of animals, birds, fish, crustaceans and humans. It is an important food-borne zoonosis caused by Listeria monocytogenes, an intracellular pathogen with unique potential to spread from cell to cell, thereby crossing blood-brain, intestinal and placental barriers. The organism possesses a pile of virulence factors that help to infect the host and evade from host immune machinery. Though disease occurrence is sporadic throughout the world, it can result in severe damage during an outbreak. Listeriosis is characterized by septicaemia, encephalitis, meningitis, meningoencephalitis, abortion, stillbirth, perinatal infections and gastroenteritis with the incubation period varying with the form of infection. L. monocytogenes has been isolated worldwide from humans, animals, poultry, environmental sources like soil, river, decaying plants, and food sources like milk, meat and their products, seafood and vegetables. Since appropriate vaccines are not available and infection is mainly transmitted through foods in humans and animals, hygienic practices can prevent its spread. The present review describes etiology, epidemiology, transmission, clinical signs, post-mortem lesions, pathogenesis, public health significance, and advances in diagnosis, vaccines and treatment of this disease. Special attention has been given to novel as well as prospective emerging therapies that include bacteriophage and cytokine therapy, avian egg yolk antibodies and herbal therapy. Various vaccines, including advances in recombinant and DNA vaccines and their modes of eliciting immune response, are also discussed. Due focus has also been given regarding appropriate prevention and control strategies to be adapted for better management of this zoonotic disease.
Collapse
Affiliation(s)
- Kuldeep Dhama
- a Division of Pathology , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Kumaragurubaran Karthik
- b Division of Bacteriology and Mycology , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Ruchi Tiwari
- c Department of Veterinary Microbiology and Immunology , College of Veterinary Sciences , Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura 281001 , India
| | - Muhammad Zubair Shabbir
- d Quality Operations Laboratory , University of Veterinary and Animal Sciences , Lahore 54600, Pakistan
| | - Sukhadeo Barbuddhe
- e Indian Council of Agricultural Research Complex for Goa , Old Goa, Goa 403402, India
| | - Satya Veer Singh Malik
- f Division of Veterinary Public Health , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Raj Kumar Singh
- g Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| |
Collapse
|