1
|
Fan CH, Yeh CK. Theranostic nanomaterials for intervention of the blood–brain barrier. THERANOSTICS NANOMATERIALS IN DRUG DELIVERY 2025:395-410. [DOI: 10.1016/b978-0-443-22044-9.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
3
|
Hang Z, Zhou L, Bian X, Liu G, Cui F, Du H, Wen Y. Potential application of aptamers combined with DNA nanoflowers in neurodegenerative diseases. Ageing Res Rev 2024; 100:102444. [PMID: 39084322 DOI: 10.1016/j.arr.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The efficacy of neurotherapeutic drugs hinges on their ability to traverse the blood-brain barrier and access the brain, which is crucial for treating or alleviating neurodegenerative diseases (NDs). Given the absence of definitive cures for NDs, early diagnosis and intervention become paramount in impeding disease progression. However, conventional therapeutic drugs and existing diagnostic approaches must meet clinical demands. Consequently, there is a pressing need to advance drug delivery systems and early diagnostic methods tailored for NDs. Certain aptamers endowed with specific functionalities find widespread utility in the targeted therapy and diagnosis of NDs. DNA nanoflowers (DNFs), distinctive flower-shaped DNA nanomaterials, are intricately self-assembled through rolling ring amplification (RCA) of circular DNA templates. Notably, imbuing DNFs with diverse functionalities becomes seamlessly achievable by integrating aptamer sequences with specific functions into RCA templates, resulting in a novel nanomaterial, aptamer-bound DNFs (ADNFs) that amalgamates the advantageous features of both components. This article delves into the characteristics and applications of aptamers and DNFs, exploring the potential or application of ADNFs in drug-targeted delivery, direct treatment, early diagnosis, etc. The objective is to offer prospective ideas for the clinical treatment or diagnosis of NDs, thereby contributing to the ongoing efforts in this critical field.
Collapse
Affiliation(s)
- Zhongci Hang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiaochun Bian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guotao Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fenghe Cui
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangdingdong Road, Zhifu District, Yantai, Shandong 264000, China.
| | - Hongwu Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
Huang J, Fu Y, Wang A, Shi K, Peng Y, Yi Y, Yu R, Gao J, Feng J, Jiang G, Song Q, Jiang J, Chen H, Gao X. Brain Delivery of Protein Therapeutics by Cell Matrix-Inspired Biomimetic Nanocarrier. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405323. [PMID: 38718295 DOI: 10.1002/adma.202405323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Indexed: 05/24/2024]
Abstract
Protein therapeutics are anticipated to offer significant treatment options for central nervous system (CNS) diseases. However, the majority of proteins are unable to traverse the blood-brain barrier (BBB) and reach their CNS target sites. Inspired by the natural environment of active proteins, the cell matrix components hyaluronic acid (HA) and protamine (PRTM) are used to self-assemble with proteins to form a protein-loaded biomimetic core and then incorporated into ApoE3-reconstituted high-density lipoprotein (rHDL) to form a protein-loaded biomimetic nanocarrier (Protein-HA-PRTM-rHDL). This cell matrix-inspired biomimetic nanocarrier facilitates the penetration of protein therapeutics across the BBB and enables their access to intracellular target sites. Specifically, CAT-HA-PRTM-rHDL facilitates rapid intracellular delivery and release of catalase (CAT) via macropinocytosis-activated membrane fusion, resulting in improved spatial learning and memory in traumatic brain injury (TBI) model mice (significantly reduces the latency of TBI mice and doubles the number of crossing platforms), and enhances motor function and prolongs survival in amyotrophic lateral sclerosis (ALS) model mice (extended the median survival of ALS mice by more than 10 days). Collectively, this cell matrix-inspired nanoplatform enables the efficient CNS delivery of protein therapeutics and provides a novel approach for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Jialin Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuli Fu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Antian Wang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kexing Shi
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yidong Peng
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yao Yi
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Renhe Yu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinchao Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junfeng Feng
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiyao Jiang
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shuguang Lab for Future Health, Academy of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
5
|
Hang Z, Zhou L, Xing C, Wen Y, Du H. The blood-brain barrier, a key bridge to treat neurodegenerative diseases. Ageing Res Rev 2023; 91:102070. [PMID: 37704051 DOI: 10.1016/j.arr.2023.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
As a highly selective and semi-permeable barrier that separates the circulating blood from the brain and central nervous system (CNS), the blood-brain barrier (BBB) plays a critical role in the onset and treatment of neurodegenerative diseases (NDs). To delay or reverse the NDs progression, the dysfunction of BBB should be improved to protect the brain from harmful substances. Simultaneously, a highly efficient drug delivery across the BBB is indispensable. Here, we summarized several methods to improve BBB dysfunction in NDs, including knocking out risk geneAPOE4, regulating circadian rhythms, restoring the gut microenvironment, and activating the Wnt/β-catenin signaling pathway. Then we discussed the advances in BBB penetration techniques, such as transient BBB opening, carrier-mediated drug delivery, and nasal administration, which facilitates drug delivery across the BBB. Furthermore, various in vivo and in vitro BBB models and research methods related to NDs are reviewed. Based on the current research progress, the treatment of NDs in the long term should prioritize the integrity of the BBB. However, a treatment approach that combines precise control of transient BBB permeability and non-invasive targeted BBB drug delivery holds profound significance in improving treatment effectiveness, safety, and clinical feasibility during drug therapy. This review involves the cross application of biology, materials science, imaging, engineering and other disciplines in the field of BBB, aiming to provide multi-dimensional research directions and clinical ideas for the treating NDs.
Collapse
Affiliation(s)
- Zhongci Hang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhou
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Cencan Xing
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
6
|
Tang L, Fu C, Zhang A, Li X, Cao Y, Feng J, Liu H, Dong H, Wang W. Harnessing nanobiotechnology for cerebral ischemic stroke management. Biomater Sci 2023; 11:791-812. [PMID: 36545758 DOI: 10.1039/d2bm01790c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cerebral ischemic stroke remains one of the most serious neurological disorders that pose threats to human health, causing a large amount of long-term disability or even death throughout the world. Based on its physiologic and pathological features, there are limited available therapeutic options for effective ischemic stroke management. Encouragingly, a rapid advancement of nanobiotechnology is bringing new insights into exploring more alternative strategies against cerebral ischemic stroke, which can cleverly overcome the limitations related to conventional treatment methods. Therefore, this review focuses on the recent achievements of nanobiotechnology for ischemic stroke management, which emphasizes diverse targeted delivery strategies using various nanoplatforms including liposomes, micelles, polymeric nanoparticles, nanogels, inorganic nanomaterials, and cell-derived nano-vectors based on the pathophysiological features of ischemic stroke. Moreover, different therapeutic approaches against ischemic stroke such as neuroprotection, anti-inflammation, thrombolysis, increased blood-brain barrier penetration and reactive oxygen species scavenging are highlighted. Meanwhile, this review discusses how these versatile nanoplatforms were designed to assist in the treatment of ischemic stroke. Based on this, challenges, opportunities, and future perspectives using nanobiotechnology through rational design for effective ischemic stroke management are revealed.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Cong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Aining Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Xiyue Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yuqi Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Jingwen Feng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, 210009 Nanjing, China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| |
Collapse
|
7
|
Lv W, Liu Y, Li S, Lv L, Lu H, Xin H. Advances of nano drug delivery system for the theranostics of ischemic stroke. J Nanobiotechnology 2022; 20:248. [PMID: 35641956 PMCID: PMC9153106 DOI: 10.1186/s12951-022-01450-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023] Open
Abstract
From the global perspective, stroke refers to a highly common cause of disability and death. Ischemic stroke (IS), attributed to blood vessel blockage, preventing the flow of blood to brain, acts as the most common form of stroke. Thus far, thrombolytic therapy is the only clinical treatment for IS with the approval from the FDA. Moreover, the physiology barrier complicates therapeutically and diagnostically related intervention development of IS. Accordingly, developing efficient and powerful curative approaches for IS diagnosis and treatment is urgently required. The advent of nanotechnology has brought dawn and hope to better curative and imaging forms for the management of IS. This work reviews the recent advances and challenges correlated with the nano drug delivery system for IS therapy and diagnosis. The overview of the current knowledge of the important molecular pathological mechanisms in cerebral ischemia and how the drugs cross the blood brain barrier will also be briefly summarized.
Collapse
Affiliation(s)
- Wei Lv
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Yijiao Liu
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Shengnan Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Lingyan Lv
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Hongdan Lu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China.
| | - Hongliang Xin
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
8
|
Advanced drug delivery system against ischemic stroke. J Control Release 2022; 344:173-201. [PMID: 35248645 DOI: 10.1016/j.jconrel.2022.02.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|
9
|
Fukuta T, Oku N, Kogure K. Application and Utility of Liposomal Neuroprotective Agents and Biomimetic Nanoparticles for the Treatment of Ischemic Stroke. Pharmaceutics 2022; 14:pharmaceutics14020361. [PMID: 35214092 PMCID: PMC8877231 DOI: 10.3390/pharmaceutics14020361] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Ischemic stroke is still one of the leading causes of high mortality and severe disability worldwide. Therapeutic options for ischemic stroke and subsequent cerebral ischemia/reperfusion injury remain limited due to challenges associated with drug permeability through the blood-brain barrier (BBB). Neuroprotectant delivery with nanoparticles, including liposomes, offers a promising solution to address this problem, as BBB disruption following ischemic stroke allows nanoparticles to pass through the intercellular gaps between endothelial cells. To ameliorate ischemic brain damage, a number of nanotherapeutics encapsulating neuroprotective agents, as well as surface-modified nanoparticles with specific ligands targeting the injured brain regions, have been developed. Combination therapy with nanoparticles encapsulating neuroprotectants and tissue plasminogen activator (t-PA), a globally approved thrombolytic agent, has been demonstrated to extend the narrow therapeutic time window of t-PA. In addition, the design of biomimetic drug delivery systems (DDS) employing circulating cells (e.g., leukocytes, platelets) with unique properties has recently been investigated to overcome the injured BBB, utilizing these cells’ inherent capability to penetrate the ischemic brain. Herein, we review recent findings on the application and utility of nanoparticle DDS, particularly liposomes, and various approaches to developing biomimetic DDS functionalized with cellular membranes/membrane proteins for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Naoto Oku
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| |
Collapse
|
10
|
Chen W, Jiang L, Hu Y, Fang G, Yang B, Li J, Liang N, Wu L, Hussain Z. Nanomedicines, an emerging therapeutic regimen for treatment of ischemic cerebral stroke: A review. J Control Release 2021; 340:342-360. [PMID: 34695522 DOI: 10.1016/j.jconrel.2021.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
Owing to its intricate pathophysiology, cerebral stroke is a serious medical condition caused by interruption or obstruction of blood supply (blockage of vasculature) to the brain tissues which results in diminished supply of essential nutrients and oxygen (hypoxia) and ultimate necrosis of neuronal tissues. A prompt risks assessment and immediate rational therapeutic plan with proficient neuroprotection play critically important role in the effective management of this neuronal emergency. Various conventional medications are being used for treatment of acute ischemic cerebral stroke but fibrinolytic agents, alone or in combination with other agents are considered the mainstay. These clot-busting agents effectively restore blood supply (reperfusion) to ischemic regions of the brain; however, their clinical significance is hampered due to various factors such as short plasma half-life, limited distribution to brain tissues due to the presence of highly efficient physiological barrier, blood brain barrier (BBB), and lacking of target-specific delivery to the ischemic brain regions. To alleviate these issues, various types of nanomedicines such as polymeric nanoparticles (NPs), liposomes, nanoemulsion, micelles and dendrimers have been designed and evaluated. The implication of these newer therapies (nanomedicines) have revolutionized the therapeutic outcomes by improving the plasma half-life, permeation across BBB, efficient distribution to ischemic cerebral tissues and neuroprotection. Furthermore, the adaptation of some diverse techniques including PEGylation, tethering of targeting ligands on the surfaces of nanomedicines, and pH responsive features have also been pondered. The implication of these emerging adaptations have shown remarkable potential in maximizing the targeting efficiency of drugs to ischemic brain tissues, simultaneous delivery of drugs and imaging agents (for early prognosis as well as monitoring of therapy), and therapeutic outcomes such as long-term neuroprotection.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Lingfei Jiang
- Graduate College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China.
| | - Gang Fang
- Guangxi Zhuang and Yao Medicine Engineering Technology Research Center, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Bilin Yang
- Graduate College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Junhong Li
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Ni Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Lin Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China.
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
11
|
Abstract
Rodent models are increasingly important in translational neuroimaging research. In rodent neuroimaging, particularly magnetic resonance imaging (MRI) studies, brain extraction is a critical data preprocessing component. Current brain extraction methods for rodent MRI usually require manual adjustment of input parameters due to widely different image qualities and/or contrasts. Here we propose a novel method, termed SHape descriptor selected Extremal Regions after Morphologically filtering (SHERM), which only requires a brain template mask as the input and is capable of automatically and reliably extracting the brain tissue in both rat and mouse MRI images. The method identifies a set of brain mask candidates, extracted from MRI images morphologically opened and closed sequentially with multiple kernel sizes, that match the shape of the brain template. These brain mask candidates are then merged to generate the brain mask. This method, along with four other state-of-the-art rodent brain extraction methods, were benchmarked on four separate datasets including both rat and mouse MRI images. Without involving any parameter tuning, our method performed comparably to the other four methods on all datasets, and its performance was robust with stably high true positive rates and low false positive rates. Taken together, this study provides a reliable automatic brain extraction method that can contribute to the establishment of automatic pipelines for rodent neuroimaging data analysis.
Collapse
|
12
|
Blood-Brain Barrier Modulation to Improve Glioma Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12111085. [PMID: 33198244 PMCID: PMC7697580 DOI: 10.3390/pharmaceutics12111085] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB) is formed by brain microvascular endothelial cells that are sealed by tight junctions, making it a significant obstacle for most brain therapeutics. The poor BBB penetration of newly developed therapeutics has therefore played a major role in limiting their clinical success. A particularly challenging therapeutic target is glioma, which is the most frequently occurring malignant brain tumor. Thus, to enhance therapeutic uptake in tumors, researchers have been developing strategies to modulate BBB permeability. However, most conventional BBB opening strategies are difficult to apply in the clinical setting due to their broad, non-specific modulation of the BBB, which can result in damage to normal brain tissue. In this review, we have summarized strategies that could potentially be used to selectively and efficiently modulate the tumor BBB for more effective glioma treatment.
Collapse
|
13
|
Lundy DJ, Lee KJ, Peng IC, Hsu CH, Lin JH, Chen KH, Tien YW, Hsieh PCH. Inducing a Transient Increase in Blood-Brain Barrier Permeability for Improved Liposomal Drug Therapy of Glioblastoma Multiforme. ACS NANO 2019; 13:97-113. [PMID: 30532951 DOI: 10.1021/acsnano.8b03785] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The blood-brain barrier (BBB) selectively controls the passage of endogenous and exogenous molecules between systemic circulation and the brain parenchyma. Nanocarrier-based drugs such as liposomes and nanoparticles are an attractive prospect for cancer therapy since they can carry a drug payload and be modified to improve targeting and retention at the desired site. However, the BBB prevents most therapeutic drugs from entering the brain, including physically restricting the passage of liposomes and nanoparticles. In this paper, we show that a low dose of systemically injected recombinant human vascular endothelial growth factor induces a short period of increased BBB permeability. We have shown increased delivery of a range of nanomedicines to the brain including contrast agents for imaging, varying sizes of nanoparticles, small molecule chemotherapeutics, tracer dyes, and liposomal chemotherapeutics. However, this effect was not uniform across all brain regions, and permeability varied depending on the drug or molecule measured. We have found that this window of BBB permeability effect is transient, with normal BBB integrity restored within 4 h. This strategy, combined with liposomal doxorubicin, was able to significantly extend survival in a mouse model of human glioblastoma. We have found no evidence of systemic toxicity, and the technique was replicated in pigs, demonstrating that this technique could be scaled up and potentially be translated to the clinic, thus allowing the use of nanocarrier-based therapies for brain disorders.
Collapse
Affiliation(s)
- David J Lundy
- Institute of Biomedical Sciences , Academia Sinica , Taipei 115 , Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering , Taipei Medical University , Taipei 110 , Taiwan
| | - Keng-Jung Lee
- Institute of Biomedical Sciences , Academia Sinica , Taipei 115 , Taiwan
| | - I-Chia Peng
- Institute of Biomedical Sciences , Academia Sinica , Taipei 115 , Taiwan
| | - Chia-Hsin Hsu
- Institute of Biomedical Sciences , Academia Sinica , Taipei 115 , Taiwan
| | - Jen-Hao Lin
- Institute of Biomedical Sciences , Academia Sinica , Taipei 115 , Taiwan
| | - Kun-Hung Chen
- Institute of Biomedical Sciences , Academia Sinica , Taipei 115 , Taiwan
| | - Yu-Wen Tien
- Department of Surgery , National Taiwan University and Hospital , Taipei 100 , Taiwan
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences , Academia Sinica , Taipei 115 , Taiwan
- Department of Surgery , National Taiwan University and Hospital , Taipei 100 , Taiwan
- Institute of Medical Genomics and Proteomics , National Taiwan University , Taipei 100 , Taiwan
- Institute of Clinical Medicine , National Taiwan University , Taipei 100 , Taiwan
| |
Collapse
|
14
|
Gu X, Huang J, Zhang L, Zhang Y, Wang CZ, Sun C, Yao D, Li F, Chen L, Yuan CS. Efficient discovery and capture of new neuronal nitric oxide synthase-postsynaptic density protein-95 uncouplers from herbal medicines using magnetic molecularly imprinted polymers as artificial antibodies. J Sep Sci 2018; 40:3522-3534. [PMID: 28704580 DOI: 10.1002/jssc.201700595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
Abstract
In the scope of stroke treatment, new neuronal nitric oxide synthase-postsynaptic density protein-95 uncouplers from herbal medicines were discovered and captured. To do so, highly selective magnetic molecularly imprinted polymers with a core-shell structure were prepared as artificial antibodies. According to the results of computational simulations, we designed and synthesized various polymers with varying amounts and types of template, functional monomer, cross-linker, and solvent. Characterization and performance tests revealed that the most appropriate artificial antibodies showed uniform spherical morphologies, large adsorption capacities, fast-binding kinetics, high selectivity, and quick separation. These artificial antibodies were then used as sorbents for dispersive magnetic solid-phase extraction coupled with high-performance liquid chromatography and mass spectrometry to capture and identify structural analogs to ZL006 from extracts of Scutellariae radix, Psoraleae fructus, and Trifolium pratense. Furthermore, according to the neuroprotective effect and coimmunoprecipitation test, Baicalein, Neobavaisoflavone, Corylifol A, and Biochanin A can be the potential uncouplers of neuronal nitric oxide synthase-postsynaptic density protein-95. Therefore, this present study contributes valuable information for the discovery of neuronal nitric oxide synthase-postsynaptic density protein-95 uncouplers from herbal medicines.
Collapse
Affiliation(s)
- Xiaoli Gu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Huang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lei Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Chenghong Sun
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dandan Yao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Fei Li
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Abstract
Stroke still represents one of the most common causes of death and disability worldwide. Acute ischemic stroke (AIS), caused by brain arterial occlusion resulting from a thrombus or embolus, is the most common form of stroke. However, current therapies in AIS are inadequate, and the only US FDA approved treatment is the thrombolytic drug Alteplase. Therefore, establishing effective therapeutic strategies for AIS is urgently needed. Using nanoparticle-based technologies to deliver neuroprotective agents to the ischemic area has attracted increasing attention of late. In this review, the important molecular pathological mechanisms in cerebral ischemia are briefly summarized, the potential of nanoparticulate drug-delivery systems for AIS intervention and recovery are introduced and problems in the medical application of nanoparticles will also be discussed.
Collapse
|
16
|
Gao X, Yue Q, Liu Y, Fan D, Fan K, Li S, Qian J, Han L, Fang F, Xu F, Geng D, Chen L, Zhou X, Mao Y, Li C. Image-guided chemotherapy with specifically tuned blood brain barrier permeability in glioma margins. Theranostics 2018; 8:3126-3137. [PMID: 29896307 PMCID: PMC5996359 DOI: 10.7150/thno.24784] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/05/2018] [Indexed: 11/26/2022] Open
Abstract
Blood-brain barrier (BBB) disruption is frequently observed in the glioma region. However, the tumor uptake of drugs is still too low to meet the threshold of therapeutic purpose. Method: A tumor vasculature-targeted nanoagonist was developed. Glioma targeting specificity of the nanoagonist was evaluated by in vivo optical imaging. BBB permeability at the glioma margin was quantitatively measured by dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Single-photon emission computed tomography imaging/computed tomography (SPECT/CT) quantitatively determined the glioma uptake of the radiolabeled model drug. T2-weighted MRI monitored the tumor volume. Results: Immunostaining studies demonstrated that the BBB remained partially intact in the invasive margin of patients' gliomas regardless of their malignancies. DCE-MRI showed that vascular permeability in the glioma margin reached its maximum at 45 min post nanoagonist administration. In vivo optical imaging indicated the high glioma targeting specificity of the nanoagonist. SPECT/CT showed the significantly enhanced glioma uptake of the model drug after pre-treatment with the nanoagonist. Image-guided paclitaxel injection after nanoagonist-mediated BBB modulation more efficiently attenuated tumor growth and extended survival than in animal models treated with paclitaxel or temozolomide alone. Conclusion: Thus, image-guided drug delivery following BBB permeability modulation holds promise to enhance the efficacy of chemotherapeutics to glioma.
Collapse
|
17
|
Zhang T, Li CY, Jia JJ, Chi JS, Zhou D, Li JZ, Liu XM, Zhang J, Yi L. Combination Therapy with LXW7 and Ceria Nanoparticles Protects against Acute Cerebral Ischemia/Reperfusion Injury in Rats. Curr Med Sci 2018; 38:144-152. [PMID: 30074164 DOI: 10.1007/s11596-018-1858-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/26/2017] [Indexed: 12/15/2022]
Abstract
Ischemia/reperfusion is known to greatly increase oxidative stress in the penumbra, which results in brain damage. Integrin αvβ3 is selectively up-regulated with ischemic injury to the brain and remains elevated throughout reperfusion. We determined whether or not a new compound biotinylated-LXW7-ceria nanoparticle (CeNP) (bLXW7-CeNP) plays a role in brain protection in the rat model of middle cerebral artery occlusion/reperfusion and shows better effects than CeNPs alone in improving the outcomes of focal oxidative stress and apoptosis more effectively. Male Sprague-Dawley rats were subjected to focal cerebral ischemia for 2 h followed by a 24-h reperfusion. Drug treatment was intravenously administered via the caudal vein 1 h after occlusion. Rats were randomly divided into the following 4 groups: bLXW7-CeNP treatment group (0.5 mg/kg); CeNP treatment group (0.5 mg/kg); control saline group; and sham group. Brains were harvested 24 h after reperfusion, and the neurologic deficit scores, infarction volume, blood-brain barrier (BBB) disruption, and the level of oxidative stress and apoptosis were determined. Results showed that the bLXW7-CeNP and CeNP treatments could improve neurologic deficit scores, infarction volume, BBB disruption, and the level of oxidative stress and apoptosis. Compound bLXW7-CeNP treatment exhibited better effects than CeNp treatment and showed remarkable statistical differences in the infarction volume, the degree of BBB breakdown, the apoptosis and oxidative stress, apart from neurologic deficit scores. Thus, we concluded that bLXW7-CeNP protects against acute cerebral ischemia/reperfusion injury. BLXW7, as a ligand of integrin αvβ3, may be able to effectively localize the anti-oxidant CeNPs to the ischemic penumbra region, which may provide more adequate opportunities for CeNPs to exert anti-oxidative stress effects and subsequently reduce apoptosis in acute cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Chang-Yan Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Jing-Jing Jia
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Jie-Shan Chi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jian-Zhou Li
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Xiao-Ma Liu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Jun Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China.
| |
Collapse
|
18
|
Zhang XG, Song Y, Shan C, Wu XF, Tong YH, Jin XC, Liu WL, Zheng GQ, Liu J. Borneol Attenuates Ultrasound-Targeted Microbubble Destruction-Induced Blood-Brain Barrier Opening in Focal Cerebral Ischemia. Front Neurol 2017; 8:704. [PMID: 29312126 PMCID: PMC5743662 DOI: 10.3389/fneur.2017.00704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023] Open
Abstract
Ultrasound-targeted microbubble destruction (UTMD) and the herb medicine borneol can both facilitate the delivery of therapeutic agents to diseased brain regions and serve as promising adjuvant neuroprotective therapies. Our preliminary experiments showed that UTMD could exacerbate ischemic blood–brain barrier (BBB) opening, while borneol can protect the BBB. In this study, we tested the hypothesis that the combination of UTMD and borneol could attenuate UTMD-induced injury to the BBB under ischemic stroke conditions. Male albino mice were subjected to 60-min middle cerebral artery occlusion (MCAO) with reperfusion. Borneol and UTMD was given to mice 3 days before and 24 h after MCAO induction. BBB permeability, brain water contents, ultrastructural changes of the BBB and histopathological alterations were evaluated. Our data demonstrated that UTMD aggravated the leakage of Evans blue dye, ultrastructural alterations of cerebral microvasculature, brain edema, and even induced cerebral hemorrhage in ischemic stroke mice. Pretreatment with borneol significantly attenuated the above detrimental effects of UTMD on the BBB. This study indicates that under ischemic stroke conditions, the BBB becomes vulnerable to UTMD intervention, and the combination of borneol can help to maintain the integrity of the BBB.
Collapse
Affiliation(s)
- Xiao-Guang Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Ye Song
- Department of Ultrasound, Shanghai Tongji Hospital of Tongji University, Shanghai, China
| | - Chang Shan
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Xi-Fan Wu
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Yan-Hua Tong
- Department of Ultrasound, Shanghai Tongji Hospital of Tongji University, Shanghai, China
| | - Xin-Chun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Wen-Lan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Gao X, Wang YC, Liu Y, Yue Q, Liu Z, Ke M, Zhao S, Li C. Nanoagonist-mediated endothelial tight junction opening: A strategy for safely increasing brain drug delivery in mice. J Cereb Blood Flow Metab 2017; 37:1410-1424. [PMID: 27342320 PMCID: PMC5453461 DOI: 10.1177/0271678x16656198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Even though opening endothelial tight junctions is an efficient way to up-regulate brain drug delivery, the extravasation of blood-borne components from the compromised tight junctions can result in adverse consequences such as edema and neuronal injuries. In this work, we developed a nanoagonist that temporarily opened tight junctions by signaling adenosine 2A receptor, a type of G protein-coupled receptor expressed on brain capillary endothelial cells. Magnetic resonance imaging demonstrated remarkable blood-brain barrier permeability enhancements and significantly increased brain uptakes of both small molecular and macromolecular paramagnetic agents after nanoagonist administration. Gamma ray imaging and transmission electron microscope observed tight junction opening followed by spontaneous recovery after nanoagonist treatment. Immunofluorescence staining showed the unspoiled basal membrane, pericytes and astrocyte endfeet that enwrapped the vascular endothelium. Importantly, edema, apoptosis and neuronal injuries observed after hypertonic agent mediated tight junction-opening were not observed after nanoagonist intervention. The uncompromised neurovascular units may prevent the leakage of blood-borne constituents into brain parenchyma and accelerate tight junction recovery. Considering blood-brain barrier impermeability is a major obstacle in the treatment of central nervous system diseases, nanoagonist-mediated tight junction opening provides a promising strategy to enhance brain drug delivery with minimized adverse effects.
Collapse
Affiliation(s)
- Xihui Gao
- 1 Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuan-Cheng Wang
- 2 Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yikang Liu
- 3 Department of Biomedical Engineering, The Pennsylvania State University, Philadelphia, PA, USA
| | - Qi Yue
- 4 Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zining Liu
- 1 Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Mengjing Ke
- 1 Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Shengyuan Zhao
- 1 Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Cong Li
- 1 Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Jin Q, Cai Y, Li S, Liu H, Zhou X, Lu C, Gao X, Qian J, Zhang J, Ju S, Li C. Edaravone-Encapsulated Agonistic Micelles Rescue Ischemic Brain Tissue by Tuning Blood-Brain Barrier Permeability. Theranostics 2017; 7:884-898. [PMID: 28382161 PMCID: PMC5381251 DOI: 10.7150/thno.18219] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/23/2016] [Indexed: 12/31/2022] Open
Abstract
Thrombolysis has been a standard treatment for ischemic stroke. However, only 2-7% patients benefit from it because the thrombolytic agent has to be injected within 4.5 h after the onset of symptoms to avoid the increasing risk of intracerebral hemorrhage. As the only clinically approved neuroprotective drug, edaravone (EDV) rescues ischemic brain tissues by eradicating over-produced reactive oxygen species (ROS) without the limitation of therapeutic time-window. However, EDV's short circulation half-life and inadequate cerebral uptake attenuate its therapeutic efficacy. Here we developed an EDV-encapsulated agonistic micelle (EDV-AM) to specifically deliver EDV into brain ischemia by actively tuning blood-brain barrier (BBB) permeability. The EDV-AM actively up-regulated endothelial monolayer permeability in vitro. HPLC studies showed that EDV-AM delivered more EDV into brain ischemia than free EDV after intravenous injection. Magnetic resonance imaging also demonstrated that EDV-AM more rapidly salvaged ischemic tissue than free EDV. Diffusion tensor imaging indicated the highest efficiency of EDV-AM in accelerating axonal remodeling in the ipsilesional white matter and improving functional behaviors of ischemic stroke models. The agonistic micelle holds promise to improve the therapeutic efficiency of ischemic stroke patients who miss the thrombolytic treatment.
Collapse
Affiliation(s)
- Qu Jin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Yu Cai
- Jiangsu Key Laboratory of Molecular and Functional Imaging Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, P. R. China
| | - Sihan Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Haoran Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Xingyu Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Chunqiang Lu
- Jiangsu Key Laboratory of Molecular and Functional Imaging Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, P. R. China
| | - Xihui Gao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Jun Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200041, P. R. China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, P. R. China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| |
Collapse
|
21
|
Abstract
CNS disorders are on the rise despite advancements in our understanding of their pathophysiological mechanisms. A major hurdle to the treatment of these disorders is the blood-brain barrier (BBB), which serves as an arduous janitor to protect the brain. Many drugs are being discovered for CNS disorders, which, however fail to enter the market because of their inability to cross the BBB. This is a pronounced challenge for the pharmaceutical fraternity. Hence, in addition to the discovery of novel entities and drug candidates, scientists are also developing new formulations of existing drugs for brain targeting. Several approaches have been investigated to allow therapeutics to cross the BBB. As the molecular structure of the BBB is better elucidated, several key approaches for brain targeting include physiological transport mechanisms such as adsorptive-mediated transcytosis, inhibition of active efflux pumps, receptor-mediated transport, cell-mediated endocytosis, and the use of peptide vectors. Drug-delivery approaches comprise delivery from microspheres, biodegradable wafers, and colloidal drug-carrier systems (e.g., liposomes, nanoparticles, nanogels, dendrimers, micelles, nanoemulsions, polymersomes, exosomes, and quantum dots). The current review discusses the latest advancements in these approaches, with a major focus on articles published in 2015 and 2016. In addition, we also cover the alternative delivery routes, such as intranasal and convection-enhanced diffusion methods, and disruption of the BBB for brain targeting.
Collapse
Affiliation(s)
- Mayur M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India.
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
22
|
Mulder IA, Khmelinskii A, Dzyubachyk O, de Jong S, Rieff N, Wermer MJH, Hoehn M, Lelieveldt BPF, van den Maagdenberg AMJM. Automated Ischemic Lesion Segmentation in MRI Mouse Brain Data after Transient Middle Cerebral Artery Occlusion. Front Neuroinform 2017; 11:3. [PMID: 28197090 PMCID: PMC5281583 DOI: 10.3389/fninf.2017.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) has become increasingly important in ischemic stroke experiments in mice, especially because it enables longitudinal studies. Still, quantitative analysis of MRI data remains challenging mainly because segmentation of mouse brain lesions in MRI data heavily relies on time-consuming manual tracing and thresholding techniques. Therefore, in the present study, a fully automated approach was developed to analyze longitudinal MRI data for quantification of ischemic lesion volume progression in the mouse brain. We present a level-set-based lesion segmentation algorithm that is built using a minimal set of assumptions and requires only one MRI sequence (T2) as input. To validate our algorithm we used a heterogeneous data set consisting of 121 mouse brain scans of various age groups and time points after infarct induction and obtained using different MRI hardware and acquisition parameters. We evaluated the volumetric accuracy and regional overlap of ischemic lesions segmented by our automated method against the ground truth obtained in a semi-automated fashion that includes a highly time-consuming manual correction step. Our method shows good agreement with human observations and is accurate on heterogeneous data, whilst requiring much shorter average execution time. The algorithm developed here was compiled into a toolbox and made publically available, as well as all the data sets.
Collapse
Affiliation(s)
- Inge A Mulder
- Department of Neurology, Leiden University Medical Center Leiden, Netherlands
| | - Artem Khmelinskii
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical CenterLeiden, Netherlands; Percuros B.V.Enschede, Netherlands
| | - Oleh Dzyubachyk
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| | - Sebastiaan de Jong
- Department of Human Genetics, Leiden University Medical Center Leiden, Netherlands
| | - Nathalie Rieff
- Department of Human Genetics, Leiden University Medical Center Leiden, Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center Leiden, Netherlands
| | - Mathias Hoehn
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical CenterLeiden, Netherlands; Percuros B.V.Enschede, Netherlands; In-vivo-NMR Laboratory, Max Planck Institute for Metabolism ResearchCologne, Germany
| | - Boudewijn P F Lelieveldt
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical CenterLeiden, Netherlands; Intelligent Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of TechnologyDelft, Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical CenterLeiden, Netherlands; Department of Human Genetics, Leiden University Medical CenterLeiden, Netherlands
| |
Collapse
|
23
|
Han L, Kong DK, Zheng MQ, Murikinati S, Ma C, Yuan P, Li L, Tian D, Cai Q, Ye C, Holden D, Park JH, Gao X, Thomas JL, Grutzendler J, Carson RE, Huang Y, Piepmeier JM, Zhou J. Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging. ACS NANO 2016; 10:4209-18. [PMID: 26967254 PMCID: PMC5257033 DOI: 10.1021/acsnano.5b07573] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The blood-brain barrier (BBB) is partially disrupted in brain tumors. Despite the gaps in the BBB, there is an inadequate amount of pharmacological agents delivered into the brain. Thus, the low delivery efficiency renders many of these agents ineffective in treating brain cancer. In this report, we proposed an "autocatalytic" approach for increasing the transport of nanoparticles into the brain. In this strategy, a small number of nanoparticles enter into the brain via transcytosis or through the BBB gaps. After penetrating the BBB, the nanoparticles release BBB modulators, which enables more nanoparticles to be transported, creating a positive feedback loop for increased delivery. Specifically, we demonstrated that these autocatalytic brain tumor-targeting poly(amine-co-ester) terpolymer nanoparticles (ABTT NPs) can readily cross the BBB and preferentially accumulate in brain tumors at a concentration of 4.3- and 94.0-fold greater than that in the liver and in brain regions without tumors, respectively. We further demonstrated that ABTT NPs were capable of mediating brain cancer gene therapy and chemotherapy. Our results suggest ABTT NPs can prime the brain to increase the systemic delivery of therapeutics for treating brain malignancies.
Collapse
Affiliation(s)
- Liang Han
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Derek K. Kong
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Ming-qiang Zheng
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA
| | | | - Chao Ma
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Peng Yuan
- Department of Neurology, Yale University, New Haven, CT 06510, USA
| | - Liyuan Li
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Daofeng Tian
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Qiang Cai
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Chunlin Ye
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Daniel Holden
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA
| | - June-Hee Park
- Department of Neurology, Yale University, New Haven, CT 06510, USA
| | - Xiaobin Gao
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University, New Haven, CT 06510, USA
| | | | - Richard E. Carson
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA
| | - Yiyun Huang
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA
| | | | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Correspondence: Jiangbing Zhou, 310 Cedar Street, FMB 410, New Haven, CT 06510, Tel: 203-785-5327,
| |
Collapse
|
24
|
Setyawati MI, Mochalin VN, Leong DT. Tuning Endothelial Permeability with Functionalized Nanodiamonds. ACS NANO 2016; 10:1170-81. [PMID: 26643115 DOI: 10.1021/acsnano.5b06487] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cancer nanomedicine vehicles are required to cross the vascular barrier to reach the tumor site in order to ensure the successful delivery of their therapeutic load. Here, nanodiamond (ND) variants were shown to induce surface dependent vascular barrier leakiness. The ND-induced leakiness was found to be mediated by the increase in intracellular reactive oxygen species (ROS) and Ca(2+). These then in turn triggered the loss in endothelial cell-endothelial cell connections of the vascular barrier and also triggered their quasi-stable cytoskeletal remodelling. This ND driven increase in leakiness allowed more doxorubicin drug to penetrate through the vascular barrier to reach the cancer cells. This increase in the doxorubicin penetration subsequently led to an increase in the cancer killing effect. Overall, tuning the vascular barrier leakiness through ND surface group functionalization could provide an alternative strategy for the cancer nanomedicine to traverse across the vascular barrier.
Collapse
Affiliation(s)
- Magdiel I Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Vadym N Mochalin
- Department of Chemistry, Missouri University of Science & Technology , Rolla, Missouri 65409, United States
| | - David T Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|