1
|
Sheng ST, Wu XD, Xu JW, Xu Z, Ni S, Xu W, Xu ZK. Biomaterials in Relative Devices for Traumatic Cataract: Recent Advances and Future Perspectives. ACS Biomater Sci Eng 2025; 11:1990-2007. [PMID: 40111465 DOI: 10.1021/acsbiomaterials.4c02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Ocular trauma deprives one of the vision for high-quality life. Management of a traumatic cataract requires extensive surgical experience with a range of biomaterials and biomedical devices including intraocular lenses (IOLs), capsular tension rings (CTRs), prosthetic iris (PSI) implants, bandage contact lenses (BCLs), artificial corneas (ACs), and surgical sutures. Numerous demands, involving biocompatibility, cell toxicity, processability, mechanical strength, toughness/flexibility, transparency/opacity, hydrophilicity/hydrophobicity, and stability/biodegradability, are widely considered for fabricating these biomaterials and devices. Furthermore, a multifunction including drug-release and photothermal therapy is also endearing to those biomaterials in IOLs, CTRs, BCLs, and surgical sutures for anti-inflammational and antibacterial characteristics during traumatic cataract treatments. More recently, 3D printing has been demonstrated to effectively fabricate PSI and ACs with complex shapes to meet the personal requirements of patients. We summarize the main principles and the recent achievements of these advances. We also suggest the potential directions for their future development and discuss the remaining challenges.
Collapse
Affiliation(s)
- Si-Ting Sheng
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Xing-Di Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Jing-Wei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Zhe Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Shuang Ni
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Wen Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Zhi-Kang Xu
- MOE Key Lab of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
2
|
Lin L, Liang L, Xu L, Zheng Y, Guo H, Zhang B, Zhao YE. Heat stress regulates the migration and proliferation of lens epithelial cells through ferroptosis and NCOA4-FTH1 interaction. Exp Eye Res 2025; 251:110182. [PMID: 39586514 DOI: 10.1016/j.exer.2024.110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/14/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Posterior capsule opacification (PCO) due to the proliferation and migration of lens epithelial cells (LECs) is the main complication after surgery. Heat stress has demonstrated impressive results in halting cell proliferation and migration, while also facilitating cell death. This study aimed to investigate the role and mechanism of ferroptosis in the proliferation and migration of LECs under heat stress. CCK-8 assays, scratch assays, and transcriptome analysis were used to evaluate the impact of temperature on human lens epithelial cells (HLECs) and explore the potential mechanisms. The role of ferroptosis in the proliferation of HLECs induced by heat was investigated using the ferroptosis inhibitor Fer-1 and siRNA-mediated NCOA4 protein interference. Fluorescence staining and Western blot experiments were used to detect the expression of Fe2+, reactive oxygen species (ROS), and ferroptosis-related proteins NCOA4, FTH1, and SLC3A2. The results of CCK-8 assays, scratch assays, and transcriptome analysis demonstrated significant thermal effects on HLEC behavior. After heat treatment, there were significant changes in the fluorescence expression of Fe2+ and ROS in the HLECs and lens explant. In addition, the expression of NCOA4, FTH1, and SLC3A2 also changed significantly. Using Fer-1 or NCOA4 siRNA-mediated interference restored cell viability decreased by thermal stress. Furthermore, interference with NCOA4 protein effectively restored the expression of Fe2+, ROS, and FTH1. In conclusion, heat stress has a significant effect on LECs by regulating ferroptosis and the interaction between NCOA4 and FTH1 proteins play an important role.
Collapse
Affiliation(s)
- Lei Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lili Liang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Liming Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yu Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hanwen Guo
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bei Zhang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yun-E Zhao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Liu Y, Dong X, Wu B, Cheng Z, Zhang J, Wang J. Promising Pharmacological Interventions for Posterior Capsule Opacification: A Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400181. [PMID: 39679290 PMCID: PMC11637782 DOI: 10.1002/gch2.202400181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/18/2024] [Indexed: 12/17/2024]
Abstract
Phacoemulsification combined with intraocular lens implantation is the primary treatment for cataract. Although this treatment strategy benefits patients with cataracts, posterior capsule opacification (PCO) remains a common complication that impairs vision and affects treatment outcomes. The pathogenesis of PCO is associated with the proliferation, migration, and fibrogenesis activity of residual lens epithelial cells, with epithelial-mesenchymal transition (EMT) serving as a key mechanism underlying the condition. Transforming growth factor-beta 2 (TGF-β2) is a major promotor of EMT, thereby driving PCO development. Most studies have shown that drugs and miRNAs mitigate EMT by inhibiting, clearing, or eliminating LECs. In addition, targeting EMT-related signaling pathways in TGF-β2-stimulated LECs has garnered attention as a research focus. This review highlights potential treatments for PCO and details the mechanisms by which drugs and miRNAs counter EMT.
Collapse
Affiliation(s)
- Yuxuan Liu
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
| | - Xiaoming Dong
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
| | - Bin Wu
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
| | - Zhigang Cheng
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Chaoyang Aier Eye HospitalChaoyangLiaoning Province122000China
| | - Jinsong Zhang
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
| | - Jing Wang
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
- Aier Academy of OphthalmologyCentral South UniversityNo. 188, Furong South Road, Tianxin DistrictChangshaHunan410004P. R. China
| |
Collapse
|
4
|
Yin C, Zhang Y, Fan C, Zheng J, Yang Y, Zhang Y, Jiang J. Injectable and pH-Responsive Metformin-Loaded Hydrogel for Active Inhibition of Posterior Capsular Opacification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59880-59894. [PMID: 39437316 DOI: 10.1021/acsami.4c13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Posterior capsular opacification (PCO) is a common complication following cataract surgery, which can lead to a significant vision loss. This study introduces a facile method for developing a metformin-derived hydrogel (HCM6) stabilized by dynamic covalent bonds among natural polymers. This hydrogel demonstrates antifibrotic properties, on-demand drug release, pH responsiveness, injectability, and self-healing capabilities. Our in vitro experiments confirmed that the HCM6 hydrogel exhibits excellent biocompatibility, inhibiting lens epithelial cell migration, and transforming growth factor-2β (TGFβ2)-induced α-smooth muscle actin (α-SMA) expression in lens epithelial cells. In vivo studies conducted in a rat extracapsular lens extraction (ECLE) model revealed that HCM6 significantly suppressed PCO after 21 days of implantation with no observed pathological effects on surrounding tissues or the optic nerve. According to our experimental results, the inhibitory mechanism of PCO may be attributed to metformin's suppressive effect on lens cell migration, epithelial-mesenchymal transition (EMT), and lens fiber formation. In summary, the long-acting, controllable, and on-demand release characteristics of the HCM6 hydrogel not only provide an effective strategy for preventing PCO but also offer new avenues for treating undesirable proliferative conditions in ophthalmology and beyond.
Collapse
Affiliation(s)
- Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Yue Zhang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Cong Fan
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha 410008, China
| | - Yu Yang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Jian Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
5
|
Zhang X, Wang J, Xu J, Xu W, Zhang Y, Luo C, Ni S, Han H, Shentu X, Ye J, Ji J, Yao K. Prophylaxis of posterior capsule opacification through autophagy activation with indomethacin-eluting intraocular lens. Bioact Mater 2023; 23:539-550. [PMID: 36514385 PMCID: PMC9729928 DOI: 10.1016/j.bioactmat.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Posterior capsule opacification (PCO) is the most common long-term postoperative complication of cataract surgery, leading to secondary vision loss. Optimized intraocular lens (IOL) structure and appropriate pharmacological intervention, which provides physical barriers and biological inhibition, respectively, can block the migration, proliferation, and epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) for PCO prophylaxis. Herein, a novel indomethacin-eluting IOL (INDOM-IOL) with an optimized sharper edge and a sustained drug release behavior was developed for PCO prevention. Indomethacin (INDOM), an ophthalmic non-steroidal anti-inflammatory drug (NSAID) used for postoperative ocular inflammation, was demonstrated to not only be able to suppress cell migration and down-regulate the expression of cyclooxygenase-2 (COX-2) and EMT markers, including alpha-smooth muscle actin (α-SMA) and cyclin D1, but also promote the autophagy activation in LECs. Additionally, autophagy was also verified to be a potential therapeutic target for the down-regulation of EMT in LECs. The novel IOL, serving as a drug delivery platform, could carry an adjustable dose of hydrophobic indomethacin with sustained drug release ability for more than 28 days. In the rabbit PCO model, the indomethacin-eluting IOL showed excellent anti-inflammatory and anti-PCO effects. In summary, indomethacin is an effective pharmacological intervention in PCO prophylaxis, and the novel IOL we developed prevented PCO in vivo under its sustained indomethacin release property, which provided a promising approach for PCO prophylaxis in clinical application.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Jingwei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Wen Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Yin Zhang
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Chenqi Luo
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Shuang Ni
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Xingchao Shentu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| |
Collapse
|
6
|
Li X, Liang C, Guo Y, Su J, Chen X, Macgregor RB, Zhang RX, Yan H. Clinical Translation of Long-Acting Drug Delivery Systems for Posterior Capsule Opacification Prophylaxis. Pharmaceutics 2023; 15:pharmaceutics15041235. [PMID: 37111720 PMCID: PMC10143098 DOI: 10.3390/pharmaceutics15041235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Posterior capsule opacification (PCO) remains the most common cause of vision loss post cataract surgery. The clinical management of PCO formation is limited to either physical impedance of residual lens epithelial cells (LECs) by implantation of specially designed intraocular lenses (IOL) or laser ablation of the opaque posterior capsular tissues; however, these strategies cannot fully eradicate PCO and are associated with other ocular complications. In this review, we critically appraise recent advances in conventional and nanotechnology-based drug delivery approaches to PCO prophylaxis. We focus on long-acting dosage forms, including drug-eluting IOL, injectable hydrogels, nanoparticles and implants, highlighting analysis of their controlled drug-release properties (e.g., release duration, maximum drug release, drug-release half-life). The rational design of drug delivery systems by considering the intraocular environment, issues of initial burst release, drug loading content, delivery of drug combination and long-term ocular safety holds promise for the development of safe and effective pharmacological applications in anti-PCO therapies.
Collapse
Affiliation(s)
- Xinyang Li
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an 710004, China
| | - Chen Liang
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an 710004, China
| | - Yexuan Guo
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jing Su
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xi Chen
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an 710004, China
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Rui Xue Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Hong Yan
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an 710004, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
7
|
"NIR-triggered ROS storage" photodynamic intraocular implant for high-efficient and safe posterior capsular opacification prevention. Asian J Pharm Sci 2022; 17:838-854. [PMID: 36600895 PMCID: PMC9800949 DOI: 10.1016/j.ajps.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022] Open
Abstract
Posterior capsular opacification (PCO) is the leading cause of vision loss after cataract, mainly caused by the adhesion, proliferation and trans-differentiation of post-operative residual lens epithelial cells (LECs). Effective PCO prevention remains a huge challenge to ophthalmologists and researches for decades. Herein, we developed a "NIR-triggered ROS storage" intraocular implant (CTR-Py-PpIX) based on capsular tension ring (CTR), which is concurrently linked with photosensitizer protophorphyrin IX (PpIX) and energy storage 2-pyridone derivative (Py), to guarantee instantaneous and sustainable ROS generation for LECs killing, aiming to achieve more efficient and safer photodynamic therapy (PDT) to effectively prevent PCO. The silylated PpIX-Si and Py-Si were covalently conjugated to the plasma activated CTR surface to obtain CTR-Py-PpIX. Results demonstrated that CTR-Py-PpIX had dual functions of PDT and battery, in which PpIX could generate ROS extracellularly under irradiation, with one part directly inhibiting LECs by lipid peroxidation (LPO) induction of cell membranes. Meanwhile, the excess ROS stored in Py could be continuously released to amplify LPO levels after the irradiation was removed. Ultimately, the proliferation of LECs in capsular bag was completely inhibited under mild irradiation conditions, achieving a sustainable and controlled PDT effect for effective PCO prevention with good biocompatibility. This NIR-triggered ROS storage intraocular implant would provide a more efficient and safer approach for long-term PCO prevention.
Collapse
|
8
|
Augmented cellular uptake and homologous targeting of exosome-based drug loaded IOL for posterior capsular opacification prevention and biosafety improvement. Bioact Mater 2022; 15:469-481. [PMID: 35386342 PMCID: PMC8958386 DOI: 10.1016/j.bioactmat.2022.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Posterior capsular opacification (PCO), the most common complication after cataract surgery, is caused by the proliferation, migration and differentiation of residual lens epithelial cells (LECs) on the surface of the intraocular lens (IOL). Although drug-loaded IOLs have been successfully developed, the PCO prevention efficacy is still limited due to the lack of targeting and low bioavailability. In this investigation, an exosome-functionalized drug-loaded IOL was successfully developed for effective PCO prevention utilizing the homologous targeting and high biocompatibility of exosome. The exosomes derived from LECs were collected to load the anti-proliferative drug doxorubicin (Dox) through electroporation and then immobilized on the aminated IOLs surface through electrostatic interaction. In vitro experiments showed that significantly improved cellular uptake of Dox@Exos by LECs was achieved due to the targeting ability of exosome, compared with free Dox, thus resulting in superior anti-proliferation effect. In vivo animal investigations indicated that Dox@Exos-IOLs effectively inhibited the development of PCO and showed excellent intraocular biocompatibility. We believe that this work will provide a targeting strategy for PCO prevention through exosome-functionalized IOL.
Collapse
|
9
|
Qie J, Wen S, Han Y, Liu S, Shen L, Chen H, Lin Q. Polydopamine based photodynamic coating on intraocular lens surface for safer posterior capsule opacification conquering. Biomater Sci 2022; 10:2188-2197. [PMID: 35244650 DOI: 10.1039/d2bm00038e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intraocular lens (IOL) is the indispensable implant for cataract surgery. However, posterior capsular opacification (PCO) happens in high incidence after IOL implantation. PCO is caused by adhesion, proliferation, trans-differentiation of...
Collapse
Affiliation(s)
- Jiqiao Qie
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | - Shimin Wen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | - Yuemei Han
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | - Sihao Liu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | - Liangliang Shen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | - Hao Chen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| |
Collapse
|
10
|
NIR-triggered drug delivery system for chemo-photothermal therapy of posterior capsule opacification. J Control Release 2021; 339:391-402. [PMID: 34563593 DOI: 10.1016/j.jconrel.2021.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022]
Abstract
Posterior capsule opacification (PCO) is the most common complication after cataract surgery and is likely to cause the second loss of vision. Pharmacological PCO prophylaxis has been proved to be effective, yet no clinical option is available due to the lack of a suitable mode of administration. In this work, we propose a unique concept of NIR dual-triggered drug release from black phosphorus (BP)-based implantable intraocular lens (IOL) for controlled drug release and chemo-photothermal combination therapy of PCO. Here, IOL is used as a "reservoir" of doxorubicin-loaded black phosphorus (BP-DOX), and BP is used as NIR activation agent for controlled drug release and photothermal therapy. This BP-DOX integrated IOL, namely BP-DOX@IOL, shows the characteristics of good transmittance, good mechanical property, NIR dual-triggered drug release behaviors, and excellent photothermal efficacy. In vivo studies reveal that there is no PCO occurrence in rabbits' model by using BP-DOX@IOL combined NIR irradiation, which exhibits distinct superiority on inhibiting PCO than the control group (100% PCO occurrence) 28 days post-surgery. This novel IOL drug delivery system would be a promising strategy for the future clinical application for PCO prophylaxis and treatment.
Collapse
|
11
|
Nanogel-Facilitated In-Situ Delivery of a Cataract Inhibitor. Biomolecules 2021; 11:biom11081150. [PMID: 34439816 PMCID: PMC8391309 DOI: 10.3390/biom11081150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/05/2023] Open
Abstract
Cataracts are a leading cause of blindness worldwide. Surgical removal of cataracts is a safe and effective procedure to restore vision. However, a large number of patients later develop vision loss due to regrowth of lens cells and subsequent degradation of the visual axis leading to visual disability. This postsurgical complication, known as posterior capsular opacification (PCO), occurs in up to 30% of cataract patients and has no clinically proven pharmacological means of prevention. Despite the availability of many compounds capable of preventing early steps in PCO development, there is currently no effective means to deliver such therapies into the eye for a suitable duration. To model a solution to this unmet medical need, we fabricated acrylic substrates as intraocular lens (IOL) mimics scaled to place into the capsular bag of the mouse lens following a mock-cataract surgery. Substrates were coated with a hydrophilic crosslinked acrylate nanogel designed to elute Sorbinil, an aldose reductase inhibitor previously shown to suppress PCO. Insertion of the Sorbinil-eluting device into the lens capsule at the time of cataract surgery resulted in substantial prevention of cellular changes associated with PCO development. This model demonstrates that a cataract inhibitor can be delivered into the postsurgical lens capsule at therapeutic levels.
Collapse
|
12
|
Qin C, Liu S, Wen S, Han Y, Chen S, Qie J, Chen H, Lin Q. Enhanced PCO prevention of drug eluting IOLs via endocytosis and autophagy effects of a PAMAM dendrimer. J Mater Chem B 2021; 9:793-800. [PMID: 33336672 DOI: 10.1039/d0tb02530e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug-loaded intraocular lenses (IOLs) have received considerable attention in treating complications that arise after cataract surgery, especially posterior capsular opacification (PCO). However, for a better therapeutic effect, the drug concentration in IOLs usually needs to be increased. Herein, we developed multilayer (doxorubicin (DOX)@polyaminoamide (PAMAM) (D@P)/heparin sodium (HEP))5 modified IOLs, which efficiently enhance the inhibitory effect on PCO using the enhanced autophagy effect of a cationic PAMAM. The chemotherapeutic drug DOX was encapsulated in PAMAM to formulate cationic DOX@PAMAM nanoparticles. Subsequently, negatively charged HEP and D@P nanoparticles (NPs) were assembled on the aminated artificial IOL surface using the layer-by-layer (LBL) assembly technique. The (D@P/HEP)5 IOLs were implanted into rabbit eyes to evaluate the prevention of PCO. In vitro and in vivo research studies showed that the D@P NPs exhibited enhanced cellular uptake owing to the cell-penetrating cationic characteristics, while demonstrating enhanced autophagy. D@P NPs are more effective at the same DOX concentration when compared to free DOX. Multilayer-modified (D@P/HEP)5 IOLs can efficiently inhibit PCO after cataract surgery. This study provides a strategy for improving the therapeutic effect of antiproliferative drug DOX by using a cationic dendrimer, which, in turn, increases the level of autophagy of cells. These LBL-based multilayer IOLs have broad application prospects in the treatment of complications after cataract surgery.
Collapse
Affiliation(s)
- Chen Qin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mao Y, Yu S, Kang Y, Zhang D, Wu S, Zhang J, Xiong Y, Li M, Zhang J, Wang J, Wang K, Wan X. CuInS/ZnS quantum dots modified intraocular lens for photothermal therapy of posterior capsule opacification. Exp Eye Res 2020; 202:108282. [PMID: 33049272 DOI: 10.1016/j.exer.2020.108282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/10/2020] [Accepted: 09/26/2020] [Indexed: 11/18/2022]
Abstract
Posterior capsule opacification (PCO) after cataract surgery is one of the leading causes of visual impairment and blindness. The cause of PCO is the capsule fibrosis developed on implanted Intraocular Lens (IOLs) by the de-differentiation of Lens Epithelial Cells (LECs) undergoing epithelial mesenchymal transition. How to prevent PCO has been a challenge to scientists and ophthalmologists for decades. Here we demonstrated the use of carboxylated CuInS/ZnS quantum dots (ZCIS QDs), which are free of toxic heavy metals and are more biocompatible, as photothermal nanomedicines. The ZCIS QDs are modified onto the non-optical section of IOLs by a facial activation-immersion method. Under mild NIR laser irradiation, ZCIS QDs modified IOLs (QDs-IOLs) will generate localized heat and prevent the proliferation of LECs onto the surface of QDs-IOLs. Our findings provide experimental evidence for further application of combined nanotechnology and photothermal therapy for the clinical treatment of PCO.
Collapse
Affiliation(s)
- Yingyan Mao
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, PR China
| | - Shirong Yu
- Najing Technology Corporation LTD., Hangzhou, Zhejiang, PR China
| | - Yongyin Kang
- Najing Technology Corporation LTD., Hangzhou, Zhejiang, PR China
| | | | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, PR China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, PR China
| | - Ying Xiong
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China
| | - Meng Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, PR China
| | - Jingshang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, PR China
| | - Jinda Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, PR China
| | - Kaijie Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China
| | - Xiuhua Wan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, PR China.
| |
Collapse
|
14
|
Son YJ, Tse JW, Zhou Y, Mao W, Yim EKF, Yoo HS. Biomaterials and controlled release strategy for epithelial wound healing. Biomater Sci 2019; 7:4444-4471. [PMID: 31436261 DOI: 10.1039/c9bm00456d] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The skin and cornea are tissues that provide protective functions. Trauma and other environmental threats often cause injuries, infections and damage to these tissues, where the degree of injury is directly correlated to the recovery time. For example, a superficial skin or corneal wound may recover within days; however, more severe injuries can last up to several months and may leave scarring. Thus, therapeutic strategies have been introduced to enhance the wound healing efficiency and quality. Although the skin and cornea share similar anatomic structures and wound healing process, therapeutic agents and formulations for skin and cornea wound healing differ in accordance with the tissue and wound type. In this review, we describe the anatomy and epithelial wound healing processes of the skin and cornea, and summarize the therapeutic molecules that are beneficial to the respective regeneration process. In addition, biomaterial scaffolds that inherently possess bioactive properties or modified with therapeutic molecules for topical controlled release and enhanced wound healing efficiency are also discussed.
Collapse
Affiliation(s)
- Young Ju Son
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - John W Tse
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Yiran Zhou
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea. and Institute of Bioscience and Biotechnology, Kangwon National University, Republic of Korea
| |
Collapse
|
15
|
Chen A, Zhao M, Zhuo Y, Chai Y, Yuan R. Hollow Porous Polymeric Nanospheres of a Self-Enhanced Ruthenium Complex with Improved Electrochemiluminescent Efficiency for Ultrasensitive Aptasensor Construction. Anal Chem 2017; 89:9232-9238. [DOI: 10.1021/acs.analchem.7b02003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anyi Chen
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Min Zhao
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ying Zhuo
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yaqin Chai
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Bao X, Hou M, Qin Y, Luo F, Shang F, Wu M. Effect of an MG132-Sustained Drug Delivery Capsular Ring on the Inhibition of Posterior Capsule Opacification in a Rabbit Model. J Ocul Pharmacol Ther 2017; 33:103-110. [PMID: 28106491 DOI: 10.1089/jop.2016.0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To design an MG132-sustained drug delivery capsular ring (SDDCR) and investigate its effect on the inhibition of posterior capsule opacification (PCO) in a rabbit model. METHODS The SDDCRs were prepared by forming a slice of film made by the mixture of poly lactic-co-glycolic acid (PLGA) and MG132 on the surface of capsular tension rings (CTRs). The drug-loading capacity, entrapment efficiency, and in vitro release of the drug-containing film were detected. Eighteen New Zealand white rabbits were operated with phacoemulsification and MG132-SDDCRs/PLGA-CTRs/CTRs implantation in the single eye. The images of the anterior segments were acquired at certain days, and the epithelial-mesenchymal transition (EMT) markers were detected by western blot and immunofluorescence. RESULTS The drug-loading capacity and entrapment efficiency of MG132-SDDCRs were 1.15% ± 0.04% and 66.16% ± 0.027%, respectively, and the drug released well within a month. The PCO degree of the MG132-SDDCR group was significantly lower than the other groups. The expression of alpha-smooth muscle actin, fibronectin, vimentin, and collagen-I was lower, and the expression of E-cadherin (E-cad) was higher in the MG132-SDDCR group than the other groups. CONCLUSIONS MG132-SDDCRs could be established successfully. The PCO process was prevented, and the expression of EMT markers was inhibited by the implantation of MG132-SDDCRs, indicating that this could be a potential treatment against PCO.
Collapse
Affiliation(s)
- Xuan Bao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Min Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Yingyan Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Furong Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Fu Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| |
Collapse
|