1
|
Yi L, Xie H, Zhang X, Gu M, Zhang K, Xia T, Pan S, Yin H, Wu R, You Y, You B. LPAR3 and COL8A1, as matrix stiffness-related biomarkers, promote nasopharyngeal carcinoma metastasis by triggering EMT and angiogenesis. Cell Signal 2025; 131:111712. [PMID: 40049264 DOI: 10.1016/j.cellsig.2025.111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
Matrix stiffness affects the progression of nasopharyngeal carcinoma, but the underlying mechanism is still unknown. Here, we demonstrated that nasopharyngeal carcinoma tissues with distant metastasis contain large collagen deposits and strong matrix stiffness. First, we performed RNA-seq analysis of nasopharyngeal carcinoma cells cultured on polyacrylamide hydrogel systems and found that LPAR3 and COL8A1 are potential matrix stiffness markers. Based on in vivo and in vitro experiments, matrix stiffness mainly affected tumor metastasis rather than proliferation. Subsequently, we found that matrix stiffness triggers the formation of epithelial-mesenchymal transition by increasing the expression of LPAR3 in nasopharyngeal carcinoma, which is related to metastasis. In addition, matrix stiffness promotes the expression of COL8A1 secreted by nasopharyngeal carcinoma and is related to tumor angiogenesis. Simultaneous inhibition of LPAR3 and COL8A1 genes significantly reduced nasopharyngeal carcinoma invasion and metastasis. Based on the investigation, we confirmed that matrix stiffness governs the progression of nasopharyngeal carcinoma and that LPAR3 and COL8A1, as matrix stiffness related biomarkers, promote nasopharyngeal carcinoma metastasis by inducing epithelial-mesenchymal transition and angiogenesis. Overall, the in-depth exploration of matrix stiffness may provide a strategy for clinical treatment intervention and provide promising targets for clinical nasopharyngeal carcinoma treatment.
Collapse
MESH Headings
- Humans
- Epithelial-Mesenchymal Transition
- Nasopharyngeal Carcinoma/pathology
- Nasopharyngeal Carcinoma/metabolism
- Nasopharyngeal Carcinoma/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/genetics
- Receptors, Lysophosphatidic Acid/metabolism
- Receptors, Lysophosphatidic Acid/genetics
- Nasopharyngeal Neoplasms/pathology
- Nasopharyngeal Neoplasms/metabolism
- Nasopharyngeal Neoplasms/genetics
- Cell Line, Tumor
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Animals
- Extracellular Matrix/metabolism
- Neoplasm Metastasis
- Mice, Nude
- Mice
- Gene Expression Regulation, Neoplastic
- Mice, Inbred BALB C
- Cell Proliferation
- Female
- Male
- Angiogenesis
Collapse
Affiliation(s)
- Lu Yi
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Nantong University, Qixiu Road 19, Nantong 226001, Jiangsu Province, China
| | - Haijing Xie
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China
| | - Xin Zhang
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Nantong University, Qixiu Road 19, Nantong 226001, Jiangsu Province, China
| | - Miao Gu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China
| | - Kaiwen Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China
| | - Tian Xia
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China
| | - Si Pan
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China
| | - Haimeng Yin
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Nantong University, Qixiu Road 19, Nantong 226001, Jiangsu Province, China
| | - Rui Wu
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Nantong University, Qixiu Road 19, Nantong 226001, Jiangsu Province, China
| | - Yiwen You
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China.
| | - Bo You
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
2
|
Liu X, Shu Y, Zhu J, Fang H, Su Y, Ma H, Li B, Xu J, Cheng YY, Pan B, Song K. A 3D bioprinted potential colorectal tumor model based on decellularized matrix/gelatin methacryloyl/nanoclay/sodium alginate hydrogel. Int J Biol Macromol 2025; 293:139346. [PMID: 39743054 DOI: 10.1016/j.ijbiomac.2024.139346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Colorectal cancer (CRC) is now the third most common cancer worldwide. However, the development cycle for anticancer drugs is lengthy and the failure rate is high, highlighting the urgent need for new tumor models for CRC-related research. The decellular matrix (dECM) offers numerous cell adhesion sites, proteoglycan and cytokines. Notably, porcine small intestine is rich in capillaries and lymphatic capillaries, which facilitates nutrient absorption. This study, we utilized dECM, along with methylacryloyl gelatin (GelMA), sodium alginate (SA) and nanoclay (NC) to create a hydrogel scaffold through 3D extrusion bioprinting. Human CRC cells (HCT8) were seeded onto the scaffold and their drug resistance was tested using 5-fluorouracil (5-FU). Our findings indicate that dECM enhances the hydrophilic properties, mechanical strength and biocompatibility of the scaffold. Furthermore, compared to traditional two-dimensional (2D) models, the three-dimensional (3D) scaffold supports the long-term growth of tumor spheres. After 2 days of 5-FU treatment, the cell survival rate reaches 88.06 ± 0.51 %. This suggests that our scaffold provides a promising alternative platform for in vitro research on cancer mechanisms, anti-cancer drug screening and new drug development.
Collapse
Affiliation(s)
- Xinyue Liu
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Shu
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingjing Zhu
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Huan Fang
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ya Su
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hailin Ma
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bing Li
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jie Xu
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia.
| | - Bo Pan
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China.
| | - Kedong Song
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Nouri K, Piryaei A, Seydi H, Zarkesh I, Ghoytasi I, Shokouhian B, Najimi M, Vosough M. Fibrotic liver extracellular matrix induces cancerous phenotype in biomimetic micro-tissues of hepatocellular carcinoma model. Hepatobiliary Pancreat Dis Int 2025; 24:92-103. [PMID: 39289044 DOI: 10.1016/j.hbpd.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Despite considerable advancements in identifying factors contributing to the development of hepatocellular carcinoma (HCC), the pathogenesis of HCC remains unclear. In many cases, HCC is a consequence of prolonged liver fibrosis, resulting in the formation of an intricate premalignant microenvironment. The accumulation of extracellular matrix (ECM) is a hallmark of premalignant microenvironment. Given the critical role of different matrix components in regulating cell phenotype and function, this study aimed to elucidate the interplay between the fibrotic matrix and malignant features in HCC. METHODS Liver tissues from both control (normal) and carbon tetrachloride (CCl4)-induced fibrotic rats were decellularized using sodium dodecyl sulfate (SDS) and Triton X-100. The resulting hydrogel from decellularized ECM was processed into micro-particles via the water-in-oil emulsion method. Micro-particles were subsequently incorporated into three-dimensional liver biomimetic micro-tissues (MTs) comprising Huh-7 cells, human umbilical vein endothelial cells (HUVECs), and LX-2 cells. The MTs were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay at day 11, immunofluorescence staining, immunoblotting, and spheroid migration assay at day 14 after co-culture. RESULTS Fibrotic matrix from CCl4-treated rat livers significantly enhanced the growth rate of the MTs and their expression of CCND1 as compared to the normal one. Fibrotic matrix, also induced the expression of epithelial-to-mesenchymal transition (EMT)-associated genes such as TWIST1, ACTA2, MMP9, CDH2, and VIMENTIN in the MTs as compared to the normal matrix. Conversely, the expression of CDH1 and hepatic maturation genes HNF4A, ALB, CYP3A4 was decreased in the MTs when the fibrotic matrix was used. Furthermore, the fibrotic matrix increased the migration of the MTs and their secretion of alpha-fetoprotein. CONCLUSIONS Our findings suggest a regulatory role for the fibrotic matrix in promoting cancerous phenotype, which could potentially accelerate the progression of malignancy in the liver.
Collapse
Affiliation(s)
- Kosar Nouri
- Department of Developmental Biology, University of Science and Culture, ACECR 14155-4364 Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR 14155-4364 Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR 14155-4364 Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeyra Seydi
- Department of Developmental Biology, University of Science and Culture, ACECR 14155-4364 Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR 14155-4364 Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR 14155-4364 Tehran, Iran
| | - Ibrahim Zarkesh
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR 14155-4364 Tehran, Iran
| | - Ibrahim Ghoytasi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR 14155-4364 Tehran, Iran
| | - Bahare Shokouhian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR 14155-4364 Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR 14155-4364 Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
4
|
Torkashvand M, Rezakhani L, Habibi Z, Mikaeili A, Rahmati S. Innovative approaches in lung tissue engineering: the role of exosome-loaded bioscaffolds in regenerative medicine. Front Bioeng Biotechnol 2024; 12:1502155. [PMID: 39758953 PMCID: PMC11695380 DOI: 10.3389/fbioe.2024.1502155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Lung diseases account for over four million premature deaths every year, and experts predict that this number will increase in the future. The top cause of death globally is diseases which include conditions like lung cancer asthma and COPD. Treating severe acute lung injury is a complex task because lungs struggle to heal themselves in the presence of swelling inflammation and scarring caused by damage, to the lung tissues. Though achieving lung regeneration, in controlled environments is still an ambition; ongoing studies are concentrating on notable progress, in the field of lung tissue engineering and methods for repairing lung damage. This review delves into methods, for regenerating lungs with a focus on exosome carry bioscaffolds and mesenchymal stem cells among others. It talks about how these new techniques can help repair lung tissue and improve lung function in cases of damage. Also noted is the significance of ex vivo lung perfusion (EVLP), for rejuvenating donor lungs and the healing properties of exosomes in supporting lung regeneration.
Collapse
Affiliation(s)
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Habibi
- Clinical Research Development Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, University of Medical Sciences, Kermanshah, Iran
| | - Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
5
|
Ifijen IH, Christopher AT, Lekan OK, Aworinde OR, Faderin E, Obembe O, Abdulsalam Akanji TF, Igboanugo JC, Udogu U, Ogidi GO, Iorkula TH, Osayawe OJK. Advancements in tantalum based nanoparticles for integrated imaging and photothermal therapy in cancer management. RSC Adv 2024; 14:33681-33740. [PMID: 39450067 PMCID: PMC11498270 DOI: 10.1039/d4ra05732e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Tantalum-based nanoparticles (TaNPs) have emerged as promising tools in cancer management, owing to their unique properties that facilitate innovative imaging and photothermal therapy applications. This review provides a comprehensive overview of recent advancements in TaNPs, emphasizing their potential in oncology. Key features include excellent biocompatibility, efficient photothermal conversion, and the ability to integrate multifunctional capabilities, such as targeted drug delivery and enhanced imaging. Despite these advantages, challenges remain in establishing long-term biocompatibility, optimizing therapeutic efficacy through surface modifications, and advancing imaging techniques for real-time monitoring. Strategic approaches to address these challenges include surface modifications like PEGylation to improve biocompatibility, precise control over size and shape for effective photothermal therapy, and the development of biodegradable TaNPs for safe elimination from the body. Furthermore, integrating advanced imaging modalities-such as photoacoustic imaging, magnetic resonance imaging (MRI), and computed tomography (CT)-enable real-time tracking of TaNPs in vivo, which is crucial for clinical applications. Personalized medicine strategies that leverage biomarkers and genetic profiling also hold promise for tailoring TaNP-based therapies to individual patient profiles, thereby enhancing treatment efficacy and minimizing side effects. In conclusion, TaNPs represent a significant advancement in nanomedicine, poised to transform cancer treatment paradigms while expanding into various biomedical applications.
Collapse
Affiliation(s)
- Ikhazuagbe H Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| | - Awoyemi Taiwo Christopher
- Laboratory Department, Covenant University Medical Centre Canaan land, KM 10, Idiroko Road Ota Ogun State Nigeria
| | - Ogunnaike Korede Lekan
- Department of Chemistry, Wichita State University 1845 Fairmount, Box 150 Wichita KS 67260-0150 USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, 1 Hairpin Drive Edwardsville IL 62026-001 USA
| | | | | | - Juliet C Igboanugo
- Department of Health, Human Performance, and Recreation 155 Stadium Drive Arkansas 72701 USA
| | - Uzochukwu Udogu
- Department of Chemistry, Federal University of Technology Owerri Nigeria
| | | | - Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | |
Collapse
|
6
|
Klabukov I, Smirnova A, Yakimova A, Kabakov AE, Atiakshin D, Petrenko D, Shestakova VA, Sulina Y, Yatsenko E, Stepanenko VN, Ignatyuk M, Evstratova E, Krasheninnikov M, Sosin D, Baranovskii D, Ivanov S, Shegay P, Kaprin AD. Oncomatrix: Molecular Composition and Biomechanical Properties of the Extracellular Matrix in Human Tumors. JOURNAL OF MOLECULAR PATHOLOGY 2024; 5:437-453. [DOI: 10.3390/jmp5040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The extracellular matrix is an organized three-dimensional network of protein-based molecules and other macromolecules that provide structural and biochemical support to tissues. Depending on its biochemical and structural properties, the extracellular matrix influences cell adhesion and signal transduction and, in general, can influence cell differentiation and proliferation through specific mechanisms of chemical and mechanical sensing. The development of body tissues during ontogenesis is accompanied by changes not only in cells but also in the composition and properties of the extracellular matrix. Similarly, tumor development in carcinogenesis is accompanied by a continuous change in the properties of the extracellular matrix of tumor cells, called ‘oncomatrix’, as the tumor matures, from the development of the primary focus to the stage of metastasis. In this paper, the characteristics of the composition and properties of the extracellular matrix of tumor tissues are considered, as well as changes to the composition and properties of the matrix during the evolution of the tumor and metastasis. The extracellular matrix patterns of tumor tissues can be used as biomarkers of oncological diseases as well as potential targets for promising anti-tumor therapies.
Collapse
Affiliation(s)
- Ilya Klabukov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anna Smirnova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Anna Yakimova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Alexander E. Kabakov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Dmitri Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Daria Petrenko
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Victoria A. Shestakova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| | - Yana Sulina
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Elena Yatsenko
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Vasiliy N. Stepanenko
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Michael Ignatyuk
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ekaterina Evstratova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Michael Krasheninnikov
- Scientific and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Dmitry Sosin
- Center for Strategic Planning and Management of Medical and Biological Health Risks of the FMBA of Russia, 119121 Moscow, Russia
| | - Denis Baranovskii
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Sergey Ivanov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Peter Shegay
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
7
|
Urbaniec-Stompór J, Michalak M, Godlewski J. Correlating Ultrastructural Changes in the Invasion Area of Colorectal Cancer with CT and MRI Imaging. Int J Mol Sci 2024; 25:9905. [PMID: 39337393 PMCID: PMC11432200 DOI: 10.3390/ijms25189905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The cancer invasion of the large intestine, a destructive process that begins within the mucous membrane, causes cancer cells to gradually erode specific layers of the intestinal wall. The normal tissues of the intestine are progressively replaced by a tumour mass, leading to the impairment of the large intestine's proper morphology and function. At the ultrastructural level, the disintegration of the extracellular matrix (ECM) by cancer cells triggers the activation of inflammatory cells (macrophages) and connective tissue cells (myofibroblasts) in this area. This accumulation and the functional interactions between these cells form the tumour microenvironment (TM). The constant modulation of cancer cells and cancer-associated fibroblasts (CAFs) creates a specific milieu akin to non-healing wounds, which induces colon cancer cell proliferation and promotes their survival. This review focuses on the processes occurring at the "front of cancer invasion", with a particular focus on the role of the desmoplastic reaction in neoplasm development. It then correlates the findings from the microscopic observation of the cancer's ultrastructure with the potential of modern radiological imaging, such as computer tomography (CT) and magnetic resonance imaging (MRI), which visualizes the tumour, its boundaries, and the tissue reactions in the large intestine.
Collapse
Affiliation(s)
- Joanna Urbaniec-Stompór
- Department of Diagnostic Imaging, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, 10228 Olsztyn, Poland
| | - Maciej Michalak
- Department of Diagnostic Imaging, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, 10228 Olsztyn, Poland
- Department of Oncology, Faculty of Medical Sciences, University of Warmia and Mazury, 10228 Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Faculty of Medical Sciences, University of Warmia and Mazury, 10082 Olsztyn, Poland
- Clinical Surgical Oncology Department, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, 10228 Olsztyn, Poland
| |
Collapse
|
8
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
9
|
Rathee M, Umar SM, Dev AJR, Kashyap A, Mathur SR, Gogia A, Mohapatra P, Prasad CP. Canonical WNT/β-catenin signaling upregulates aerobic glycolysis in diverse cancer types. Mol Biol Rep 2024; 51:788. [PMID: 38970704 DOI: 10.1007/s11033-024-09694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/31/2024] [Indexed: 07/08/2024]
Abstract
Despite many efforts, a comprehensive understanding and clarification of the intricate connections within cancer cell metabolism remain elusive. This might pertain to intracellular dynamics and the complex interplay between cancer cells, and cells with the tumor stroma. Almost a century ago, Otto Warburg found that cancer cells exhibit a glycolytic phenotype, which continues to be a subject of thorough investigation. Past and ongoing investigations have demonstrated intricate mechanisms by which tumors modulate their functionality by utilizing extracellular glucose as a substrate, thereby sustaining the essential proliferation of cancer cells. This concept of "aerobic glycolysis," where cancer cells (even in the presence of enough oxygen) metabolize glucose to produce lactate plays a critical role in cancer progression and is regulated by various signaling pathways. Recent research has revealed that the canonical wingless-related integrated site (WNT) pathway promotes aerobic glycolysis, directly and indirectly, thereby influencing cancer development and progression. The present review seeks to gather knowledge about how the WNT/β-catenin pathway influences aerobic glycolysis, referring to relevant studies in different types of cancer. Furthermore, we propose the concept of impeding the glycolytic phenotype of tumors by employing specific inhibitors that target WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Meetu Rathee
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sheikh Mohammad Umar
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Arundhathi J R Dev
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Akanksha Kashyap
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | | | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
10
|
Doherty EL, Krohn G, Warren EC, Patton A, Whitworth CP, Rathod M, Biehl A, Aw WY, Freytes DO, Polacheck WJ. Human Cell-Derived Matrix Composite Hydrogels with Diverse Composition for Use in Vasculature-on-chip Models. Adv Healthc Mater 2024; 13:e2400192. [PMID: 38518808 PMCID: PMC11281875 DOI: 10.1002/adhm.202400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Microphysiological and organ-on-chip platforms seek to address critical gaps in human disease models and drug development that underlie poor rates of clinical success for novel interventions. While the fabrication technology and model cells used to synthesize organs-on-chip have advanced considerably, most platforms rely on animal-derived or synthetic extracellular matrix as a cell substrate, limiting mimicry of human physiology and precluding use in modeling diseases in which matrix dynamics play a role in pathogenesis. Here, the development of human cell-derived matrix (hCDM) composite hydrogels for use in 3D microphysiologic models of the vasculature is reported. hCDM composite hydrogels are derived from human donor fibroblasts and maintain a complex milieu of basement membrane, proteoglycans, and nonfibrillar matrix components. The use of hCDM composite hydrogels as 2D and 3D cell culture substrates is demonstrated, and hCDM composite hydrogels are patterned to form engineered human microvessels. Interestingly, hCDM composite hydrogels are enriched in proteins associated with vascular morphogenesis as determined by mass spectrometry, and functional analysis demonstrates proangiogenic signatures in human endothelial cells cultured in these hydrogels. In conclusion, this study suggests that human donor-derived hCDM composite hydrogels could address technical gaps in human organs-on-chip development and serve as substrates to promote vascularization.
Collapse
Affiliation(s)
- Elizabeth L Doherty
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Grace Krohn
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Emily C Warren
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Alexandra Patton
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Chloe P Whitworth
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, 130 Mason Farm Road, Chapel Hill, Carolina, NC 27599, USA
| | - Mitesh Rathod
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Andreea Biehl
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Wen Yih Aw
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Donald O Freytes
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - William J Polacheck
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Chapel Hill, Carolina, NC 27599, USA
| |
Collapse
|
11
|
Seifi Z, Khazaei M, Cheraghali D, Rezakhani L. Decellularized tissues as platforms for digestive system cancer models. Heliyon 2024; 10:e31589. [PMID: 38845895 PMCID: PMC11153114 DOI: 10.1016/j.heliyon.2024.e31589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
The extracellular matrix (ECM) is a multifunctional network of macromolecules that regulate various cellular functions and physically support the tissues. Besides physiological conditions, the ECM also changes during pathological conditions such as cancer. As tumor cells proliferate, notable changes occur in the quantity and makeup of the surrounding ECM. Therefore, the role of this noncellular component of tissues in studies of tumor microenvironments should be considered. So far, many attempts have been made to create 2-dimensional (2D) or 3-dimensional (3D) models that can replicate the intricate connections within the tumor microenvironment. Decellularized tissues are proper scaffolds that imitate the complex nature of native ECM. This review aims to summarize 3D models of digestive system cancers based on decellularized ECMs. These ECM-based scaffolds will enable us to study the interactive communication between cells and their surrounding environment which brings new potential for a better understanding of the pathophysiology of cancer.
Collapse
Affiliation(s)
- Zahra Seifi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Danial Cheraghali
- Department of Mechanical Engineering, New Jersey Institute of Technology, NJ, USA
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Mun S, Lee HJ, Kim P. Rebuilding the microenvironment of primary tumors in humans: a focus on stroma. Exp Mol Med 2024; 56:527-548. [PMID: 38443595 PMCID: PMC10984944 DOI: 10.1038/s12276-024-01191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/29/2023] [Indexed: 03/07/2024] Open
Abstract
Conventional tumor models have critical shortcomings in that they lack the complexity of the human stroma. The heterogeneous stroma is a central compartment of the tumor microenvironment (TME) that must be addressed in cancer research and precision medicine. To fully model the human tumor stroma, the deconstruction and reconstruction of tumor tissues have been suggested as new approaches for in vitro tumor modeling. In this review, we summarize the heterogeneity of tumor-associated stromal cells and general deconstruction approaches used to isolate patient-specific stromal cells from tumor tissue; we also address the effect of the deconstruction procedure on the characteristics of primary cells. Finally, perspectives on the future of reconstructed tumor models are discussed, with an emphasis on the essential prerequisites for developing authentic humanized tumor models.
Collapse
Affiliation(s)
- Siwon Mun
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| | - Hyun Jin Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea.
- Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea.
| |
Collapse
|
13
|
Maistriaux L, Foulon V, Fievé L, Xhema D, Evrard R, Manon J, Coyette M, Bouzin C, Poumay Y, Gianello P, Behets C, Lengelé B. Reconstruction of the human nipple-areolar complex: a tissue engineering approach. Front Bioeng Biotechnol 2024; 11:1295075. [PMID: 38425730 PMCID: PMC10902434 DOI: 10.3389/fbioe.2023.1295075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024] Open
Abstract
Introduction: Nipple-areolar complex (NAC) reconstruction after breast cancer surgery is challenging and does not always provide optimal long-term esthetic results. Therefore, generating a NAC using tissue engineering techniques, such as a decellularization-recellularization process, is an alternative option to recreate a specific 3D NAC morphological unit, which is then covered with an in vitro regenerated epidermis and, thereafter, skin-grafted on the reconstructed breast. Materials and methods: Human NACs were harvested from cadaveric donors and decellularized using sequential detergent baths. Cellular clearance and extracellular matrix (ECM) preservation were analyzed by histology, as well as by DNA, ECM proteins, growth factors, and residual sodium dodecyl sulfate (SDS) quantification. In vivo biocompatibility was evaluated 30 days after the subcutaneous implantation of native and decellularized human NACs in rats. In vitro scaffold cytocompatibility was assessed by static seeding of human fibroblasts on their hypodermal side for 7 days, while human keratinocytes were seeded on the scaffold epidermal side for 10 days by using the reconstructed human epidermis (RHE) technique to investigate the regeneration of a new epidermis. Results: The decellularized NAC showed a preserved 3D morphology and appeared white. After decellularization, a DNA reduction of 98.3% and the absence of nuclear and HLA staining in histological sections confirmed complete cellular clearance. The ECM architecture and main ECM proteins were preserved, associated with the detection and decrease in growth factors, while a very low amount of residual SDS was detected after decellularization. The decellularized scaffolds were in vivo biocompatible, fully revascularized, and did not induce the production of rat anti-human antibodies after 30 days of subcutaneous implantation. Scaffold in vitro cytocompatibility was confirmed by the increasing proliferation of seeded human fibroblasts during 7 days of culture, associated with a high number of living cells and a similar viability compared to the control cells after 7 days of static culture. Moreover, the RHE technique allowed us to recreate a keratinized pluristratified epithelium after 10 days of culture. Conclusion: Tissue engineering allowed us to create an acellular and biocompatible NAC with a preserved morphology, microarchitecture, and matrix proteins while maintaining their cell growth potential and ability to regenerate the skin epidermis. Thus, tissue engineering could provide a novel alternative to personalized and natural NAC reconstruction.
Collapse
Affiliation(s)
- Louis Maistriaux
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Pole of Experimental Surgery and Transplantation (CHEX), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Vincent Foulon
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Lies Fievé
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Daela Xhema
- Pole of Experimental Surgery and Transplantation (CHEX), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Robin Evrard
- Pole of Experimental Surgery and Transplantation (CHEX), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Julie Manon
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Maude Coyette
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Department of Plastic and Reconstructive Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Yves Poumay
- Research Unit for Molecular Physiology (URPhyM), Department of Medicine, Namur Research Institute for Life Sciences (NARILIS), UNamur, Namur, Belgium
| | - Pierre Gianello
- Pole of Experimental Surgery and Transplantation (CHEX), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Catherine Behets
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Benoît Lengelé
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Department of Plastic and Reconstructive Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
14
|
He KJ, Gong G, Liang E, Lv Y, Lin S, Xu J. Pan-cancer analysis of 60S Ribosomal Protein L7-Like 1 (RPL7L1) and validation in liver hepatocellular carcinoma. Transl Oncol 2024; 40:101844. [PMID: 38042135 PMCID: PMC10701367 DOI: 10.1016/j.tranon.2023.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND AND AIMS There is an association between cancer and increased ribosome biogenesis. At present, the RPL7L1 (60S Ribosomal Protein L7-Like 1) were less reported by literature search. Study reports that RPL7L1 is associated with mouse embryonic and skeletal muscle. The study of RPL7L1 on tumors has not been reported. METHODS Our team downloaded the pan-cancer dataset that is uniformly normalized from the UCSC database (N=19131). Our study examined the relationship between RPL7L1 expression level and clinical prognosis with methylation, anti-tumour immunity, functional states, MSI, TMB, DNSss, LOH and chemotherapeutic responses in 43 cancer types and subtypes. RESULTS AND CONCLUSIONS RPL7L1 was overexpressed in nine tumor types. Gene mutation, tumor microenvironment and methylation modification of RPL7L1 plays a key role in patient prognosis. And the high expression of RPL7L1 was associated with TMB, MSI, LOH especially LIHC and HNSC. We experimentally verified that genes can promote the proliferation and migration of tumor cells. Our study suggested that RPL7L1 biomarker can be used for treating cancer, detecting it, and predicting its prognosis.
Collapse
Affiliation(s)
- Ke-Jie He
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou city, Zhejiang Province, China.
| | - Guoyu Gong
- School of Medicine, Xiamen University, Xiamen China
| | - E Liang
- Xiamen Xianyue Hospital, Xiamen China
| | - Yangbo Lv
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou city, Zhejiang Province, China
| | - Shuiquan Lin
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou city, Zhejiang Province, China
| | - Jianguang Xu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou city, Zhejiang Province, China.
| |
Collapse
|
15
|
Abuwatfa WH, Pitt WG, Husseini GA. Scaffold-based 3D cell culture models in cancer research. J Biomed Sci 2024; 31:7. [PMID: 38221607 PMCID: PMC10789053 DOI: 10.1186/s12929-024-00994-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
Three-dimensional (3D) cell cultures have emerged as valuable tools in cancer research, offering significant advantages over traditional two-dimensional (2D) cell culture systems. In 3D cell cultures, cancer cells are grown in an environment that more closely mimics the 3D architecture and complexity of in vivo tumors. This approach has revolutionized cancer research by providing a more accurate representation of the tumor microenvironment (TME) and enabling the study of tumor behavior and response to therapies in a more physiologically relevant context. One of the key benefits of 3D cell culture in cancer research is the ability to recapitulate the complex interactions between cancer cells and their surrounding stroma. Tumors consist not only of cancer cells but also various other cell types, including stromal cells, immune cells, and blood vessels. These models bridge traditional 2D cell cultures and animal models, offering a cost-effective, scalable, and ethical alternative for preclinical research. As the field advances, 3D cell cultures are poised to play a pivotal role in understanding cancer biology and accelerating the development of effective anticancer therapies. This review article highlights the key advantages of 3D cell cultures, progress in the most common scaffold-based culturing techniques, pertinent literature on their applications in cancer research, and the ongoing challenges.
Collapse
Affiliation(s)
- Waad H Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, P.O. Box. 26666, Sharjah, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Ghaleb A Husseini
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, P.O. Box. 26666, Sharjah, United Arab Emirates.
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
| |
Collapse
|
16
|
Li J, Liu J, Xia W, Yang H, Sha W, Chen H. Deciphering the Tumor Microenvironment of Colorectal Cancer and Guiding Clinical Treatment With Patient-Derived Organoid Technology: Progress and Challenges. Technol Cancer Res Treat 2024; 23:15330338231221856. [PMID: 38225190 PMCID: PMC10793199 DOI: 10.1177/15330338231221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors of the digestive tract worldwide. Despite notable advancements in CRC treatment, there is an urgent requirement for preclinical model systems capable of accurately predicting drug efficacy in CRC patients, to identify more effective therapeutic options. In recent years, substantial strides have been made in the field of organoid technology, patient-derived organoid models can phenotypically replicate the original intra-tumor and inter-tumor heterogeneity of CRC, reflecting cellular interactions of the tumor microenvironment. Patient-derived organoid models have become an indispensable tool for investigating the pathogenesis of CRC and facilitating translational research. This review focuses on the application of organoid technology in CRC modeling, tumor microenvironment, and guiding clinical treatment, particularly in drug screening and personalized medicine. It also examines the existing challenges encountered in clinical organoid research and provides a prospective outlook on the future development directions of clinical organoid research, encompassing the standardization of organoid culture technology and the application of tissue engineering technology.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jianhua Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wuzheng Xia
- Department of Organ Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hongwei Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Li H, Chen Z, Chen N, Fan Y, Xu Y, Xu X. Applications of lung cancer organoids in precision medicine: from bench to bedside. Cell Commun Signal 2023; 21:350. [PMID: 38057851 PMCID: PMC10698950 DOI: 10.1186/s12964-023-01332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023] Open
Abstract
As the leading cause of cancer-related mortality, lung cancer continues to pose a menacing threat to human health worldwide. Lung cancer treatment options primarily rely on chemoradiotherapy, surgery, targeted therapy, or immunotherapy. Despite significant progress in research and treatment, the 5-year survival rate for lung cancer patients is only 10-20%. There is an urgent need to develop more reliable preclinical models and valid therapeutic approaches. Patient-derived organoids with highly reduced tumour heterogeneity have emerged as a promising model for high-throughput drug screening to guide treatment of lung cancer patients. Organoid technology offers a novel platform for disease modelling, biobanking and drug development. The expected benefit of organoids is for cancer patients as the subsequent precision medicine technology. Over the past few years, numerous basic and clinical studies have been conducted on lung cancer organoids, highlighting the significant contributions of this technique. This review comprehensively examines the current state-of-the-art technologies and applications relevant to the formation of lung cancer organoids, as well as the potential of organoids in precision medicine and drug testing. Video Abstract.
Collapse
Affiliation(s)
- Huihui Li
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, Guangdong, China
| | - Ning Chen
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Oncology, The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yun Fan
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Xiaoling Xu
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
18
|
Li X, Shan J, Chen X, Cui H, Wen G, Yu Y. Decellularized diseased tissues: current state-of-the-art and future directions. MedComm (Beijing) 2023; 4:e399. [PMID: 38020712 PMCID: PMC10661834 DOI: 10.1002/mco2.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
Decellularized matrices derived from diseased tissues/organs have evolved in the most recent years, providing novel research perspectives for understanding disease occurrence and progression and providing accurate pseudo models for developing new disease treatments. Although decellularized matrix maintaining the native composition, ultrastructure, and biomechanical characteristics of extracellular matrix (ECM), alongside intact and perfusable vascular compartments, facilitates the construction of bioengineered organ explants in vitro and promotes angiogenesis and tissue/organ regeneration in vivo, the availability of healthy tissues and organs for the preparation of decellularized ECM materials is limited. In this paper, we review the research advancements in decellularized diseased matrices. Considering that current research focuses on the matrices derived from cancers and fibrotic organs (mainly fibrotic kidney, lungs, and liver), the pathological characterizations and the applications of these diseased matrices are mainly discussed. Additionally, a contrastive analysis between the decellularized diseased matrices and decellularized healthy matrices, along with the development in vitro 3D models, is discussed in this paper. And last, we have provided the challenges and future directions in this review. Deep and comprehensive research on decellularized diseased tissues and organs will promote in-depth exploration of source materials in tissue engineering field, thus providing new ideas for clinical transformation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianyang Shan
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Chen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Haomin Cui
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gen Wen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaling Yu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
19
|
Wei Z, Liu J, Jia Y, Lei M, Zhang S, Xi P, Ma Y, Zhang M, Ma J, Wang L, Guo H, Xu F. Fiber Microarchitecture in Interpenetrating Collagen-Alginate Hydrogel with Tunable Mechanical Plasticity Regulates Tumor Cell Migration. Adv Healthc Mater 2023; 12:e2301586. [PMID: 37506713 DOI: 10.1002/adhm.202301586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The fiber structures of tumor microenvironment (TME) are well-known in regulating tumor cell behaviors, and the plastic remolding of TME has recently been suggested to enhance tumor metastasis as well. However, the interrelationship between the fiber microarchitecture and matrix plasticity is inextricable by existing in vitro models. The individual roles of fiber microarchitecture and matrix plasticity in tuning tumor cell behaviors remain elusive. This study develops an interpenetrating collagen-alginate hydrogel platform with independently tunable matrix plasticity and fiber microarchitecture through an interpenetrating strategy of alginate networks and collagen I networks. With this hydrogel platform, it is demonstrated that tumor cells in high plasticity hydrogels are more extensive and aggressive than in low plasticity hydrogels and fiber structures only have influence in high plasticity hydrogels. The study further elucidates the underlying mechanisms through analyzing the distribution of forces within the matrix and tracking the focal adhesions (FAs) and finds that highly plastic hydrogels can activate the FAs formation, whereas the maturation and stability of FAs are dominated by fiber dispersion. This study not only establishes new ideas on how cells interact with TME cues but also would help to further finely tailor engineered hydrogel platforms for studying tumor behaviors in vitro.
Collapse
Affiliation(s)
- Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jingyi Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Songbai Zhang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, P. R. China
| | - Pan Xi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Min Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, P. R. China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Lin Wang
- College of Medicine, Xi'an International University, Xi'an, Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi'an, Shaanxi, 710077, China
| | - Hui Guo
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
20
|
Hachey SJ, Gaebler D, Hughes CCW. Establishing a Physiologic Human Vascularized Micro-Tumor Model for Cancer Research. J Vis Exp 2023:10.3791/65865. [PMID: 37782104 PMCID: PMC11050739 DOI: 10.3791/65865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
A lack of validated cancer models that recapitulate the tumor microenvironment of solid cancers in vitro remains a significant bottleneck for preclinical cancer research and therapeutic development. To overcome this problem, we have developed the vascularized microtumor (VMT), or tumor chip, a microphysiological system that realistically models the complex human tumor microenvironment. The VMT forms de novo within a microfluidic platform by co-culture of multiple human cell types under dynamic, physiological flow conditions. This tissue-engineered micro-tumor construct incorporates a living perfused vascular network that supports the growing tumor mass just as newly formed vessels do in vivo. Importantly, drugs and immune cells must cross the endothelial layer to reach the tumor, modeling in vivo physiological barriers to therapeutic delivery and efficacy. Since the VMT platform is optically transparent, high-resolution imaging of dynamic processes such as immune cell extravasation and metastasis can be achieved with direct visualization of fluorescently labeled cells within the tissue. Further, the VMT retains in vivo tumor heterogeneity, gene expression signatures, and drug responses. Virtually any tumor type can be adapted to the platform, and primary cells from fresh surgical tissues grow and respond to drug treatment in the VMT, paving the way toward truly personalized medicine. Here, the methods for establishing the VMT and utilizing it for oncology research are outlined. This innovative approach opens new possibilities for studying tumors and drug responses, providing researchers with a powerful tool to advance cancer research.
Collapse
Affiliation(s)
| | - Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine
| | - Christopher C W Hughes
- Molecular Biology and Biochemistry, University of California, Irvine; Biomedical Engineering, University of California, Irvine
| |
Collapse
|
21
|
Bouquerel C, Dubrova A, Hofer I, Phan DTT, Bernheim M, Ladaigue S, Cavaniol C, Maddalo D, Cabel L, Mechta-Grigoriou F, Wilhelm C, Zalcman G, Parrini MC, Descroix S. Bridging the gap between tumor-on-chip and clinics: a systematic review of 15 years of studies. LAB ON A CHIP 2023; 23:3906-3935. [PMID: 37592893 DOI: 10.1039/d3lc00531c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Over the past 15 years, the field of oncology research has witnessed significant progress in the development of new cell culture models, such as tumor-on-chip (ToC) systems. In this comprehensive overview, we present a multidisciplinary perspective by bringing together physicists, biologists, clinicians, and experts from pharmaceutical companies to highlight the current state of ToC research, its unique features, and the challenges it faces. To offer readers a clear and quantitative understanding of the ToC field, we conducted an extensive systematic analysis of more than 300 publications related to ToC from 2005 to 2022. ToC offer key advantages over other in vitro models by enabling precise control over various parameters. These parameters include the properties of the extracellular matrix, mechanical forces exerted on cells, the physico-chemical environment, cell composition, and the architecture of the tumor microenvironment. Such fine control allows ToC to closely replicate the complex microenvironment and interactions within tumors, facilitating the study of cancer progression and therapeutic responses in a highly representative manner. Importantly, by incorporating patient-derived cells or tumor xenografts, ToC models have demonstrated promising results in terms of clinical validation. We also examined the potential of ToC for pharmaceutical industries in which ToC adoption is expected to occur gradually. Looking ahead, given the high failure rate of clinical trials and the increasing emphasis on the 3Rs principles (replacement, reduction, refinement of animal experimentation), ToC models hold immense potential for cancer research. In the next decade, data generated from ToC models could potentially be employed for discovering new therapeutic targets, contributing to regulatory purposes, refining preclinical drug testing and reducing reliance on animal models.
Collapse
Affiliation(s)
- Charlotte Bouquerel
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
- Fluigent, 67 avenue de Fontainebleau, 94270, Le Kremlin-Bicêtre, France
| | - Anastasiia Dubrova
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Isabella Hofer
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Duc T T Phan
- Biomedicine Design, Pfizer Inc., San Diego, CA, USA
| | - Moencopi Bernheim
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Ségolène Ladaigue
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Charles Cavaniol
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Luc Cabel
- Institut Curie, Department of Medical Oncology, 26 rue d'Ulm, 75005, Paris, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Claire Wilhelm
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Gérard Zalcman
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
- Université Paris Cité, Thoracic Oncology Department, INSERM CIC1425, Bichat Hospital, Cancer Institute AP-HP. Nord, Paris, France.
| | - Maria Carla Parrini
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Stéphanie Descroix
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| |
Collapse
|
22
|
Stanciu SG, König K, Song YM, Wolf L, Charitidis CA, Bianchini P, Goetz M. Toward next-generation endoscopes integrating biomimetic video systems, nonlinear optical microscopy, and deep learning. BIOPHYSICS REVIEWS 2023; 4:021307. [PMID: 38510341 PMCID: PMC10903409 DOI: 10.1063/5.0133027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/26/2023] [Indexed: 03/22/2024]
Abstract
According to the World Health Organization, the proportion of the world's population over 60 years will approximately double by 2050. This progressive increase in the elderly population will lead to a dramatic growth of age-related diseases, resulting in tremendous pressure on the sustainability of healthcare systems globally. In this context, finding more efficient ways to address cancers, a set of diseases whose incidence is correlated with age, is of utmost importance. Prevention of cancers to decrease morbidity relies on the identification of precursor lesions before the onset of the disease, or at least diagnosis at an early stage. In this article, after briefly discussing some of the most prominent endoscopic approaches for gastric cancer diagnostics, we review relevant progress in three emerging technologies that have significant potential to play pivotal roles in next-generation endoscopy systems: biomimetic vision (with special focus on compound eye cameras), non-linear optical microscopies, and Deep Learning. Such systems are urgently needed to enhance the three major steps required for the successful diagnostics of gastrointestinal cancers: detection, characterization, and confirmation of suspicious lesions. In the final part, we discuss challenges that lie en route to translating these technologies to next-generation endoscopes that could enhance gastrointestinal imaging, and depict a possible configuration of a system capable of (i) biomimetic endoscopic vision enabling easier detection of lesions, (ii) label-free in vivo tissue characterization, and (iii) intelligently automated gastrointestinal cancer diagnostic.
Collapse
Affiliation(s)
- Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, Bucharest, Romania
| | | | | | - Lior Wolf
- School of Computer Science, Tel Aviv University, Tel-Aviv, Israel
| | - Costas A. Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, Italian Institute of Technology, Genoa, Italy
| | - Martin Goetz
- Medizinische Klinik IV-Gastroenterologie/Onkologie, Kliniken Böblingen, Klinikverbund Südwest, Böblingen, Germany
| |
Collapse
|
23
|
Ahmed T. Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling. IN VITRO MODELS 2023; 2:1-23. [PMID: 39872875 PMCID: PMC11756483 DOI: 10.1007/s44164-023-00043-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/30/2025]
Abstract
The translational potential of promising anticancer medications and treatments may be enhanced by the creation of 3D in vitro models that can accurately reproduce native tumor microenvironments. Tumor microenvironments for cancer treatment and research can be built in vitro using biomaterials. Three-dimensional in vitro cancer models have provided new insights into the biology of cancer. Cancer researchers are creating artificial three-dimensional tumor models based on functional biomaterials that mimic the microenvironment of the real tumor. Our understanding of tumor stroma activity over the course of cancer has improved because of the use of scaffold and matrix-based three-dimensional systems intended for regenerative medicine. Scientists have created synthetic tumor models thanks to recent developments in materials engineering. These models enable researchers to investigate the biology of cancer and assess the therapeutic effectiveness of available medications. The emergence of biomaterial engineering technologies with the potential to hasten treatment outcomes is highlighted in this review, which also discusses the influence of creating in vitro biomimetic 3D tumor microenvironments utilizing functional biomaterials. Future cancer treatments will rely much more heavily on biomaterials engineering.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara R/A, Dhaka-1229 Dhaka, Bangladesh
| |
Collapse
|
24
|
Raskov H, Gaggar S, Tajik A, Orhan A, Gögenur I. The Matrix Reloaded-The Role of the Extracellular Matrix in Cancer. Cancers (Basel) 2023; 15:2057. [PMID: 37046716 PMCID: PMC10093330 DOI: 10.3390/cancers15072057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
As the core component of all organs, the extracellular matrix (ECM) is an interlocking macromolecular meshwork of proteins, glycoproteins, and proteoglycans that provides mechanical support to cells and tissues. In cancer, the ECM can be remodelled in response to environmental cues, and it controls a plethora of cellular functions, including metabolism, cell polarity, migration, and proliferation, to sustain and support oncogenesis. The biophysical and biochemical properties of the ECM, such as its structural arrangement and being a reservoir for bioactive molecules, control several intra- and intercellular signalling pathways and induce cytoskeletal changes that alter cell shapes, behaviour, and viability. Desmoplasia is a major component of solid tumours. The abnormal deposition and composition of the tumour matrix lead to biochemical and biomechanical alterations that determine disease development and resistance to treatment. This review summarises the complex roles of ECM in cancer and highlights the possible therapeutic targets and how to potentially remodel the dysregulated ECM in the future. Furthering our understanding of the ECM in cancer is important as the modification of the ECM will probably become an important tool in the characterisation of individual tumours and personalised treatment options.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Shruti Gaggar
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Asma Tajik
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Oncology, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
25
|
Chen Q, Wang W, Yuan C, Wang P. [Research progress of matrix stiffness in regulating endothelial cell sprouting]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2023; 37:202-207. [PMID: 36796817 DOI: 10.7507/1002-1892.202210019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Objective To review the research progress on the role and mechanism of matrix stiffness in regulating endothelial cell sprouting. Methods The related literature at home and abroad in recent years was extensively reviewed, and the behaviors of matrix stiffness related endothelial cell sprouting in different cell cultivation conditions were analyzed, and the specific molecular mechanism of matrix stiffness regulating related signal pathways in endothelial cell sprouting was elaborated. Results In two-dimensional cell cultivation condition, increase of matrix stiffness stimulates endothelial cell sprouting within a certain range. However, in three-dimensional cell cultivation condition, the detailed function of matrix stiffness in regulating endothelial cell sprouting and angiogenesis are still unclear. At present, the research of the related molecular mechanism mainly focuses on YAP/TAZ, and roles of its upstream and downstream signal molecules. Matrix stiffness can regulate endothelial cell sprouting by activating or inhibiting signal pathways to participate in vascularization. Conclusion Matrix stiffness plays a vital role in regulating endothelial cell sprouting, but its specific role and molecular mechanism in different environments remain ambiguous and need further study.
Collapse
Affiliation(s)
- Qiyu Chen
- School of Stomatology, Xuzhou Medical University, Xuzhou Jiangsu, 221004, P. R. China
| | - Wen Wang
- School of Stomatology, Xuzhou Medical University, Xuzhou Jiangsu, 221004, P. R. China
- Department of Periodontology, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou Jiangsu, 221002, P. R. China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Xuzhou Jiangsu, 221004, P. R. China
- Department of Oral Implantology, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou Jiangsu, 221002, P. R. China
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Xuzhou Jiangsu, 221004, P. R. China
- Department of Oral Implantology, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou Jiangsu, 221002, P. R. China
| |
Collapse
|
26
|
Decellularized Matrix Induced Spontaneous Odontogenic and Osteogenic Differentiation in Periodontal Cells. Biomolecules 2023; 13:biom13010122. [PMID: 36671506 PMCID: PMC9855832 DOI: 10.3390/biom13010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The regeneration of periodontal tissues is a decisive factor in the treatment of periodontitis. Currently, to achieve complete periodontal regeneration, many studies have evaluated the effectiveness of decellularized tissue-engineered constructs on periodontal regeneration. We studied the possibilities of osteogenic and odontogenic differentiation of periodontal progenitor and stem cells (SCs) of the periosteum and periodontal ligament, in decellularized tooth matrix (dTM) and periodontal ligament (dPDL), in 2D and 3D culture. The cell culture of periodontal cells without decellularized matrices was used as control. On the 14th day of cultivation of PDLSCs, PSCs, and PDLSCs + PSCs on dTM and/or dPDL scaffolds in 2D conditions, in all scaffold variants, a dense monolayer of spindle-shaped cells was intensely stained for markers of osteogenic differentiation, such as osteopontin and osteocalcin. Periodontal cells in the collagen I hydrogel (3D-dimensional culture) were more diverse in shape and, in combination of dTM and dPDL, in addition to osteogenic expression, expressed dentin sialophosphoprotein, an odontogenic differentiation marker. Thus, collagen I hydrogel contributed to the formation of conditions similar to those in vivo, and the combination of dTM with dPDL apparently formed a microenvironment that promoted osteogenic and odontogenic differentiation of periodontal cells.
Collapse
|
27
|
Ziegler ME, Sorensen AM, Banyard DA, Sayadi LR, Chnari E, Hatch MM, Tassey J, Mirzakhanyan Y, Gershon PD, Hughes CC, Evans GR, Widgerow AD. Deconstructing Allograft Adipose and Fascia Matrix: Fascia Matrix Improves Angiogenesis, Volume Retention, and Adipogenesis in a Rodent Model. Plast Reconstr Surg 2023; 151:108-117. [PMID: 36219861 PMCID: PMC10081826 DOI: 10.1097/prs.0000000000009794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Autologous fat grafting is commonly used for soft-tissue repair (approximately 90,000 cases per year in the United States), but outcomes are limited by volume loss (20% to 80%) over time. Human allograft adipose matrix (AAM) stimulates de novo adipogenesis in vivo, but retention requires optimization. The extracellular matrix derived from superficial fascia, interstitial within the adipose layer, is typically removed during AAM processing. Thus, fascia, which contains numerous important proteins, might cooperate with AAM to stimulate de novo adipogenesis, improving long-term retention compared to AAM alone. METHODS Human AAM and fascia matrix proteins (back and upper leg regions) were identified by mass spectrometry and annotated by gene ontology. A three-dimensional in vitro angiogenesis assay was performed. Finally, AAM and/or fascia (1 mL) was implanted into 6- to 8-week-old male Fischer rats. After 8 weeks, the authors assessed graft retention by gas pycnometry and angiogenesis (CD31) and adipocyte counts (hematoxylin and eosin) histologically. RESULTS Gene ontology annotation revealed an angiogenic enrichment pattern unique to the fascia, including lactadherin, collagen alpha-3(V) chain, and tenascin-C. In vitro, AAM stimulated 1.0 ± 0.17 angiogenic sprouts per bead. The addition of fascia matrix increased sprouting by 88% (2.0 ± 0.12; P < 0.001). A similar angiogenic response (CD31) was observed in vivo. Graft retention volume was 25% (0.25 ± 0.13) for AAM, significantly increasing to 60% (0.60 ± 0.14) for AAM/fascia ( P < 0.05). De novo adipogenesis was 12% (12.4 ± 7.4) for AAM, significantly increasing to 51% (51.2 ± 8.0) for AAM/fascia ( P < 0.001) by means of adipocyte quantification. CONCLUSIONS Combining fascia matrix with AAM improves angiogenesis and adipogenesis compared to AAM alone in rats. These preliminary in vitro and pilot animal studies should be further validated before definitive clinical adoption. CLINICAL RELEVANCE STATEMENT When producing an off-the-shelf adipose inducing product by adding a connective tissue fascial component (that is normally discarded) to the mix of adipose matrix, vasculogenesis is increased and, thus, adipogenesis and graft survival is improved. This is a significant advance in this line of product.
Collapse
Affiliation(s)
- Mary E. Ziegler
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | | | - Derek A. Banyard
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | - Lohrasb R. Sayadi
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | | | - Michaela M. Hatch
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Jade Tassey
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | - Yeva Mirzakhanyan
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Paul D. Gershon
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Christopher C.W. Hughes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA; Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, UC Irvine, USA
| | - Gregory R.D. Evans
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | - Alan D. Widgerow
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| |
Collapse
|
28
|
Franchi M, Karamanos KA, Cappadone C, Calonghi N, Greco N, Franchi L, Onisto M, Masola V. Substrate Type and Concentration Differently Affect Colon Cancer Cells Ultrastructural Morphology, EMT Markers, and Matrix Degrading Enzymes. Biomolecules 2022; 12:1786. [PMID: 36551219 PMCID: PMC9775446 DOI: 10.3390/biom12121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Aim of the study was to understand the behavior of colon cancer LoVo-R cells (doxorubicin-resistant) vs. LoVo-S (doxorubicin sensitive) in the initial steps of extracellular matrix (ECM) invasion. We investigated how the matrix substrates Matrigel and type I collagen-mimicking the basement membrane (BM) and the normal or desmoplastic lamina propria, respectively-could affect the expression of epithelial-to-mesenchymal transition (EMT) markers, matrix-degrading enzymes, and phenotypes. Gene expression with RT-qPCR, E-cadherin protein expression using Western blot, and phenotypes using scanning electron microscopy (SEM) were analyzed. The type and different concentrations of matrix substrates differently affected colon cancer cells. In LoVo-S cells, the higher concentrated collagen, mimicking the desmoplastic lamina propria, strongly induced EMT, as also confirmed by the expression of Snail, metalloproteases (MMPs)-2, -9, -14 and heparanase (HPSE), as well as mesenchymal phenotypes. Stimulation in E-cadherin expression in LoVo-S groups suggests that these cells develop a hybrid EMT phenotype. Differently, LoVo-R cells did not increase their aggressiveness: no changes in EMT markers, matrix effectors, and phenotypes were evident. The low influence of ECM components in LoVo-R cells might be related to their intrinsic aggressiveness related to chemoresistance. These results improve understanding of the critical role of tumor microenvironment in colon cancer cell invasion, driving the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Marco Franchi
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | | | - Concettina Cappadone
- Department of Pharmacy and Biotechnologies, University of Bologna, 40126 Bologna, Italy
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnologies, University of Bologna, 40126 Bologna, Italy
| | - Nicola Greco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Leonardo Franchi
- Department of Medicine, University of Bologna, 40126 Bologna, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Valentina Masola
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
29
|
Lee YM. RUNX Family in Hypoxic Microenvironment and Angiogenesis in Cancers. Cells 2022; 11:cells11193098. [PMID: 36231060 PMCID: PMC9564080 DOI: 10.3390/cells11193098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
The tumor microenvironment (TME) is broadly implicated in tumorigenesis, as tumor cells interact with surrounding cells to influence the development and progression of the tumor. Blood vessels are a major component of the TME and are attributed to the creation of a hypoxic microenvironment, which is a common feature of advanced cancers and inflamed premalignant tissues. Runt-related transcription factor (RUNX) proteins, a transcription factor family of developmental master regulators, are involved in vital cellular processes such as differentiation, proliferation, cell lineage specification, and apoptosis. Furthermore, the RUNX family is involved in the regulation of various oncogenic processes and signaling pathways as well as tumor suppressive functions, suggesting that the RUNX family plays a strategic role in tumorigenesis. In this review, we have discussed the relevant findings that describe the crosstalk of the RUNX family with the hypoxic TME and tumor angiogenesis or with their signaling molecules in cancer development and progression.
Collapse
Affiliation(s)
- You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Lab of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-8566; Fax:+82-53-950-8557
| |
Collapse
|
30
|
Decellularized normal and cancer tissues as tools for cancer research. Cancer Gene Ther 2022; 29:879-888. [PMID: 34785762 DOI: 10.1038/s41417-021-00398-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
Today it is widely accepted that molecular mechanisms triggering cancer initiate with a genetic modification. However, a genetic alteration providing the aberrant clone with a growing advantage over neighboring cells is not sufficient to develop cancer. Currently, tumors are considered a heterogeneous population of cells and an extracellular matrix (ECM) that make up a characteristic microenvironment. Interactions between tumor cells and cancer microenvironment define cancer progression and therapeutic response. To investigate and clarify the role of ECM in the regulation of cancer cell behavior and response to therapy, the decellularization of ECM, a widely used technique in tissue engineering, has been recently employed to develop 3D culture model of disease. In this review, we briefly explore the different components of healthy and pathological ECM and the methods to obtain and characterize the ECM from native bioptic tissue. Finally, we highlight the most relevant applications of ECM in translational cancer research strategies: decellularized ECM, ECM-hydrogel and 3D bioprinting.
Collapse
|
31
|
Scarpellino G, Genova T, Quarta E, Distasi C, Dionisi M, Fiorio Pla A, Munaron L. P2X Purinergic Receptors Are Multisensory Detectors for Micro-Environmental Stimuli That Control Migration of Tumoral Endothelium. Cancers (Basel) 2022; 14:2743. [PMID: 35681724 PMCID: PMC9179260 DOI: 10.3390/cancers14112743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
The tumoral microenvironment often displays peculiar features, including accumulation of extracellular ATP, hypoxia, low pH-acidosis, as well as an imbalance in zinc (Zn2+) and calcium (Ca2+). We previously reported the ability of some purinergic agonists to exert an anti-migratory activity on tumor-derived human endothelial cells (TEC) only when applied at a high concentration. They also trigger calcium signals associated with release from intracellular stores and calcium entry from the external medium. Here, we provide evidence that high concentrations of BzATP (100 µM), a potent agonist of P2X receptors, decrease migration in TEC from different tumors, but not in normal microvascular ECs (HMEC). The same agonist evokes a calcium increase in TEC from the breast and kidney, as well as in HMEC, but not in TEC from the prostate, suggesting that the intracellular pathways responsible for the P2X-induced impairment of TEC migration could vary among different tumors. The calcium signal is mainly due to a long-lasting calcium entry from outside and is strictly dependent on the presence of the receptor occupancy. Low pH, as well as high extracellular Zn2+ and Ca2+, interfere with the response, a distinctive feature typically found in some P2X purinergic receptors. This study reveals that a BzATP-sensitive pathway impairs the migration of endothelial cells from different tumors through mechanisms finely tuned by environmental factors.
Collapse
Affiliation(s)
- Giorgia Scarpellino
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| | - Tullio Genova
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| | - Elisa Quarta
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| | - Carla Distasi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (C.D.); (M.D.)
| | - Marianna Dionisi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (C.D.); (M.D.)
| | - Alessandra Fiorio Pla
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| | - Luca Munaron
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| |
Collapse
|
32
|
Karlsson S, Nyström H. The extracellular matrix in colorectal cancer and its metastatic settling – alterations and biological implications. Crit Rev Oncol Hematol 2022; 175:103712. [DOI: 10.1016/j.critrevonc.2022.103712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
|
33
|
García-Gareta E, Pérez MÁ, García-Aznar JM. Decellularization of tumours: A new frontier in tissue engineering. J Tissue Eng 2022; 13:20417314221091682. [PMID: 35495097 PMCID: PMC9044784 DOI: 10.1177/20417314221091682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. The tumour extracellular
matrix (ECM) has unique features in terms of composition and mechanical
properties, resulting in a structurally and chemically different ECM to that of
native, healthy tissues. This paper reviews to date the efforts into
decellularization of tumours, which in the authors’ view represents a new
frontier in the ever evolving field of tumour tissue engineering. An overview of
the ECM and its importance in cancer is given, ending with examples of research
using decellularized tumours, which has already indicated potential therapeutic
targets, unravelled malignancy mechanisms or response to chemotherapy agents.
The review highlights that more research is needed in this area, which can
answer important questions related to tumour formation and progression to
ultimately identify new and effective therapeutic targets. Within the
near-future of personalized medicine, this research can create patient-specific
tumour models and therapeutic regimes.
Collapse
Affiliation(s)
- Elena García-Gareta
- Aragonese Agency for R&D (ARAID) Foundation, Zaragoza, Aragón, Spain
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - María Ángeles Pérez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
| |
Collapse
|
34
|
Brás MM, Sousa SR, Carneiro F, Radmacher M, Granja PL. Mechanobiology of Colorectal Cancer. Cancers (Basel) 2022; 14:1945. [PMID: 35454852 PMCID: PMC9028036 DOI: 10.3390/cancers14081945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, the mechanobiology of colorectal cancer (CRC) are discussed. Mechanotransduction of CRC is addressed considering the relationship of several biophysical cues and biochemical pathways. Mechanobiology is focused on considering how it may influence epithelial cells in terms of motility, morphometric changes, intravasation, circulation, extravasation, and metastization in CRC development. The roles of the tumor microenvironment, ECM, and stroma are also discussed, taking into account the influence of alterations and surface modifications on mechanical properties and their impact on epithelial cells and CRC progression. The role of cancer-associated fibroblasts and the impact of flow shear stress is addressed in terms of how it affects CRC metastization. Finally, some insights concerning how the knowledge of biophysical mechanisms may contribute to the development of new therapeutic strategies and targeting molecules and how mechanical changes of the microenvironment play a role in CRC disease are presented.
Collapse
Affiliation(s)
- Maria Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-465 Porto, Portugal
- Serviço de Patologia, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manfred Radmacher
- Institute for Biophysics, University of Bremen, 28334 Bremen, Germany
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
35
|
Luo L, Ma Y, Zheng Y, Su J, Huang G. Application Progress of Organoids in Colorectal Cancer. Front Cell Dev Biol 2022; 10:815067. [PMID: 35273961 PMCID: PMC8902504 DOI: 10.3389/fcell.2022.815067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, colorectal cancer is still the third leading cause of cancer-related mortality, and the incidence is rising. It is a long time since the researchers used cancer cell lines and animals as the study subject. However, these models possess various limitations to reflect the cancer progression in the human body. Organoids have more clinical significance than cell lines, and they also bridge the gap between animal models and humans. Patient-derived organoids are three-dimensional cultures that simulate the tumor characteristics in vivo and recapitulate tumor cell heterogeneity. Therefore, the emergence of colorectal cancer organoids provides an unprecedented opportunity for colorectal cancer research. It retains the molecular and cellular composition of the original tumor and has a high degree of homology and complexity with patient tissues. Patient-derived colorectal cancer organoids, as personalized tumor organoids, can more accurately simulate colorectal cancer patients’ occurrence, development, metastasis, and predict drug response in colorectal cancer patients. Colorectal cancer organoids show great potential for application, especially preclinical drug screening and prediction of patient response to selected treatment options. Here, we reviewed the application of colorectal cancer organoids in disease model construction, basic biological research, organoid biobank construction, drug screening and personalized medicine, drug development, drug toxicity and safety, and regenerative medicine. In addition, we also displayed the current limitations and challenges of organoids and discussed the future development direction of organoids in combination with other technologies. Finally, we summarized and analyzed the current clinical trial research of organoids, especially the clinical trials of colorectal cancer organoids. We hoped to lay a solid foundation for organoids used in colorectal cancer research.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| |
Collapse
|
36
|
Jia Y, Wei Z, Zhang S, Yang B, Li Y. Instructive Hydrogels for Primary Tumor Cell Culture: Current Status and Outlook. Adv Healthc Mater 2022; 11:e2102479. [PMID: 35182456 DOI: 10.1002/adhm.202102479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Primary tumor organoids (PTOs) growth in hydrogels have emerged as an important in vitro model that recapitulates many characteristics of the native tumor tissue, and have important applications in fundamental cancer research and for the development of useful therapeutic treatment. This paper begins with reviewing the methods of isolation of primary tumor cells. Then, recent advances on the instructive hydrogels as biomimetic extracellular matrix for primary tumor cell culture and construction of PTO models are summarized. Emerging microtechnology for growth of PTOs in microscale hydrogels and the applications of PTOs are highlighted. This paper concludes with an outlook on the future directions in the investigation of instructive hydrogels for PTO growth.
Collapse
Affiliation(s)
- Yiyang Jia
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Zhentong Wei
- Department of Oncologic Gynecology The First Hospital of Jilin University Changchun 130021 China
| | - Songling Zhang
- Department of Oncologic Gynecology The First Hospital of Jilin University Changchun 130021 China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 China
| |
Collapse
|
37
|
Karkanrood MV, Homayouni Tabrizi M, Ardalan T, Soltani M, Khadem F, Nosrat T, Moeini S. Pistacia atlantica fruit essential oil nanoemulsions (PAEO-NE), an effective antiangiogenic therapeutic and cell-dependent apoptosis inducer on A549 human lung cancer cells. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Touran Ardalan
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mozhgan Soltani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Toktam Nosrat
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Soheila Moeini
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Department of Biology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
38
|
Marques-Magalhães Â, Cruz T, Costa ÂM, Estêvão D, Rios E, Canão PA, Velho S, Carneiro F, Oliveira MJ, Cardoso AP. Decellularized Colorectal Cancer Matrices as Bioactive Scaffolds for Studying Tumor-Stroma Interactions. Cancers (Basel) 2022; 14:cancers14020359. [PMID: 35053521 PMCID: PMC8773780 DOI: 10.3390/cancers14020359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
More than a physical structure providing support to tissues, the extracellular matrix (ECM) is a complex and dynamic network of macromolecules that modulates the behavior of both cancer cells and associated stromal cells of the tumor microenvironment (TME). Over the last few years, several efforts have been made to develop new models that accurately mimic the interconnections within the TME and specifically the biomechanical and biomolecular complexity of the tumor ECM. Particularly in colorectal cancer, the ECM is highly remodeled and disorganized and constitutes a key component that affects cancer hallmarks, such as cell differentiation, proliferation, angiogenesis, invasion and metastasis. Therefore, several scaffolds produced from natural and/or synthetic polymers and ceramics have been used in 3D biomimetic strategies for colorectal cancer research. Nevertheless, decellularized ECM from colorectal tumors is a unique model that offers the maintenance of native ECM architecture and molecular composition. This review will focus on innovative and advanced 3D-based models of decellularized ECM as high-throughput strategies in colorectal cancer research that potentially fill some of the gaps between in vitro 2D and in vivo models. Our aim is to highlight the need for strategies that accurately mimic the TME for precision medicine and for studying the pathophysiology of the disease.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Tânia Cruz
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Ângela Margarida Costa
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Diogo Estêvão
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Elisabete Rios
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Pedro Amoroso Canão
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Sérgia Velho
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Fátima Carneiro
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Maria José Oliveira
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Patrícia Cardoso
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-607-4900
| |
Collapse
|
39
|
Imparato G, Urciuolo F, Netti PA. Organ on Chip Technology to Model Cancer Growth and Metastasis. Bioengineering (Basel) 2022; 9:28. [PMID: 35049737 PMCID: PMC8772984 DOI: 10.3390/bioengineering9010028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Organ on chip (OOC) has emerged as a major technological breakthrough and distinct model system revolutionizing biomedical research and drug discovery by recapitulating the crucial structural and functional complexity of human organs in vitro. OOC are rapidly emerging as powerful tools for oncology research. Indeed, Cancer on chip (COC) can ideally reproduce certain key aspects of the tumor microenvironment (TME), such as biochemical gradients and niche factors, dynamic cell-cell and cell-matrix interactions, and complex tissue structures composed of tumor and stromal cells. Here, we review the state of the art in COC models with a focus on the microphysiological systems that host multicellular 3D tissue engineering models and can help elucidate the complex biology of TME and cancer growth and progression. Finally, some examples of microengineered tumor models integrated with multi-organ microdevices to study disease progression in different tissues will be presented.
Collapse
Affiliation(s)
- Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy; (F.U.); (P.A.N.)
| | - Francesco Urciuolo
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy; (F.U.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production (DICMAPI), Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy; (F.U.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production (DICMAPI), Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| |
Collapse
|
40
|
Abstract
Rates of obesity and diabetes have increased significantly over the past decades and the prevalence is expected to continue to rise further in the coming years. Many observations suggest that obesity and diabetes are associated with an increased risk of developing several types of cancers, including liver, pancreatic, endometrial, colorectal, and post-menopausal breast cancer. The path towards developing obesity and diabetes is affected by multiple factors, including adipokines, inflammatory cytokines, growth hormones, insulin resistance, and hyperlipidemia. The metabolic abnormalities associated with changes in the levels of these factors in obesity and diabetes have the potential to significantly contribute to the development and progression of cancer through the regulation of distinct signaling pathways. Here, we highlight the cellular and molecular pathways that constitute the links between obesity, diabetes, cancer risk and mortality. This includes a description of the existing evidence supporting the obesity-driven morphological and functional alternations of cancer cells and adipocytes through complex interactions within the tumor microenvironment.
Collapse
Affiliation(s)
- Dae-Seok Kim
- Touchstone Diabetes Center, Department of Internal Medicine, Dallas, TX, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Corresponding author: Philipp E. Scherer https://orcid.org/0000-0003-0680-3392 Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA E-mail:
| |
Collapse
|
41
|
Wang B, Wang X, Tseng Y, Huang M, Luo F, Zhang J, Liu J. Distinguishing colorectal adenoma from hyperplastic polyp by WNT2 expression. J Clin Lab Anal 2021; 35:e23961. [PMID: 34477243 PMCID: PMC8529141 DOI: 10.1002/jcla.23961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Colorectal adenoma (CRA) is a classical premalignant lesion, with high incidence and mainly coexisting with hyperplastic polyp (HPP). Hence, this study aimed to distinguish CRA from HPP by molecular expression profiling and advance the prevention of CRA and its malignance. METHODS CRA and paired HPP biopsies were collected by endoscopy. Through RNA-sequencing (RNA-seq), the differentially expressed genes (DEGs) were obtained. Functional enrichment analysis was performed based on the DEGs. The STRING database and Cytoscape were used to construct the protein-protein interaction (PPI) network and perform module analysis. Hub genes were validated by real-time quantitative PCR (RT-qPCR) and immunohistochemistry. The ROC curve was drawn to establish the specificity of the hub genes. RESULTS 485 significant DEGs were identified including 133 up-regulated and 352 down-regulated. The top 10 up-regulated genes were DLX5, MMP10, TAC1, ACAN, TAS2R38, WNT2, PHYHIPL, DKK4, DUSP27, and ABCA12. The top 10 down-regulated genes were SFRP2, CHRDL1, KBTBD12, RERGL, DPP10, CLCA4, GREM2, TMIGD1, FEV, and OTOP3. Wnt signaling pathway and extracellular matrix (ECM) were up-regulated in CRA. Three hub genes including WNT2, WNT5A, and SFRP1 were filtered out via Cytoscape. Further RT-qPCR and immunohistochemistry confirmed that WNT2 was highly expressed in CRA. The area under the ROC curve (AUC) at 0.98 indicated the expression level of WNT2 as a candidate to differ CRA from HPP. CONCLUSION Our study suggests Wnt signaling pathway and ECM are enriched in CRA, and WNT2 may be used as a novel biomarker for distinguishing CRA from HPP and preventing the malignance of CRA.
Collapse
Affiliation(s)
- Bangting Wang
- Department of Digestive Diseases, Huashan HospitalFudan UniversityShanghaiChina
| | - Xin Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
| | - Yujen Tseng
- Department of Digestive Diseases, Huashan HospitalFudan UniversityShanghaiChina
| | - Meina Huang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
| | - Feifei Luo
- Department of Digestive Diseases, Huashan HospitalFudan UniversityShanghaiChina
| | - Jun Zhang
- Department of Digestive Diseases, Huashan HospitalFudan UniversityShanghaiChina
| | - Jie Liu
- Department of Digestive Diseases, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
42
|
Yang Z, Xue F, Li M, Zhu X, Lu X, Wang C, Xu E, Wang X, Zhang L, Yu H, Ren C, Wang H, Wang Y, Chen J, Guan W, Xia X. Extracellular Matrix Characterization in Gastric Cancer Helps to Predict Prognosis and Chemotherapy Response. Front Oncol 2021; 11:753330. [PMID: 34646782 PMCID: PMC8503650 DOI: 10.3389/fonc.2021.753330] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
The extracellular matrix (ECM) plays a central role in the formation of the tumor microenvironment. The deposition of the ECM is associated with poor prognosis in a variety of tumors. Aberrant ECM deposition could undermine the effect of chemotherapy and immunotherapy. However, there is no systematic analysis on the relationship between the ECM and prognosis or chemotherapy effect. In the present study, we applied the gene set variation analysis (GSVA) algorithm to score 2199 canonical pathways in 2125 cases of probe or sequencing data and identified the core matrisome as the driving factor in gastric cancer progression. We classified gastric cancer samples into three clusters according to the composition of the ECM and evaluated clinical and multi-omics characterization of ECM phenotypes. The ECM score was evaluated by GSVA score of core matrisome and a higher ECM score predicted poor prognosis of gastric cancer [Hazard Ratio (HR), 2.084; p-value < 2 × 10-16]. In The Cancer Genome Atlas (TCGA) cohort and KUGH, YUSH, and KUCM cohorts, we verified that patients with a low ECM score could benefit from chemotherapy. By contrast, patients with a high ECM score did not achieve satisfactory response from chemotherapy. Determining the characteristics of the ECM microenvironment might help to predict the prognosis and chemotherapy response of patients with gastric cancer, and help to resolve the enigma of chemoresistance acquisition, as well as providing inspiration to develop combination therapy.
Collapse
Affiliation(s)
- Zhi Yang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Feifei Xue
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Minhuan Li
- Department of Andrology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xingya Zhu
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xiaofeng Lu
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Chao Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - En Xu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xingzhou Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Liang Zhang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Heng Yu
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Chuanfu Ren
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yizhou Wang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jie Chen
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuefeng Xia
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
43
|
Ewald ML, Chen YH, Lee AP, Hughes CCW. The vascular niche in next generation microphysiological systems. LAB ON A CHIP 2021; 21:3244-3262. [PMID: 34396383 PMCID: PMC8635227 DOI: 10.1039/d1lc00530h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In recent years, microphysiological system (MPS, also known as, organ-on-a-chip or tissue chip) platforms have emerged with great promise to improve the predictive capacity of preclinical modeling thereby reducing the high attrition rates when drugs move into trials. While their designs can vary quite significantly, in general MPS are bioengineered in vitro microenvironments that recapitulate key functional units of human organs, and that have broad applications in human physiology, pathophysiology, and clinical pharmacology. A critical next step in the evolution of MPS devices is the widespread incorporation of functional vasculature within tissues. The vasculature itself is a major organ that carries nutrients, immune cells, signaling molecules and therapeutics to all other organs. It also plays critical roles in inducing and maintaining tissue identity through expression of angiocrine factors, and in providing tissue-specific milieus (i.e., the vascular niche) that can support the survival and function of stem cells. Thus, organs are patterned, maintained and supported by the vasculature, which in turn receives signals that drive tissue specific gene expression. In this review, we will discuss published vascularized MPS platforms and present considerations for next-generation devices looking to incorporate this critical constituent. Finally, we will highlight the organ-patterning processes governed by the vasculature, and how the incorporation of a vascular niche within MPS platforms will establish a unique opportunity to study stem cell development.
Collapse
Affiliation(s)
- Makena L Ewald
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
44
|
Bērziņa S, Harrison A, Taly V, Xiao W. Technological Advances in Tumor-On-Chip Technology: From Bench to Bedside. Cancers (Basel) 2021; 13:cancers13164192. [PMID: 34439345 PMCID: PMC8394443 DOI: 10.3390/cancers13164192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Various 3D in vitro tumor models are rapidly advancing cancer research. Unlike animal models, they can be produced quickly and are amenable to high-throughput studies. Growing tumor spheroids in microfluidic tumor-on-chip platforms has particularly elevated the capabilities of such models. Tumor-on-chip devices can mimic multiple aspects of the dynamic in vivo tumor microenvironment in a precisely controlled manner. Moreover, new technologies for the on- and off-chip analysis of these tumor mimics are continuously emerging. There is thus an urgent need to review the latest developments in this rapidly progressing field. Here, we present an overview of the technological advances in tumor-on-chip technology by reviewing state-of-the-art tools for on-chip analysis. In particular, we evaluate the potential for tumor-on-chip technology to guide personalized cancer therapies. We strive to appeal to cancer researchers and biomedical engineers alike, informing on current progress, while provoking thought on the outstanding developments needed to achieve clinical-stage research. Abstract Tumor-on-chip technology has cemented its importance as an in vitro tumor model for cancer research. Its ability to recapitulate different elements of the in vivo tumor microenvironment makes it promising for translational medicine, with potential application in enabling personalized anti-cancer therapies. Here, we provide an overview of the current technological advances for tumor-on-chip generation. To further elevate the functionalities of the technology, these approaches need to be coupled with effective analysis tools. This aspect of tumor-on-chip technology is often neglected in the current literature. We address this shortcoming by reviewing state-of-the-art on-chip analysis tools for microfluidic tumor models. Lastly, we focus on the current progress in tumor-on-chip devices using patient-derived samples and evaluate their potential for clinical research and personalized medicine applications.
Collapse
|
45
|
Magesh P, Thankachan S, Venkatesh T, Suresh PS. Breast cancer fibroblasts and cross-talk. Clin Chim Acta 2021; 521:158-169. [PMID: 34270953 DOI: 10.1016/j.cca.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
The breast tumor microenvironment is one of the crucial elements supporting breast cancer tumor progression and metastasis. The fibroblasts are the chief cellular component of the stromal microenvironment and are pathologically activated and differentiated into breast cancer-associated fibroblasts (CAFs). The catabolic phenotype of breast CAFs arises due to metabolic reprogramming of these fibroblasts under pseudo-hypoxic conditions. The metabolic intermediates and ATP produced by the breast CAFs are exploited by the neighboring cancer cells for energy generation. The growth factors, cytokines, and chemokines secreted by the CAFs help fuel tumor growth, invasion, and dissemination. Moreover, the interplay between breast CAFs and cancer cells, mediated by the growth factors, ROS, metabolic intermediates, exosomes, and catabolite transporters, aids in building a favorable microenvironment that promotes cancer cell proliferation, tumor progression, and metastasis. Therefore, identifying effective means to target the reprogrammed metabolism of the breast CAFs and the cross-communication between CAFs and cancer cells serve as promising strategies to develop anti-cancer therapeutics. Henceforth, the scope of the present review ranges from discussing the underlying characteristics of breast CAFs, mechanisms of metabolic reprogramming in breast CAFs, and the nature of interactions between breast CAFs and cancer cells to studying the intricacies of reprogrammed metabolism targeted cancer therapy.
Collapse
Affiliation(s)
- Priyanila Magesh
- School of Biotechnology, National Institute of Technology, Calicut 673601, Kerala, India
| | - Sanu Thankachan
- School of Biotechnology, National Institute of Technology, Calicut 673601, Kerala, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod 671316, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut 673601, Kerala, India.
| |
Collapse
|
46
|
Bao M, Chen Y, Liu JT, Bao H, Wang WB, Qi YX, Lv F. Extracellular matrix stiffness controls VEGF 165 secretion and neuroblastoma angiogenesis via the YAP/RUNX2/SRSF1 axis. Angiogenesis 2021; 25:71-86. [PMID: 34170441 DOI: 10.1007/s10456-021-09804-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022]
Abstract
Aberrant variations in angiogenesis have been observed in tumor tissues with abnormal stiffness of extracellular matrix (ECM). However, it remains largely unclear how ECM stiffness influences tumor angiogenesis. Numerous studies have reported that vascular endothelial growth factor-A (VEGF-A) released from tumor cells plays crucial roles in angiogenesis. Hence, we demonstrated the role of ECM stiffness in VEGF-A release from neuroblastoma (NB) cells and the underlying mechanisms. Based on 17 NB clinical samples, a negative correlation was observed between the length of blood vessels and stiffness of NB tissues. In vitro, an ECM stiffness of 30 kPa repressed the secretion of VEGF165 from NB cells which subsequently inhibited the tube formation of human umbilical vein endothelial cells (HUVECs). Knocked down VEGF165 in NB cells or blocked VEGF165 with neutralizing antibodies both repressed the tube formation of HUVECs. Specifically, 30 kPa ECM stiffness repressed the expression and nuclear accumulation of Yes-associated protein (YAP) to regulate the expression of Serine/Arginine Splicing Factor 1 (SRSF1) via Runt-related transcription factor 2 (RUNX2), which may then subsequently induce the expression and secretion of VEGF165 in NB tumor cells. Through implantation of 3D col-Tgels with different stiffness into nude mice, the inhibitory effect of 30 kPa on NB angiogenesis was confirmed in vivo. Furthermore, we found that the inhibitory effect of 30 kPa stiffness on NB angiogenesis was reversed by YAP overexpression, suggesting the important role of YAP in NB angiogenesis regulated by ECM stiffness. Overall, our work not only showed a regulatory effect of ECM stiffness on NB angiogenesis, but also revealed a new signaling axis, YAP-RUNX2-SRSF1, that mediates angiogenesis by regulating the expression and secretion of VEGF165 from NB cells. ECM stiffness and the potential molecules revealed in the present study may be new therapeutic targets for NB angiogenesis.
Collapse
Affiliation(s)
- Min Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240, Shanghai, China
| | - Yi Chen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240, Shanghai, China
| | - Ji-Ting Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240, Shanghai, China
| | - Han Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240, Shanghai, China
| | - Wen-Bin Wang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240, Shanghai, China
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240, Shanghai, China.
| | - Fan Lv
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu, Shanghai, 200092, China.
| |
Collapse
|
47
|
Liu X, Fang J, Huang S, Wu X, Xie X, Wang J, Liu F, Zhang M, Peng Z, Hu N. Tumor-on-a-chip: from bioinspired design to biomedical application. MICROSYSTEMS & NANOENGINEERING 2021; 7:50. [PMID: 34567763 PMCID: PMC8433302 DOI: 10.1038/s41378-021-00277-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 05/08/2023]
Abstract
Cancer is one of the leading causes of human death, despite enormous efforts to explore cancer biology and develop anticancer therapies. The main challenges in cancer research are establishing an efficient tumor microenvironment in vitro and exploring efficient means for screening anticancer drugs to reveal the nature of cancer and develop treatments. The tumor microenvironment possesses human-specific biophysical and biochemical factors that are difficult to recapitulate in conventional in vitro planar cell models and in vivo animal models. Therefore, model limitations have hindered the translation of basic research findings to clinical applications. In this review, we introduce the recent progress in tumor-on-a-chip devices for cancer biology research, medicine assessment, and biomedical applications in detail. The emerging tumor-on-a-chip platforms integrating 3D cell culture, microfluidic technology, and tissue engineering have successfully mimicked the pivotal structural and functional characteristics of the in vivo tumor microenvironment. The recent advances in tumor-on-a-chip platforms for cancer biology studies and biomedical applications are detailed and analyzed in this review. This review should be valuable for further understanding the mechanisms of the tumor evolution process, screening anticancer drugs, and developing cancer therapies, and it addresses the challenges and potential opportunities in predicting drug screening and cancer treatment.
Collapse
Affiliation(s)
- Xingxing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Jiaru Fang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Shuang Huang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Xiaoxue Wu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Fanmao Liu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Meng Zhang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Zhenwei Peng
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Ning Hu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| |
Collapse
|
48
|
Hachey SJ, Movsesyan S, Nguyen QH, Burton-Sojo G, Tankazyan A, Wu J, Hoang T, Zhao D, Wang S, Hatch MM, Celaya E, Gomez S, Chen GT, Davis RT, Nee K, Pervolarakis N, Lawson DA, Kessenbrock K, Lee AP, Lowengrub J, Waterman ML, Hughes CCW. An in vitro vascularized micro-tumor model of human colorectal cancer recapitulates in vivo responses to standard-of-care therapy. LAB ON A CHIP 2021; 21:1333-1351. [PMID: 33605955 PMCID: PMC8525497 DOI: 10.1039/d0lc01216e] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 05/23/2023]
Abstract
Around 95% of anti-cancer drugs that show promise during preclinical study fail to gain FDA-approval for clinical use. This failure of the preclinical pipeline highlights the need for improved, physiologically-relevant in vitro models that can better serve as reliable drug-screening and disease modeling tools. The vascularized micro-tumor (VMT) is a novel three-dimensional model system (tumor-on-a-chip) that recapitulates the complex human tumor microenvironment, including perfused vasculature, within a transparent microfluidic device, allowing real-time study of drug responses and tumor-stromal interactions. Here we have validated this microphysiological system (MPS) platform for the study of colorectal cancer (CRC), the second leading cause of cancer-related deaths, by showing that gene expression, tumor heterogeneity, and treatment responses in the VMT more closely model CRC tumor clinicopathology than current standard drug screening modalities, including 2-dimensional monolayer culture and 3-dimensional spheroids.
Collapse
Affiliation(s)
- Stephanie J. Hachey
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Silva Movsesyan
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Quy H. Nguyen
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Giselle Burton-Sojo
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Ani Tankazyan
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Tuyen Hoang
- Department of Biostatistics, University of California, IrvineIrvineCA92697USA
| | - Da Zhao
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
| | - Shuxiong Wang
- Department of Mathematics, University of California, IrvineIrvineCA92697USA
| | - Michaela M. Hatch
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Elizabeth Celaya
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Samantha Gomez
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - George T. Chen
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvineCA92697USA
| | - Ryan T. Davis
- Department of Physiology and Biophysics, University of California, IrvineIrvineCA92697USA
| | - Kevin Nee
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Nicholas Pervolarakis
- Center for Complex Biological Systems, University of California, IrvineIrvineCA92697USA
| | - Devon A. Lawson
- Department of Physiology and Biophysics, University of California, IrvineIrvineCA92697USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Abraham P. Lee
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
| | - John Lowengrub
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
- Department of Mathematics, University of California, IrvineIrvineCA92697USA
- Center for Complex Biological Systems, University of California, IrvineIrvineCA92697USA
| | - Marian L. Waterman
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvineCA92697USA
| | - Christopher C. W. Hughes
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
| |
Collapse
|
49
|
Browne S, Gill EL, Schultheiss P, Goswami I, Healy KE. Stem cell-based vascularization of microphysiological systems. Stem Cell Reports 2021; 16:2058-2075. [PMID: 33836144 PMCID: PMC8452487 DOI: 10.1016/j.stemcr.2021.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
Microphysiological systems (MPSs) (i.e., tissue or organ chips) exploit microfluidics and 3D cell culture to mimic tissue and organ-level physiology. The advent of human induced pluripotent stem cell (hiPSC) technology has accelerated the use of MPSs to study human disease in a range of organ systems. However, in the reduction of system complexity, the intricacies of vasculature are an often-overlooked aspect of MPS design. The growing library of pluripotent stem cell-derived endothelial cell and perivascular cell protocols have great potential to improve the physiological relevance of vasculature within MPS, specifically for in vitro disease modeling. Three strategic categories of vascular MPS are outlined: self-assembled, interface focused, and 3D biofabricated. This review discusses key features and development of the native vasculature, linking that to how hiPSC-derived vascular cells have been generated, the state of the art in vascular MPSs, and opportunities arising from interdisciplinary thinking.
Collapse
Affiliation(s)
- Shane Browne
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Elisabeth L Gill
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Paula Schultheiss
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ishan Goswami
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Kevin E Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
50
|
Abstract
Recreating human organ-level function in vitro is a rapidly evolving field that integrates tissue engineering, stem cell biology, and microfluidic technology to produce 3D organoids. A critical component of all organs is the vasculature. Herein, we discuss general strategies to create vascularized organoids, including common source materials, and survey previous work using vascularized organoids to recreate specific organ functions and simulate tumor progression. Vascularization is not only an essential component of individual organ function but also responsible for coupling the fate of all organs and their functions. While some success in coupling two or more organs together on a single platform has been demonstrated, we argue that the future of vascularized organoid technology lies in creating organoid systems complete with tissue-specific microvasculature and in coupling multiple organs through a dynamic vascular network to create systems that can respond to changing physiological conditions.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA;
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA;
| |
Collapse
|