1
|
Zhou M, Xu Y, Li J, Han Y, Yu H, Qi L, Chen J, Xiang H, Han J. Promoter engineering for enhanced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production in Haloferax mediterranei. Int J Biol Macromol 2025; 310:143237. [PMID: 40250665 DOI: 10.1016/j.ijbiomac.2025.143237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Polyhydroxyalkanoates (PHAs) are linear polyesters synthesized by various microorganisms. Due to their excellent physicochemical and material properties, PHAs are considered as a promising and sustainable alternative to petroleum-based plastics. Haloferax mediterranei is a promising and cost-effective producer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In this study, we aimed to improve PHBV yield of H. mediterranei via promoter engineering. Differential RNA-seq (dRNA-seq) was firstly used to examine the genome-wide transcription start sites (TSSs) of H. mediterranei. Based on the TSS profile, 26 constitutive promoters with expression strength spanning ~103-fold dynamic range were quantitatively characterized using GFP fluorescence reporting system. Furthermore, it was found that the 5' untranslated region (5'-UTR) of phaR encoding PHA synthesis regulatory protein reduced the activity of the promoters derived from phaR, and this regulation occurred at the transcription level. Finally, several suitable promoters were selected to regulate the expression of cimA and bktB to improve the PHBV accumulation and 3HV molar fraction in H. mediterranei, ultimately leading to an increase of 35 % and of 18.4 %, respectively. Taken together, this work established a constitutive promoter library of haloarchaea, which would provide abundant genetic elements for the construction of ideal haloarchaeal chassis cells contributing in biosynthetic biology of extremophiles.
Collapse
Affiliation(s)
- Mengkai Zhou
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yang Xu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Jie Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yiran Han
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Haiying Yu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Lei Qi
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Junyu Chen
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hua Xiang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Jing Han
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| |
Collapse
|
2
|
Chaber P, Andrä-Żmuda S, Śmigiel-Gac N, Zięba M, Dawid K, Martinka Maksymiak M, Adamus G. Enhancing the Potential of PHAs in Tissue Engineering Applications: A Review of Chemical Modification Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5829. [PMID: 39685265 DOI: 10.3390/ma17235829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of polyesters produced by many microbial species. These naturally occurring polymers are widely used in tissue engineering because of their in vivo degradability and excellent biocompatibility. The best studied among them is poly(3-hydroxybutyrate) (PHB) and its copolymer with 3-hydroxyvaleric acid (PHBV). Despite their superior properties, PHB and PHBV suffer from high crystallinity, poor mechanical properties, a slow resorption rate, and inherent hydrophobicity. Not only are PHB and PHBV hydrophobic, but almost all members of the PHA family struggle because of this characteristic. One can overcome the limitations of microbial polyesters by modifying their bulk or surface chemical composition. Therefore, researchers have put much effort into developing methods for the chemical modification of PHAs. This paper explores a rarely addressed topic in review articles-chemical methods for modifying the structure of PHB and PHBV to enhance their suitability as biomaterials for tissue engineering applications. Different chemical strategies for improving the wettability and mechanical properties of PHA scaffolds are discussed in this review. The properties of PHAs that are important for their applications in tissue engineering are also discussed.
Collapse
Affiliation(s)
- Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Silke Andrä-Żmuda
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Natalia Śmigiel-Gac
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Magdalena Zięba
- Department of Optoelectronics, Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
| | - Kamil Dawid
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Magdalena Martinka Maksymiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| |
Collapse
|
3
|
Chen J, Cui Y, Zhang S, Wu B, Han J, Xiang H. Unveiling the repressive mechanism of a PPS-like regulator (PspR) in polyhydroxyalkanoates biosynthesis network. Appl Microbiol Biotechnol 2024; 108:265. [PMID: 38498113 PMCID: PMC10948481 DOI: 10.1007/s00253-024-13100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a type of polyhydroxyalkanoates (PHA) that exhibits numerous outstanding properties and is naturally synthesized and elaborately regulated in various microorganisms. However, the regulatory mechanism involving the specific regulator PhaR in Haloferax mediterranei, a major PHBV production model among Haloarchaea, is not well understood. In our previous study, we showed that deletion of the phosphoenolpyruvate (PEP) synthetase-like (pps-like) gene activates the cryptic phaC genes in H. mediterranei, resulting in enhanced PHBV accumulation. In this study, we demonstrated the specific function of the PPS-like protein as a negative regulator of phaR gene expression and PHBV synthesis. Chromatin immunoprecipitation (ChIP), in situ fluorescence reporting system, and in vitro electrophoretic mobility shift assay (EMSA) showed that the PPS-like protein can bind to the promoter region of phaRP. Computational modeling revealed a high structural similarity between the rifampin phosphotransferase (RPH) protein and the PPS-like protein, which has a conserved ATP-binding domain, a His domain, and a predicted DNA-binding domain. Key residues within this unique DNA-binding domain were subsequently validated through point mutation and functional evaluations. Based on these findings, we concluded that PPS-like protein, which we now renamed as PspR, has evolved into a repressor capable of regulating the key regulator PhaR, and thereby modulating PHBV synthesis. This regulatory network (PspR-PhaR) for PHA biosynthesis is likely widespread among haloarchaea, providing a novel approach to manipulate haloarchaea as a production platform for high-yielding PHA. KEY POINTS: • The repressive mechanism of a novel inhibitor PspR in the PHBV biosynthesis was demonstrated • PspR is widespread among the PHA accumulating haloarchaea • It is the first report of functional conversion from an enzyme to a trans-acting regulator in haloarchaea.
Collapse
Affiliation(s)
- Junyu Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yinglu Cui
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China.
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Strangis G, Labardi M, Gallone G, Milazzo M, Capaccioli S, Forli F, Cinelli P, Berrettini S, Seggiani M, Danti S, Parchi P. 3D Printed Piezoelectric BaTiO 3/Polyhydroxybutyrate Nanocomposite Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2024; 11:193. [PMID: 38391679 PMCID: PMC10886384 DOI: 10.3390/bioengineering11020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Bone defects are a significant health problem worldwide. Novel treatment approaches in the tissue engineering field rely on the use of biomaterial scaffolds to stimulate and guide the regeneration of damaged tissue that cannot repair or regrow spontaneously. This work aimed at developing and characterizing new piezoelectric scaffolds to provide electric bio-signals naturally present in bone and vascular tissues. Mixing and extrusion were used to obtain nanocomposites made of polyhydroxybutyrate (PHB) as a matrix and barium titanate (BaTiO3) nanoparticles as a filler, at BaTiO3/PHB compositions of 5/95, 10/90, 15/85 and 20/80 (w/w%). The morphological, thermal, mechanical and piezoelectric properties of the nanocomposites were studied. Scanning electron microscopy analysis showed good nanoparticle dispersion within the polymer matrix. Considerable increases in the Young's modulus, compressive strength and the piezoelectric coefficient d31 were observed with increasing BaTiO3 content, with d31 = 37 pm/V in 20/80 (w/w%) BaTiO3/PHB. 3D printing was used to produce porous cubic-shaped scaffolds using a 90° lay-down pattern, with pore size ranging in 0.60-0.77 mm and good mechanical stability. Biodegradation tests conducted for 8 weeks in saline solution at 37 °C showed low mass loss (∼4%) for 3D printed scaffolds. The results obtained in terms of piezoelectric, mechanical and chemical properties of the nanocomposite provide a new promising strategy for vascularized bone tissue engineering.
Collapse
Affiliation(s)
- Giovanna Strangis
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Massimiliano Labardi
- Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Pisa Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Giuseppe Gallone
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Simone Capaccioli
- Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Pisa Research Area, Via Moruzzi 1, 56124 Pisa, Italy
- Department of Physics "Enrico Fermi", University of Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
| | - Francesca Forli
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
- Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Pisa Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Stefano Berrettini
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
- Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Pisa Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Paolo Parchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Ben Abdallah M, Chamkha M, Karray F, Sayadi S. Microbial diversity in polyextreme salt flats and their potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11371-11405. [PMID: 38180652 DOI: 10.1007/s11356-023-31644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
6
|
Wang W, Luan Z, Shu Z, Xu K, Wang T, Liu S, Wu X, Liu H, Ye S, Dan R, Zhao X, Yang S, Xing M, Fan C. Biosynthetic Plastics as Tunable Elastic and Visible Stent with Shape-Memory to Treat Biliary Stricture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303779. [PMID: 37552006 PMCID: PMC10582434 DOI: 10.1002/advs.202303779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 08/09/2023]
Abstract
Common biliary tract is ≈4 mm in diameter to deliver bile from liver to small intestine to help digestion. The abnormal narrowing leads to severe symptoms such as pain and nausea. Stents are an effective treatment. Compared with non-degradable stents which require repeated removal, biodegradable stents have the advantage of reducing secondary injury related to endoscopic operation and patient burden. However, current biodegradable materials may cause tissue hyperplasia and the treatment method does not target etiology of stricture. So recurrence rates after biodegradable stent implantation are still high. Here, a biodegradable helical stent fabricated from biosynthetic P(3HB-co-4HB) is reported. Tunable properties can be acquired through altering culture substrates. Stent shows shape memory in various solvents. The stent has an optimized design with helical structure and outer track. The self-expanding of helical structure and double drainage realized by outer track greatly improve drainage of bile. Importantly, stent-loading triamcinolone acetonide can inhibit proliferation of fibroblasts and reduce incidence of restricture. Therapeutic effect is also demonstrated in minipigs with biliary stricture. The results of minipig experiments show that biliary duct in treatment group is unobstructed and tissue hyperplasia is effectively inhibited.
Collapse
Affiliation(s)
- Wei Wang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Zhaohui Luan
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Zhenzhen Shu
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Kaige Xu
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegManitobaMB R3T 2N2Canada
| | - Tongchuan Wang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Shuang Liu
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Xiaozhuo Wu
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegManitobaMB R3T 2N2Canada
| | - Hangzong Liu
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Shaosong Ye
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Ruijue Dan
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Xiaoyan Zhao
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Shiming Yang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Office of Science and Technology of ChongqingNo. 2 Xingai roadChongqing, Yubei401147China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay LaboratoryChongqing400064China
| | - Malcolm Xing
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegManitobaMB R3T 2N2Canada
| | - Chaoqiang Fan
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Office of Science and Technology of ChongqingNo. 2 Xingai roadChongqing, Yubei401147China
| |
Collapse
|
7
|
Alavi MS, Memarpour S, Pazhohan-Nezhad H, Salimi Asl A, Moghbeli M, Shadmanfar S, Saburi E. Applications of poly(lactic acid) in bone tissue engineering: A review article. Artif Organs 2023; 47:1423-1430. [PMID: 37475653 DOI: 10.1111/aor.14612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Bone tissue engineering is a promising approach to large-scale bone regeneration. This involves the use of an artificial extracellular matrix or scaffold and osteoblasts to promote osteogenesis and ossification at defect sites. Scaffolds are constructed using biomaterials that typically have properties similar to those of natural bone. METHOD In this study, which is a review of the literature, various evidences have been discussed in the field of Poly Lactic acid (PLA) polymer application and modifications made on it in order to induce osteogenesis and repair bone lesions. RESULTS PLA is a synthetic aliphatic polymer that has been extensively used for scaffold construction in bone tissue engineering owing to its good processability, biocompatibility, and flexibility in design. However, PLA has some drawbacks, including low osteoconductivity, low cellular adhesion, and the possibility of inflammatory reactions owing to acidic discharge in a living environment. To overcome these issues, a combination of PLA and other biomaterials has been introduced. CONCLUSIONS This short review discusses PLA's characteristics of PLA, its applications in bone regeneration, and its combination with other biomaterials.
Collapse
Affiliation(s)
- Mahya Sadat Alavi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Memarpour
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Salimi Asl
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soraya Shadmanfar
- Health Research Center, Life Style Institute, Department of Rheumatology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
De la Ossa JG, Danti S, Esposito Salsano J, Azimi B, Tempesti V, Barbani N, Digiacomo M, Macchia M, Uddin MJ, Cristallini C, Di Stefano R, Lazzeri A. Electrospun Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Olive Leaf Extract Fiber Mesh as Prospective Bio-Based Scaffold for Wound Healing. Molecules 2022; 27:6208. [PMID: 36234738 PMCID: PMC9570516 DOI: 10.3390/molecules27196208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 12/02/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a family of biopolyesters synthesized by various microorganisms. Due to their biocompatibility and biodegradation, PHAs have been proposed for biomedical applications, including tissue engineering scaffolds. Olive leaf extract (OLE) can be obtained from agri-food biowaste and is a source of polyphenols with remarkable antioxidant properties. This study aimed at incorporating OLE inside poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) fibers via electrospinning to obtain bioactive bio-based blends that are useful in wound healing. PHBHV/OLE electrospun fibers with a size of 1.29 ± 0.34 µm were obtained. Fourier transform infrared chemical analysis showed a uniform surface distribution of hydrophilic -OH groups, confirming the presence of OLE in the electrospun fibers. The main OLE phenols were released from the fibers within 6 days. The biodegradation of the scaffolds in phosphate buffered saline was investigated, demonstrating an adequate stability in the presence of metalloproteinase 9 (MMP-9), an enzyme produced in chronic wounds. The scaffolds were preliminarily tested in vitro with HFFF2 fibroblasts and HaCaT keratinocytes, suggesting adequate cytocompatibility. PHBHV/OLE fiber meshes hold promising features for wound healing, including the treatment of ulcers, due to the long period of durability in an inflamed tissue environment and adequate cytocompatibility.
Collapse
Affiliation(s)
- Jose Gustavo De la Ossa
- Cardiovascular Research Laboratory, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Jasmine Esposito Salsano
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Bahareh Azimi
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| | - Veronika Tempesti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals & Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals & Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Mohammed Jasim Uddin
- Photonics and Energy Research Laboratory, Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Caterina Cristallini
- Institute for Chemical and Physical Processes (IPCF) @ Pisa, CNR, 56126 Pisa, Italy
| | - Rossella Di Stefano
- Cardiovascular Research Laboratory, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals & Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
9
|
Montemurro M, Salvatori G, Alfano S, Martinelli A, Verni M, Pontonio E, Villano M, Rizzello CG. Exploitation of wasted bread as substrate for polyhydroxyalkanoates production through the use of Haloferax mediterranei and seawater. Front Microbiol 2022; 13:1000962. [PMID: 36212839 PMCID: PMC9534330 DOI: 10.3389/fmicb.2022.1000962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
The use of the halophile microorganism Haloferax mediterranei, able to synthesize poly(hydroxybutyrate-hydroxyvalerate) (PHBV), is considered as a promising tool for the industrial production of bioplastic through bioprocessing. A consistent supplementation of the growth substrate in carbohydrates and minerals is overall necessary to allow its PHBV production. In this work, wasted bread was used as substrate for bioplastic production by microbial fermentation. Instead of the consistent and expensive minerals supplement required for Hfx. mediterranei DSM1411 growth, microfiltered seawater was added to the wasted bread-derived substrate. The suitable ratio of wasted bread homogenate and seawater, corresponding to 40:60, was selected. The addition of proteases and amylase to the bread homogenate promoted the microbial growth but it did not correspond to the increase of bioplastic production by the microorganism, that reach, under the experimental conditions, 1.53 g/L. An extraction procedure of the PHBV from cells, based on repeated washing with water, followed or not by a purification through ethanol precipitation, was applied instead of the conventional extraction with chloroform. Yield of PHBV obtained using the different extraction methods were 21.6 ± 3.6 (standard extraction/purification procedure with CHCl3:H2O mixture), 24.8 ± 3.0 (water-based extraction), and 19.8 ± 3.3 mg PHAs/g of wasted bread (water-based extraction followed by ethanol purification). Slightly higher hydroxyvalerate content (12.95 vs 10.78%, w/w) was found in PHBV obtained through the water-based extraction compared to the conventional one, moreover, the former was characterized by purity of 100% (w/w). Results demonstrated the suitability of wasted bread, supplemented with seawater, to be used as substrate for bioplastic production through fermentation. Results moreover demonstrated that a solvent-free extraction, exclusively based on osmotic shock, could be used to recover the bioplastic from cells.
Collapse
Affiliation(s)
- Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Gaia Salvatori
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Sara Alfano
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Rome, Italy
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- *Correspondence: Carlo Giuseppe Rizzello,
| |
Collapse
|
10
|
Shuai C, Yang F, Shuai Y, Peng S, Chen S, Deng Y, Feng P. Silicon dioxide nanoparticles decorated on graphene oxide nanosheets and their application in poly(l-lactic acid) scaffold. J Adv Res 2022:S2090-1232(22)00198-9. [PMID: 36087925 DOI: 10.1016/j.jare.2022.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION The aggregation of graphene oxide (GO) is considered as main challenge, although GO possesses excellent mechanical properties which arouses widespread attention as reinforcement for polymers. OBJECTIVES In this study, silicon dioxide (SiO2) nanoparticles were decorated onto surface of GO nanosheets through in situ growth method for promoting dispersion of GO in poly(l-lactic acid) (PLLA) bone scaffold. METHODS Hydroxyl and carboxyl functional groups of GO provided sites for SiO2 nucleation, and SiO2 grew with hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) and finally formed nanoparticles onto surface of GO with covalent bonds. Then, the GO@ SiO2 nanocomposite was blended with PLLA for the fabrication of bone scaffold by selective laser sintering (SLS). RESULT The results indicated that the obtained SiO2 were distributed relatively uniformly on surface of GO under TEOS concentration of 0.10 mol/L (GO@SiO2-10), and the covering of SiO2 on GO could increase interlayer distance of GO nanosheets from 0.799 nm to 0.894 nm, thus reducing van der Waals forces between GO nanosheets and facilitating the dispersion. Tensile and compressive strength of scaffold containing GO@SiO2 hybrids were significantly enhanced, especially for the scaffold containing GO@SiO2-10 hybrids with enhancement of 30.95 % in tensile strength and 66.33 % in compressive strength compared with the scaffold containing GO. Additionally, cell adhesion and fluorescence experiments demonstrated excellent cytocompatibility of the scaffold. CONCLUSIONS The good dispersion of GO@SiO2 enhances the mechanical properties and cytocompatibility of scaffold, making it a potential candidate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Feng Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yang Shuai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Central South University, Changsha 410013, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Central South University, Changsha 410013, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
11
|
Coupling Magnetic Field and Salinity Upshock To Improve Polyhydroxyalkanoate Productivity by Haloferax mediterranei Feeding on Molasses Wastewater. Appl Environ Microbiol 2022; 88:e0030522. [PMID: 35695568 PMCID: PMC9275214 DOI: 10.1128/aem.00305-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Low polyhydroxyalkanoate (PHA) volumetric productivity from wastewater limits low-cost PHA production. To resolve this problem, an external magnetic field (MF) coupled with upshock salinity was applied to PHA production by Haloferax mediterranei (family Halobacteriaceae). Elevating the fermentation salinity over the optimal growth salinity (200 g/L) increased the PHA cell content while inhibiting cell proliferation, decreasing volumetric productivity. When a MF of 50 mT in 300 g/L salinity was applied, H. mediterranei proliferation and PHA cell content were promoted, leading to a 7.95% increase in PHA volumetric productivity in synthetic molasses wastewater and a 13.82% increase in glucose feeding compared with those in 200 g/L salinity. Under the MF, osmotic pressure regulation was activated by accumulating K+ and increasing betaine synthesis. The maximum betaine content increased by 74.33% in 300 g/L salinity with a 50-mT MF compared with that in 200 g/L salinity. When a 50-mT MF in 300 g/L salinity was applied, the malondialdehyde (MDA) content decreased by 32.66% and the activity of superoxide dismutase (SOD) increased by 46.89%, which reduced the oxidative damage. This study provides a new solution to enhance PHA volumetric productivity by MF and an insight into the magnetic effects of H. mediterranei. IMPORTANCE The obstacle to replacing petroplastics with PHA is its high production cost. To increase the fermentation economy, a novel strategy of coupling a MF with salinity upshock was applied, which enhanced the PHA volumetric productivity of H. mediterranei in fermenting molasses wastewater. The magnetic effect of H. mediterranei was found at a MF of 50 mT, which improved the salt tolerance of H. mediterranei and reduced the oxidative damage induced by the elevated salinity, thereby promoting proliferation and PHA cell content. This is the first time a technical method for enhancing PHA volumetric productivity by means of a MF has been proposed. Such a strategy can advance the utilization of H. mediterranei for the industrial production of PHA using organic wastewater.
Collapse
|
12
|
Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by a new mangrove-isolated Methylopila oligotropha strain MCSUBH. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Pulingam T, Appaturi JN, Parumasivam T, Ahmad A, Sudesh K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers (Basel) 2022; 14:2141. [PMID: 35683815 PMCID: PMC9182786 DOI: 10.3390/polym14112141] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering technology aids in the regeneration of new tissue to replace damaged or wounded tissue. Three-dimensional biodegradable and porous scaffolds are often utilized in this area to mimic the structure and function of the extracellular matrix. Scaffold material and design are significant areas of biomaterial research and the most favorable material for seeding of in vitro and in vivo cells. Polyhydroxyalkanoates (PHAs) are biopolyesters (thermoplastic) that are appropriate for this application due to their biodegradability, thermo-processability, enhanced biocompatibility, mechanical properties, non-toxicity, and environmental origin. Additionally, they offer enormous potential for modification through biological, chemical and physical alteration, including blending with various other materials. PHAs are produced by bacterial fermentation under nutrient-limiting circumstances and have been reported to offer new perspectives for devices in biological applications. The present review discusses PHAs in the applications of conventional medical devices, especially for soft tissue (sutures, wound dressings, cardiac patches and blood vessels) and hard tissue (bone and cartilage scaffolds) regeneration applications. The paper also addresses a recent advance highlighting the usage of PHAs in implantable devices, such as heart valves, stents, nerve guidance conduits and nanoparticles, including drug delivery. This review summarizes the in vivo and in vitro biodegradability of PHAs and conducts an overview of current scientific research and achievements in the development of PHAs in the biomedical sector. In the future, PHAs may replace synthetic plastics as the material of choice for medical researchers and practitioners.
Collapse
Affiliation(s)
- Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| | | | | | - Azura Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| |
Collapse
|
14
|
Hammami K, Souissi Y, Souii A, Ouertani A, El-Hidri D, Jabberi M, Chouchane H, Mosbah A, Masmoudi AS, Cherif A, Neifar M. Extremophilic Bacterium Halomonas desertis G11 as a Cell Factory for Poly-3-Hydroxybutyrate-co-3-Hydroxyvalerate Copolymer's Production. Front Bioeng Biotechnol 2022; 10:878843. [PMID: 35677302 PMCID: PMC9168272 DOI: 10.3389/fbioe.2022.878843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial polyhydroxyalkanoates (PHA) are biodegradable and biocompatible bio-based polyesters, which are used in various applications including packaging, medical and coating materials. In this study, an extremophilic hydrocarbonoclastic bacterium, previously isolated from saline sediment in the Tunisian desert, has been investigated for PHA production. The accumulation of intracellular PHA granules in Halomonas desertis G11 was detected by Nile blue A staining of the colonies. To achieve maximum PHA yield by the strain G11, the culture conditions were optimized through response surface methodology (RSM) employing a Box-Behnken Design (BBD) with three independent variables, namely, substrate concentration (1-5%), inoculum size (1-5%) and incubation time (5-15 days). Under optimized conditions, G11 strain produced 1.5 g/L (68% of DCW) of PHA using glycerol as a substrate. Application of NMR (1H and 13C) and FTIR spectroscopies showed that H. desertis accumulated PHA is a poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV). The genome analysis revealed the presence of typical structural genes involved in PHBV metabolism including phaA, phaB, phaC, phaP, phaZ, and phaR, coding for acetyl-CoA acetyltransferase, acetoacetyl-CoA reductase, class I polyhydroxyalkanoates synthases, phasin, polyhydroxyalkanoates depolymerase and polyhydroxyalkanoates synthesis repressor, respectively. Glycerol can be metabolized to 1) acetyl-CoA through the glycolysis pathway and subsequently converted to the 3HB monomer, and 2) to propionyl-CoA via the threonine biosynthetic pathway and subsequently converted to the 3HV monomer. In silico analysis of PhaC1 from H. desertis G11 indicated that this enzyme belongs to Class I PHA synthase family with a "lipase box"-like sequence (SYCVG). All these characteristics make the extremophilic bacterium H. desertis G11 a promising cell factory for the conversion of bio-renewable glycerol to high-value PHBV.
Collapse
Affiliation(s)
- Khouloud Hammami
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Yasmine Souissi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- Department of Engineering, German University of Technology in Oman, Muscat, Oman
| | - Amal Souii
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Awatef Ouertani
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Darine El-Hidri
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Marwa Jabberi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Habib Chouchane
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Amor Mosbah
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ahmed Slaheddine Masmoudi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Mohamed Neifar
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- APVA-LR16ES20, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
15
|
Degradation of P(3HB-co-4HB) Films in Simulated Body Fluids. Polymers (Basel) 2022; 14:polym14101990. [PMID: 35631874 PMCID: PMC9143980 DOI: 10.3390/polym14101990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
A novel model of biodegradable PHA copolymer films preparation was applied to evaluate the biodegradability of various PHA copolymers and to discuss its biomedical applicability. In this study, we illustrate the potential biomaterial degradation rate affectability by manipulation of monomer composition via controlling the biosynthetic strategies. Within the experimental investigation, we have prepared two different copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate—P(3HB-co-36 mol.% 4HB) and P(3HB-co-66 mol.% 4HB), by cultivating the thermophilic bacterial strain Aneurinibacillus sp. H1 and further investigated its degradability in simulated body fluids (SBFs). Both copolymers revealed faster weight reduction in synthetic gastric juice (SGJ) and artificial colonic fluid (ACF) than simple homopolymer P3HB. In addition, degradation mechanisms differed across tested polymers, according to SEM micrographs. While incubated in SGJ, samples were fragmented due to fast hydrolysis sourcing from substantially low pH, which suggest abiotic degradation as the major degradation mechanism. On the contrary, ACF incubation indicated obvious enzymatic hydrolysis. Further, no cytotoxicity of the waste fluids was observed on CaCO-2 cell line. Based on these results in combination with high production flexibility, we suggest P(3HB-co-4HB) copolymers produced by Aneurinibacillus sp. H1 as being very auspicious polymers for intestinal in vivo treatments.
Collapse
|
16
|
Luo CB, Li HC, Li DQ, Nawaz H, You TT, Xu F. Efficiently unsterile polyhydroxyalkanoate production from lignocellulose by using alkali-halophilic Halomonas alkalicola M2. BIORESOURCE TECHNOLOGY 2022; 351:126919. [PMID: 35240276 DOI: 10.1016/j.biortech.2022.126919] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The alkali-halophilic Halomonas alkalicola M2 was isolated and developed for an open unsterile polyhydroxyalkanoate (PHA) fermentation from lignocellulose at pH 10.0 and NaCl 70 g/L. The alkaline pretreatment liquid (APL) was converted into PHA by the strain, which was significantly affected by the cultural conditions, including pH, NaCl concentration, nitrogen source, and APL concentration. The extracted PHA was composed of three monomers and similar in physicochemical properties to conventional short chain-length PHA. A record yield of 2.1 and 5.9 g of PHA was accumulated from 100 g dry bamboo powder (BP) by using APL and APL combined with hydrolysate during a 48-h open unsterile fermentation process, respectively. In summary, the alkali-halophilic H. alkalicola M2 achieved the open unsterile fermentation for lignocellulose efficient bioconversion into PHA under high alkalinity and salinity conditions and would be an ideal producer in the field.
Collapse
Affiliation(s)
- Chao-Bing Luo
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Hai-Chao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - De-Qiang Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Haq Nawaz
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Ting-Ting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China; Shandong Key Laboratory of Paper Science & Technology, Qilu University of Technology, Jinan 250353, PR China.
| |
Collapse
|
17
|
Yan X, Liu X, Yu LP, Wu F, Jiang XR, Chen GQ. Biosynthesis of diverse α,ω-diol-derived polyhydroxyalkanoates by engineered Halomonas bluephagenesis. Metab Eng 2022; 72:275-288. [DOI: 10.1016/j.ymben.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 01/08/2023]
|
18
|
Tomietto P, Russo F, Galiano F, Loulergue P, Salerno S, Paugam L, Audic JL, De Bartolo L, Figoli A. Sustainable fabrication and pervaporation application of bio-based membranes: Combining a polyhydroxyalkanoate (PHA) as biopolymer and Cyrene™ as green solvent. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Mitra R, Xiang H, Han J. Current Advances towards 4-Hydroxybutyrate Containing Polyhydroxyalkanoates Production for Biomedical Applications. Molecules 2021; 26:molecules26237244. [PMID: 34885814 PMCID: PMC8659255 DOI: 10.3390/molecules26237244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 02/05/2023] Open
Abstract
Polyhydroxyalkanoates (PHA) are polyesters having high promise in biomedical applications. Among different types of PHA, poly-4-hydroxybutyrate (P4HB) is the only polymer that has received FDA approval for medical applications. However, most PHA producing microorganisms lack the ability to synthesize P4HB or PHA comprising 4-hydroxybutyrate (4HB) monomer due to their absence of a 4HB monomer supplying pathway. Thus, most microorganisms require supplementation of 4HB precursors to synthesize 4HB polymers. However, usage of 4HB precursors incurs additional production cost. Therefore, researchers have adopted strategies to reduce the cost, such as utilizing low-cost substrate as well as constructing 4HB monomer supplying pathways in microorganisms. We herein summarize the biomedical applications of P4HB, the natural producers of 4HB polymer, and the various strategies that have been applied in producing 4HB polymers in non-4HB producing microorganisms. It is expected that the readers would gain a vivid idea on the different strategic developments in the field of 4HB polymer production.
Collapse
Affiliation(s)
- Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (H.X.); (J.H.)
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (H.X.); (J.H.)
| |
Collapse
|
20
|
Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux. Commun Biol 2021; 4:1007. [PMID: 34433872 PMCID: PMC8387396 DOI: 10.1038/s42003-021-02541-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
The haloarchaeon Haloferax mediterranei is a potential strain for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production, yet the production yield and cost are the major obstacles hindering the use of this archaeal strain. Leveraging the endogenous type I-B CRISPR-Cas system in H. mediterranei, we develop a CRISPR-based interference (CRISPRi) approach that allows to regulate the metabolic pathways related to PHBV synthesis, thereby enhancing PHBV production. Our CRISPRi approach can downregulate the gene expression in a range of 25% to 98% depending upon the target region. Importantly, plasmid-mediated CRISPRi downregulation on the citrate synthase genes (citZ and gltA) improves the PHBV accumulation by 76.4% (from 1.78 to 3.14 g/L). When crRNA cassette integrated into chromosome, this further shortens the PHBV fermentation period and enhances PHA productivity by 165%. Our transcriptome analysis shows that repression of citrate synthase genes redirects metabolic flux from the central metabolic pathways to PHBV synthesis pathway. These findings demonstrate that the CRISPRi-based gene regulation is a transformative toolkit for fine-tuning the endogenous metabolic pathways in the archaeal system, which can be applied to not only the biopolymer production but also many other applications. Lin et al. investigate the use of CRISPRi technology in haloarchaea to regulate the metabolic pathways related to PHBV synthesis to increase PHBV production in H. mediterranei. The authors report that repression of citrate synthase genes redirects metabolic flux and increases production of this degradable bioplastic, which could be used as an alternative to chemical synthetic plastic.
Collapse
|
21
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
22
|
de Carvalho Arjona J, das Graças Silva-Valenzuela M, Wang SH, Valenzuela-Diaz FR. Biodegradable Nanocomposite Microcapsules for Controlled Release of Urea. Polymers (Basel) 2021; 13:polym13050722. [PMID: 33653016 PMCID: PMC7956393 DOI: 10.3390/polym13050722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
Urea is the most used fertilizer around the world as the main source of nitrogen to soil and plants. However, the administration of nitrogen dosage is critical, as its excess can be harmful to the environment. Therefore, the encapsulation of urea to achieve control on its release rates has been considered in several areas. In this work, encapsulation of urea by biodegradable polymer poly(3-hydroxybutyrate) (PHB) and its nanocomposites, namely PHB/MMT and PHB/OMMT, producing microcapsules by emulsion method is carried out. MMT and OMMT refer to Brazilian clays in a natural state and organophilized, respectively. In addition, the microcapsules are thus prepared to have their physicochemical characteristics investigated, then tested for biodegradation. Increment of microcapsules’ crystallinity due to the increased amount of poly(vinylacetate) (PVA), as emulsifier agent in the continuous phase, was confirmed by X-ray diffractometry (XRD) and atomic force microscopy (AFM). The presence of urea within microcapsules was verified by XRD, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The soil biodegradation assessments showed that PHB/OMMT microcapsules present higher degradation rates in sandy soils. The overall results suggest that the composites performed better than neat PHB and are very promising; moreover, PHB/OMMT microcapsules proved to be the best candidate for the controlled-release of urea in soils.
Collapse
|
23
|
Giani M, Montero-Lobato Z, Garbayo I, Vílchez C, Vega JM, Martínez-Espinosa RM. Haloferax mediterranei Cells as C50 Carotenoid Factories. Mar Drugs 2021; 19:md19020100. [PMID: 33578828 PMCID: PMC7916556 DOI: 10.3390/md19020100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022] Open
Abstract
Haloarchaea produce C50 carotenoids such as bacterioruberin, which are of biotechnological in-terest. This study aimed to analyze the effect of different environmental and nutritional conditions on the cellular growth and dynamics of carotenoids accumulation in Haloferax mediterranei. The maximum production of carotenoids (40 µg·mL−1) was obtained during the stationary phase of growth, probably due to nutrient-limiting conditions (one-step culture). By seven days of culture, 1 mL culture produced 22.4 mg of dry weight biomass containing 0.18 % (w/w) of carotenoids. On the other hand, carbon-deficient cultures (low C/N ratio) were observed to be optimum for C50 bacterioruberin production by Hfx. mediterranei, but negatively affected the growth of cells. Thus, a two-steps process was evaluated for optimum carotenoids yield. In the first step, a nutri-ent-repleted culture medium enabled the haloarchaea to produce biomass, while in the second step, the biomass was incubated under osmotic stress and in a carbon-deficient medium. Under the conditions used, the obtained biomass contained 0.27% (w/w) of carotenoids after seven days, which accounts for 58.49 µg·mL−1 of carotenoids for a culture with turbidity 14.0.
Collapse
Affiliation(s)
- Micaela Giani
- Department of Agrochemistry and Biochemistry, Biochemistry and Molecular Biology division, Faculty of Science, University of Alicante, Ap. 99, 03080 Alicante, Spain; (M.G.); (R.M.M.-E.)
| | - Zaida Montero-Lobato
- Algal Biotechnology Group, CIDERTA-RENSMA and Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (Z.M.-L.); (I.G.)
| | - Inés Garbayo
- Algal Biotechnology Group, CIDERTA-RENSMA and Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (Z.M.-L.); (I.G.)
| | - Carlos Vílchez
- Algal Biotechnology Group, CIDERTA-RENSMA and Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (Z.M.-L.); (I.G.)
- Correspondence: ; Tel.: +34-959-218-442
| | - José M. Vega
- Department of Plant Biochemistry and Molecular Biology, Faculty of Chemistry, University of Seville, 41012 Seville, Spain;
| | - Rosa María Martínez-Espinosa
- Department of Agrochemistry and Biochemistry, Biochemistry and Molecular Biology division, Faculty of Science, University of Alicante, Ap. 99, 03080 Alicante, Spain; (M.G.); (R.M.M.-E.)
| |
Collapse
|
24
|
Mohandas SP, Balan L, Gopi J, Anoop BS, Mohan P S, Philip R, Cubelio SS, Singh ISB. Biocompatibility of polyhydroxybutyrate-co-hydroxyvalerate films generated from Bacillus cereus MCCB 281 for medical applications. Int J Biol Macromol 2021; 176:244-252. [PMID: 33548322 DOI: 10.1016/j.ijbiomac.2021.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/13/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are natural polyesters produced by microorganisms as a source of intracellular energy reserves. These polymers have been extensively studied for tissue engineering and drug delivery applications due to their desirable material properties. Solvent-cast film of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), produced by Bacillus cereus MCCB 281 was characterized to study the surface morphology, roughness, thermal and mechanical properties. PHBV films were slightly hydrophilic with an average surface roughness of 43.66 nm. In vitro cell viability and proliferation studies on PHBV film surface investigated using L929 fibroblasts showed good cell attachment and proliferation. Hemocompatibility of PHBV evaluated by hemolysis assay, in vitro platelet adhesion and coagulation assays demonstrated good blood compatibility for use as blood contact graft materials. Therefore, PHBV produced from the marine bacterium favoured cellular growth of L929 fibroblasts indicating its potential to be used as a biomaterial substrate for cell adhesion in tissue engineering and medical applications.
Collapse
Affiliation(s)
- Sowmya P Mohandas
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, India
| | - Linu Balan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, India
| | - Jayanath Gopi
- Dept. of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, India
| | - B S Anoop
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, India
| | - Sooraj Mohan P
- Department of Environmental Engineering, National I-Lan University, Taiwan
| | - Rosamma Philip
- Dept. of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, India
| | | | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, India.
| |
Collapse
|
25
|
Silva KMMN, Costa BL, Dourado LF, Silva RO, Silva‐Cunha A, Santos AK, Resende RR, Faria PE, Campos Rubio JC, Goulart GAC, Silva‐Caldeira PP. Four modified sodium alginate/carboxymethylcellulose blends for prednisone delivery. J Appl Polym Sci 2020. [DOI: 10.1002/app.50383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Bruna Lopes Costa
- Faculty of Pharmacy Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Lays Fernanda Dourado
- Faculty of Pharmacy Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | | | - Armando Silva‐Cunha
- Faculty of Pharmacy Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Anderson Kenedy Santos
- Institute of Biological Science Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Rodrigo Ribeiro Resende
- Institute of Biological Science Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Paulo Eustáquio Faria
- Department of Production Engineering Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Juan Carlos Campos Rubio
- Department of Production Engineering Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | | | | |
Collapse
|
26
|
Raho S, Carofiglio VE, Montemurro M, Miceli V, Centrone D, Stufano P, Schioppa M, Pontonio E, Rizzello CG. Production of the Polyhydroxyalkanoate PHBV from Ricotta Cheese Exhausted Whey by Haloferax mediterranei Fermentation. Foods 2020; 9:foods9101459. [PMID: 33066448 PMCID: PMC7602231 DOI: 10.3390/foods9101459] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/30/2022] Open
Abstract
In the last decade, the dairy industry underwent a rapid expansion due to the increasing demand of milk-based products, resulting in high quantity of wastewater, i.e., whey and ricotta cheese exhausted whey (RCEW). Although containing high content of nutritional compounds, dairy by-products are still disposed as waste rather being reintroduced in a new production chain, hence leading to environmental and economic issues. This study proposes a new biotechnological approach based on the combination of membrane filtration and fermentation to produce poly-hydroxyalkanoates (PHA), biodegradable bioplastics candidate as an alternative to petroleum-derived plastics. The protocol, exploiting the metabolic capability Haloferax mediterranei to synthesize PHA from RCEW carbon sources, was set up under laboratory and pilot scale conditions. A multi-step fractionation was used to recover a RCEW fraction containing 12.6% (w/v) of lactose, then subjected to an enzymatic treatment aimed at releasing glucose and galactose. Fermentation conditions (culture medium for the microorganism propagation, inoculum size, time, and temperature of incubation) were selected according to the maximization of polymer synthesis, under in-flasks experiments. The PHA production was then tested using a bioreactor system, under stable and monitored pH, temperature, and stirring conditions. The amount of the polymer recovered corresponded to 1.18 g/L. The differential scanning calorimetry (DSC) analysis revealed the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as the polymer synthesized, with a relatively high presence of hydroxyvalerate (HV). Identity and purity of the polymer were confirmed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) spectroscopy analyses. By combining the fractionation of RCEW, one of the most abundant by-products from the agri-food industry, and the use of the halophile Hfx mediterranei, the production of PHBV with high purity and low crystallinity has successfully been optimized. The process, tested up to pilot scale conditions, may be further implemented (e.g., through fed-batch systems) and used for large-scale production of bioplastics, reducing the economical and environmental issues related the RCEW disposal.
Collapse
Affiliation(s)
- Susanna Raho
- EggPlant S.r.l., 70044 Polignano a Mare, Italy; (S.R.); (V.E.C.); (D.C.); (P.S.)
| | | | - Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.M.); (E.P.)
| | - Valerio Miceli
- ENEA Research Centre, Department for Sustainability, 72100 Brindisi, Italy; (V.M.); (M.S.)
| | - Domenico Centrone
- EggPlant S.r.l., 70044 Polignano a Mare, Italy; (S.R.); (V.E.C.); (D.C.); (P.S.)
| | - Paolo Stufano
- EggPlant S.r.l., 70044 Polignano a Mare, Italy; (S.R.); (V.E.C.); (D.C.); (P.S.)
| | - Monica Schioppa
- ENEA Research Centre, Department for Sustainability, 72100 Brindisi, Italy; (V.M.); (M.S.)
| | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.M.); (E.P.)
| | - Carlo Giuseppe Rizzello
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.M.); (E.P.)
- Correspondence:
| |
Collapse
|
27
|
Deletion of the pps-like gene activates the cryptic phaC genes in Haloferax mediterranei. Appl Microbiol Biotechnol 2020; 104:9759-9771. [PMID: 32918583 DOI: 10.1007/s00253-020-10898-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Haloferax mediterranei, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) producing haloarchaeon, possesses four PHA synthase encoding genes, phaC, phaC1, phaC2, and phaC3. In the wild-type strain, except phaC, the other three genes are cryptic and not transcribed under PHA-accumulating conditions. The PhaC protein together with PhaE subunit forms the active PHA synthase and catalyzes PHBV polymerization. Previously, it was observed that the deletion of a gene named pps-like significantly enhanced PHBV accumulation probably resulted from the upregulation of pha cluster genes (phaR-phaP-phaE-phaC). The present study demonstrated the influence of pps-like gene deletion on the cryptic phaC genes. As revealed by qRT-PCR, the expression level of the three cryptic genes was upregulated in the ΔEPSΔpps-like geneΔphaC mutant. Sequential knockout of the cryptic phaC genes and fermentation experiments showed that PhaC1 followed by PhaC3 had the ability to synthesize PHBV in ΔEPSΔpps-like geneΔphaC mutant. Both PhaC1 and PhaC3 could complex with PhaE to form functionally active PHA synthase. However, the expression of phaC2 did not lead to PHBV synthesis. Moreover, PhaC, PhaC1, and PhaC3 exhibited distinct substrate specificity as the 3HV content in PHBV copolymers was different. The EMSA result showed that PPS-like protein might be a negative regulator of phaC1 gene by binding to its promoter region. Taken together, PhaC1 had the most pronounced effect on PHBV synthesis in ΔEPSΔpps-like geneΔphaC mutant and deletion of pps-like gene released the negative effect from phaC1 expression and thereby restored PHBV accumulating ability in ΔphaC mutant. KEY POINTS: • Cryptic phaC genes were activated by pps-like gene deletion. • PPS-like protein probably regulated phaC1 expression by binding to its promoter. • Both PhaC1 and PhaC3 formed active PHA synthase with PhaE.
Collapse
|
28
|
Kim HS, Chen J, Wu LP, Wu J, Xiang H, Leong KW, Han J. Prevention of excessive scar formation using nanofibrous meshes made of biodegradable elastomer poly(3-hydroxybutyrate- co-3-hydroxyvalerate). J Tissue Eng 2020; 11:2041731420949332. [PMID: 32922720 PMCID: PMC7448259 DOI: 10.1177/2041731420949332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/23/2020] [Indexed: 11/24/2022] Open
Abstract
To reduce excessive scarring in wound healing, electrospun nanofibrous meshes, composed of haloarchaea-produced biodegradable elastomer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), are fabricated for use as a wound dressing. Three PHBV polymers with different 3HV content are used to prepare either solution-cast films or electrospun nanofibrous meshes. As 3HV content increases, the crystallinity decreases and the scaffolds become more elastic. The nanofibrous meshes exhibit greater elasticity and elongation at break than films. When used to culture human dermal fibroblasts in vitro, PHBV meshes give better cell attachment and proliferation, less differentiation to myofibroblasts, and less substrate contraction. In a full-thickness mouse wound model, treatment with films or meshes enables regeneration of pale thin tissues without scabs, dehydration, or tubercular scar formation. The epidermis of wounds treated with meshes develop small invaginations in the dermis within 2 weeks, indicating hair follicle and sweat gland regeneration. Consistent with the in vitro results, meshes reduce myofibroblast differentiation in vivo through downregulation of α-SMA and TGF-β1, and upregulation of TGF-β3. The regenerated wounds treated with meshes are softer and more elastic than those treated with films. These results demonstrate that electrospun nanofibrous PHBV meshes mitigate excessive scar formation by regulating myofibroblast formation, showing their promise for use as wound dressings.
Collapse
Affiliation(s)
- Hye Sung Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.,Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Junyu Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lin-Ping Wu
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jihua Wu
- PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Mitra R, Xu T, Xiang H, Han J. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb Cell Fact 2020; 19:86. [PMID: 32264891 PMCID: PMC7137286 DOI: 10.1186/s12934-020-01342-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/26/2020] [Indexed: 11/17/2022] Open
Abstract
Plastic pollution is a severe threat to our environment which necessitates implementation of bioplastics to realize sustainable development for a green world. Polyhydroxyalkanoates (PHA) represent one of the potential candidates for these bioplastics. However, a major challenge faced by PHA is the high production cost which limits its commercial application. Halophiles are considered to be a promising cell factory for PHA synthesis due to its several unique characteristics including high salinity requirement preventing microbial contamination, high intracellular osmotic pressure allowing easy cell lysis for PHA recovery, and capability to utilize wide spectrum of low-cost substrates. Optimization of fermentation parameters has made it plausible to achieve large-scale production at low cost by using halophiles. Further deeper insights into halophiles have revealed the existence of diversified and even novel PHA synthetic pathways within different halophilic species that greatly affects PHA type. Thus, precise metabolic engineering of halophiles with the help of advanced tools and strategies have led to more efficient microbial cell factory for PHA production. This review is an endeavour to summarize the various research achievements in these areas which will help the readers to understand the current developments as well as the future efforts in PHA research.
Collapse
Affiliation(s)
- Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,International College, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. .,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. .,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
30
|
Zhuikov VA, Zhuikova YV, Makhina TK, Myshkina VL, Rusakov A, Useinov A, Voinova VV, Bonartseva GA, Berlin AA, Bonartsev AP, Iordanskii AL. Comparative Structure-Property Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)s Films under Hydrolytic and Enzymatic Degradation: Finding a Transition Point in 3-Hydroxyvalerate Content. Polymers (Basel) 2020; 12:728. [PMID: 32214006 PMCID: PMC7183050 DOI: 10.3390/polym12030728] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 01/23/2023] Open
Abstract
The hydrolytic and enzymatic degradation of polymer films of poly(3-hydroxybutyrate) (PHB) of different molecular mass and its copolymers with 3-hydroxyvalerate (PHBV) of different 3-hydroxyvalerate (3-HV) content and molecular mass, 3-hydroxy-4-methylvalerate (PHB4MV), and polyethylene glycol (PHBV-PEG) produced by the Azotobacter chroococcum 7B by controlled biosynthesis technique were studied under in vitro model conditions. The changes in the physicochemical properties of the polymers during their in vitro degradation in the pancreatic lipase solution and in phosphate-buffered saline for a long time (183 days) were investigated using different analytical techniques. A mathematical model was used to analyze the kinetics of hydrolytic degradation of poly(3-hydroxyaklannoate)s by not autocatalytic and autocatalytic hydrolysis mechanisms. It was also shown that the degree of crystallinity of some polymers changes differently during degradation in vitro. The total mass of the films decreased slightly up to 8-9% (for the high-molecular weight PHBV with the 3-HV content 17.6% and 9%), in contrast to the copolymer molecular mass, the decrease of which reached 80%. The contact angle for all copolymers after the enzymatic degradation decreased by an average value of 23% compared to 17% after the hydrolytic degradation. Young's modulus increased up to 2-fold. It was shown that the effect of autocatalysis was observed during enzymatic degradation, while autocatalysis was not available during hydrolytic degradation. During hydrolytic and enzymatic degradation in vitro, it was found that PHBV, containing 5.7-5.9 mol.% 3-HV and having about 50% crystallinity degree, presents critical content, beyond which the structural and mechanical properties of the copolymer have essentially changed. The obtained results could be applicable to biomedical polymer systems and food packaging materials.
Collapse
Affiliation(s)
- Vsevolod A. Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, 119071 Moscow, Russia; (Y.V.Z.); (T.K.M.); (V.L.M.); (G.A.B.); (A.P.B.)
| | - Yuliya V. Zhuikova
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, 119071 Moscow, Russia; (Y.V.Z.); (T.K.M.); (V.L.M.); (G.A.B.); (A.P.B.)
| | - Tatiana K. Makhina
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, 119071 Moscow, Russia; (Y.V.Z.); (T.K.M.); (V.L.M.); (G.A.B.); (A.P.B.)
| | - Vera L. Myshkina
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, 119071 Moscow, Russia; (Y.V.Z.); (T.K.M.); (V.L.M.); (G.A.B.); (A.P.B.)
| | - Alexey Rusakov
- Federal State Budgetary Institution “Technological Institute for Superhard and Novel Carbon Materials”, 7a Tsentralnaya Street, Troitsk, 108840 Moscow, Russia; (A.R.); (A.U.)
| | - Alexey Useinov
- Federal State Budgetary Institution “Technological Institute for Superhard and Novel Carbon Materials”, 7a Tsentralnaya Street, Troitsk, 108840 Moscow, Russia; (A.R.); (A.U.)
| | - Vera V. Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia;
| | - Garina A. Bonartseva
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, 119071 Moscow, Russia; (Y.V.Z.); (T.K.M.); (V.L.M.); (G.A.B.); (A.P.B.)
| | - Alexandr A. Berlin
- Research Center of Chemical Physics the Russian Academy of Sciences, Kosygin str. 4, 119991 Moscow, Russia; (A.A.B.); (A.L.I.)
| | - Anton P. Bonartsev
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, 119071 Moscow, Russia; (Y.V.Z.); (T.K.M.); (V.L.M.); (G.A.B.); (A.P.B.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia;
| | - Alexey L. Iordanskii
- Research Center of Chemical Physics the Russian Academy of Sciences, Kosygin str. 4, 119991 Moscow, Russia; (A.A.B.); (A.L.I.)
| |
Collapse
|
31
|
Arif U, Haider S, Haider A, Khan N, Alghyamah AA, Jamila N, Khan MI, Almasry WA, Kang IK. Biocompatible Polymers and their Potential Biomedical Applications: A Review. Curr Pharm Des 2019; 25:3608-3619. [DOI: 10.2174/1381612825999191011105148] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/29/2019] [Indexed: 01/28/2023]
Abstract
Background:
Biocompatible polymers are gaining great interest in the field of biomedical applications.
The term biocompatibility refers to the suitability of a polymer to body and body fluids exposure. Biocompatible
polymers are both synthetic (man-made) and natural and aid in the close vicinity of a living system or work in
intimacy with living cells. These are used to gauge, treat, boost, or substitute any tissue, organ or function of the
body. A biocompatible polymer improves body functions without altering its normal functioning and triggering
allergies or other side effects. It encompasses advances in tissue culture, tissue scaffolds, implantation, artificial
grafts, wound fabrication, controlled drug delivery, bone filler material, etc.
Objectives:
This review provides an insight into the remarkable contribution made by some well-known biopolymers
such as polylactic-co-glycolic acid, poly(ε-caprolactone) (PCL), polyLactic Acid, poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), Chitosan and Cellulose in the therapeutic measure for many
biomedical applications.
Methods: :
Various techniques and methods have made biopolymers more significant in the biomedical fields such
as augmentation (replaced petroleum based polymers), film processing, injection modeling, blow molding techniques,
controlled / implantable drug delivery devices, biological grafting, nano technology, tissue engineering
etc.
Results:
The fore mentioned techniques and other advanced techniques have resulted in improved biocompatibility,
nontoxicity, renewability, mild processing conditions, health condition, reduced immunological reactions and
minimized side effects that would occur if synthetic polymers are used in a host cell.
Conclusion:
Biopolymers have brought effective and attainable targets in pharmaceutics and therapeutics. There
are huge numbers of biopolymers reported in the literature that has been used effectively and extensively.
Collapse
Affiliation(s)
- Uzma Arif
- Department of Chemistry, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Adnan Haider
- Department of Chemistry, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Abdulaziz A. Alghyamah
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Nargis Jamila
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, KPK, Pakistan
| | - Muhammad Imran Khan
- Deparment of Pharmacy, Kohat University of Science and Technology, Kohat KPK, Pakistan
| | - Waheed A. Almasry
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
32
|
Zuo ZQ, Xue Q, Zhou J, Zhao DH, Han J, Xiang H. Engineering Haloferax mediterranei as an Efficient Platform for High Level Production of Lycopene. Front Microbiol 2018; 9:2893. [PMID: 30555438 PMCID: PMC6282799 DOI: 10.3389/fmicb.2018.02893] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/12/2018] [Indexed: 01/22/2023] Open
Abstract
Lycopene attracts increasing interests in the pharmaceutical, food, and cosmetic industries due to its anti-oxidative and anti-cancer properties. Compared with other lycopene production methods, such as chemical synthesis or direct extraction from plants, the biosynthesis approach using microbes is more economical and sustainable. In this work, we engineered Haloferax mediterranei, a halophilic archaeon, as a new lycopene producer. H. mediterranei has the de novo synthetic pathway for lycopene but cannot accumulate this compound. To address this issue, we reinforced the lycopene synthesis pathway, blocked its flux to other carotenoids and disrupted its competitive pathways. The reaction from geranylgeranyl-PP to phytoene catalyzed by phytoene synthase (CrtB) was identified as the rate-limiting step in H. mediterranei. Insertion of a strong promoter PphaR immediately upstream of the crtB gene, or overexpression of the heterologous CrtB and phytoene desaturase (CrtI) led to a higher yield of lycopene. In addition, blocking bacterioruberin biosynthesis increased the purity and yield of lycopene. Knock-out of the key genes, responsible for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biosynthesis, diverted more carbon flux into lycopene synthesis, and thus further enhanced lycopene production. The metabolic engineered H. mediterranei strain produced lycopene at 119.25 ± 0.55 mg per gram of dry cell weight in shake flask fermentation. The obtained yield was superior compared to the lycopene production observed in most of the engineered Escherichia coli or yeast even when they were cultivated in pilot scale bioreactors. Collectively, this work offers insights into the mechanism involved in carotenoid biosynthesis in haloarchaea and demonstrates the potential of using haloarchaea for the production of lycopene or other carotenoids.
Collapse
Affiliation(s)
- Zhen-Qiang Zuo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Da-He Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Dai Z, Li Y, Yan Y, Wan R, Ran Q, Lu W, Qiao B, Li H. Evaluation of the internal fixation effect of nano-calcium-deficient hydroxyapatite/poly-amino acid composite screws for intraarticular fractures in rabbits. Int J Nanomedicine 2018; 13:6625-6636. [PMID: 30425478 PMCID: PMC6201990 DOI: 10.2147/ijn.s173358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective To evaluate the internal fixation effect of nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA) composite screws in the intraarticular fracture model. Materials and methods A total of 35 New Zealand White rabbits were used in a bilateral femoral intercondylar fracture model and randomly divided into two groups. n-CDHA/PAA screws were used in the experimental group, and medical metal screws were used in the control group. The fracture condition, range of motion, and the screw push-out strength were assessed, and an arthroscopic examination of knee joint was performed at 4, 8, and 12 weeks after surgery. The biodegradation of the n-CDHA/PAA screws in vivo was tested through weighing, and changes in screw structure were assessed by X-ray diffraction at 12 weeks after surgery. Results The general situation of all animals was good and showed no incision infection and dehiscence after surgery. X-ray scanning showed that significant callus growth was present in both groups at 4 weeks after surgery, and there was no significant difference (P>0.05) in the Lane-Sandhu score between the experimental and control groups at all time points after surgery. There were no statistically significant differences (P>0.05) in the range of motion and Oswestry Arthroscopy Score of arthroscopic examination of the knee joints between the two groups. The screw push-out strength of the control group was stronger than that of the experimental group at 4 weeks after surgery (P<0.05), but after that, there was no significant difference between the groups (P>0.05). The degradation tests showed that the n-CDHA/PAA screws degraded gradually after implantation, and the weight loss rate was approximately 16% at 12 weeks after surgery. The X-ray diffraction results showed that the crystal structure of the outer surface of the n-CDHA/PAA screw has changed at 12 weeks after surgery. Conclusion The n-CDHA/PAA screw is an effective and safe implant as a potential internal fixation device for an intercondylar fracture of the femur, and its internal fixation effect was similar to that of medical metal screw.
Collapse
Affiliation(s)
- Zhenyu Dai
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China,
| | - Yue Li
- Department of Clinical Laboratory, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yonggang Yan
- College of Physical Science and Technology, Sichuan University, Chengdu, People's Republic of China,
| | - Ruijie Wan
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China,
| | - Qiang Ran
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China,
| | - Weizhong Lu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China,
| | - Bo Qiao
- Department of Orthopedics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hong Li
- College of Physical Science and Technology, Sichuan University, Chengdu, People's Republic of China,
| |
Collapse
|
34
|
Che XM, Wei DX, Chen GQ. Superhydrophobic Polyhydroxyalkanoates: Preparation and Applications. Biomacromolecules 2018; 20:618-624. [DOI: 10.1021/acs.biomac.8b01176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Shen R, Yin J, Ye JW, Xiang RJ, Ning ZY, Huang WZ, Chen GQ. Promoter Engineering for Enhanced P(3HB- co-4HB) Production by Halomonas bluephagenesis. ACS Synth Biol 2018; 7:1897-1906. [PMID: 30024739 DOI: 10.1021/acssynbio.8b00102] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Promoters for the expression of heterologous genes in Halomonas bluephagenesis are quite limited, and many heterologous promoters function abnormally in this strain. Pporin, a promoter of the strongest expressed protein porin in H. bluephagenesis, is one of the few promoters available for heterologous expression in H. bluephagenesis, yet it has a fixed transcriptional activity that cannot be tuned. A stable promoter library with a wide range of activities is urgently needed. This study reports an approach to construct a promoter library based on the Pporin core region, namely, from the -35 box to the transcription start site, a spacer and an insulator. Saturation mutagenesis was conducted inside the promoter core region to significantly increase the diversity within the promoter library. The promoter library worked in both E. coli and H. bluephagenesis, covering a wide range of relative transcriptional strengths from 40 to 140 000. The library is therefore suitable for the transcription of many different heterologous genes, serving as a platform for protein expression and fine-tuned metabolic engineering of H. bluephagenesis TD01 and its derivative strains. H. bluephagenesis strains harboring the orfZ gene encoding 4HB-CoA transferase driven by selected promoters from the library were constructed, the best one produced over 100 g/L cell dry weight containing 80% poly(3-hydroxybutyrate- co-11 mol % 4-hydroxybutyrate) with a productivity of 1.59 g/L/h after 50 h growth under nonsterile fed-batch conditions. This strain was found the best for P(3HB- co-4HB) production in the laboratory scale.
Collapse
Affiliation(s)
- Rui Shen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin Yin
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian-Wen Ye
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Zhi-Yu Ning
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wu-Zhe Huang
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Rivera-Briso AL, Serrano-Aroca Á. Poly(3-Hydroxybutyrate- co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers (Basel) 2018; 10:E732. [PMID: 30960657 PMCID: PMC6403723 DOI: 10.3390/polym10070732] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/21/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, is a microbial biopolymer with excellent biocompatible and biodegradable properties that make it a potential candidate for substituting petroleum-derived polymers. However, it lacks mechanical strength, water sorption and diffusion, electrical and/or thermal properties, antimicrobial activity, wettability, biological properties, and porosity, among others, limiting its application. For this reason, many researchers around the world are currently working on how to overcome the drawbacks of this promising material. This review summarises the main advances achieved in this field so far, addressing most of the chemical and physical strategies to modify PHBV and placing particular emphasis on the combination of PHBV with other materials from a variety of different structures and properties, such as other polymers, natural fibres, carbon nanomaterials, nanocellulose, nanoclays, and nanometals, producing a wide range of composite biomaterials with increased potential applications. Finally, the most important methods to fabricate porous PHBV scaffolds for tissue engineering applications are presented. Even though great advances have been achieved so far, much research needs to be conducted still, in order to find new alternative enhancement strategies able to produce advanced PHBV-based materials able to overcome many of these challenges.
Collapse
Affiliation(s)
- Ariagna L Rivera-Briso
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 65, 46008 Valencia, Spain.
| | - Ángel Serrano-Aroca
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain.
| |
Collapse
|
37
|
Xue Q, Liu XB, Lao YH, Wu LP, Wang D, Zuo ZQ, Chen JY, Hou J, Bei YY, Wu XF, Leong KW, Xiang H, Han J. Anti-infective biomaterials with surface-decorated tachyplesin I. Biomaterials 2018; 178:351-362. [PMID: 29778319 DOI: 10.1016/j.biomaterials.2018.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
Abstract
Implants decorated with antimicrobial peptides (AMPs) can prevent infection and reduce the risk of creating antibiotic resistance. Yet the restricted mobility of surficial AMP often compromises its activity. Here, we report a simple but effective strategy to allow a more flexible display of AMP on the biomaterial surface and demonstrate its efficacy for wound healing. The AMP, tachyplesin I (Tac), is tagged with the polyhydroxyalkanoate-granule-associated protein (PhaP) and immobilized on haloarchaea-produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) via hydrophobic interaction. The PhaP-Tac coating effectively inhibits the growth of both Gram-negative and Gram-positive bacteria. It also increases the surface hydrophilicity to improve fibroblast proliferation in vitro, and accelerates wound healing by decreasing bacterial counts to below 105 CFU per gram of tissue in a deep-wound mouse model in vivo. Taken together, these findings demonstrate an effective strategy to realize the full potential of AMPs in imparting implants with an anti-microbial activity that is localized and potent.
Collapse
Affiliation(s)
- Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiao-Bin Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Lin-Ping Wu
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
| | - Dong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhen-Qiang Zuo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jun-Yu Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yuan-Yuan Bei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Xue-Fei Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
38
|
Zhuikov VA, Bonartsev AP, Makhina TK, Myshkina VL, Voinova VV, Bonartseva GA, Shaitan KV. Hydrolytic Degradation of Poly(3-Hydroxybutyrate) and Its Copolymer with 3-Hydroxyvalerate of Different Molecular Weights in vitro. Biophysics (Nagoya-shi) 2018; 63:169-176. [DOI: 10.1134/s0006350918020288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/02/2017] [Indexed: 01/11/2025] Open
|