1
|
Kumar S, Maskova H, Kuzminova A, Curda P, Doudova L, Sterba J, Kylián O, Rego ROM, Straňák V. Tailored Functionalization of Plasmonic AgNPs/C:H:N:O Nanocomposite for Sensitive and Selective Detection. JOURNAL OF BIOPHOTONICS 2025; 18:e202400353. [PMID: 39716390 PMCID: PMC11793947 DOI: 10.1002/jbio.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024]
Abstract
We report here on the development of tailored plasmonic AgNPs/C:H:N:O plasma polymer nanocomposites for the detection of the pathogenic bacterium Borrelia afzelii , with high selectivity and sensitivity. Silver (Ag) nanoparticles, generated by a gas aggregation source, are incorporated onto a C:H:N:O plasma polymer matrix, which is deposited by magnetron sputtering of a nylon 6.6. These anchored Ag nanoparticles propagate localized surface plasmon resonance (LSPR), optically responding to changes caused by immobilized pathogens near the nanoparticles. The tailored functionalization of AgNPs/C:H:N:O nanocomposite surface allows both high selectivity for the pathogen and high sensitivity with an LSPR red-shift Δλ > (4.20 ± 0.71) nm for 50 Borrelia per area 0.785 cm2. The results confirmed the ability of LSPR modulation for the rapid and early detection of (not only) tested pathogens.
Collapse
Affiliation(s)
- Sanjay Kumar
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Hana Maskova
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
- Biology Centre ASCRInstitute of ParasitologyCeske BudejoviceCzech Republic
| | - Anna Kuzminova
- Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
| | - Paval Curda
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Lenka Doudova
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
- Biology Centre ASCRInstitute of ParasitologyCeske BudejoviceCzech Republic
| | - Jan Sterba
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Ondřej Kylián
- Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
| | - Ryan O. M. Rego
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
- Biology Centre ASCRInstitute of ParasitologyCeske BudejoviceCzech Republic
| | - Vítězslav Straňák
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| |
Collapse
|
2
|
Ghosh S, Guleria A, Patra S, Chakraborty A, Barick KC, Kumar C, Singh K, Rakshit S, Chakravarty R. Protein-functionalized and intrinsically radiolabeled [ 188Re]ReO x nanoparticles: advancing cancer therapy through concurrent radio-photothermal effects. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07074-9. [PMID: 39856453 DOI: 10.1007/s00259-025-07074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
PURPOSE Enhancing therapeutic effectiveness is crucial for translating anticancer nanomedicines from laboratory to clinical settings. In this study, we have developed radioactive rhenium oxide nanoparticles encapsulated in human serum albumin ([188Re]ReOx-HSA NPs) for concurrent radiotherapy (RT) and photothermal therapy (PTT), aiming to optimize treatment outcomes. METHODS [188Re]ReOx-HSA NPs were synthesized by a controlled reduction of 188ReO4- in HSA medium and extensively characterized. The anticancer effect of [188Re]ReOx-HSA NPs was demonstrated in vitro in murine melanoma (B16F10) cell line. In vivo SPECT/CT imaging, autoradiography and biodistribution studies were performed after intratumoral injection of [188Re]ReOx-HSA NPs in melanoma tumor-bearing C57BL/6 mice. The potential of [188Re]ReOx-HSA NPs for combined RT and PTT treatment was also demonstrated in the aforesaid mice model. RESULTS [188Re]ReOx-HSA NPs (size 4-6 nm) were synthesized with high colloidal and radiochemical stability. Upon laser (808 nm) exposure on B16F10 cells incubated with [188Re]ReOx-HSA NPs, only < 20% of cells were alive demonstrating high therapeutic efficacy under in vitro settings. Uniform dose distribution and retention of the radiolabeled NPs in the tumor volume were observed via SPECT/CT imaging and autoradiography studies. Tumor growth in mice model was significantly arrested with ~ 1.85 MBq dose of [188Re]ReOx-HSA NPs and simultaneous laser irradiation, demonstrating synergistic benefit of RT and PTT. CONCLUSIONS These results demonstrate that intrinsically radiolabeled [188Re]ReOx-HSA NPs having unique features such as high photothermal effects and favorable nuclear decay characteristics for combined RT/PTT, hold great promise for clinical translation.
Collapse
Affiliation(s)
- Sanchita Ghosh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Apurav Guleria
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sourav Patra
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Avik Chakraborty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, 400012, India
| | - Kanhu Charan Barick
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Khajan Singh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, 400012, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
3
|
He S, Jia X, Feng S, Hu J. Three Strategies in Engineering Nanomedicines for Tumor Microenvironment-Enabled Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300078. [PMID: 37226364 DOI: 10.1002/smll.202300078] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Indexed: 05/26/2023]
Abstract
Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H2 O2 , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME-induced nanoparticle disassembly or surface modification. The second strategy involves near-infrared absorption increase-induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed.
Collapse
Affiliation(s)
- Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiao Jia
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Sai Feng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
4
|
Qi Q, Wang Q, Li Y, Silva DZ, Ruiz MEL, Ouyang R, Liu B, Miao Y. Recent Development of Rhenium-Based Materials in the Application of Diagnosis and Tumor Therapy. Molecules 2023; 28:molecules28062733. [PMID: 36985704 PMCID: PMC10051626 DOI: 10.3390/molecules28062733] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Rhenium (Re) is widely used in the diagnosis and treatment of cancer due to its unique physical and chemical properties. Re has more valence electrons in its outer shell, allowing it to exist in a variety of oxidation states and to form different geometric configurations with many different ligands. The luminescence properties, lipophilicity, and cytotoxicity of complexes can be adjusted by changing the ligand of Re. This article mainly reviews the development of radionuclide 188Re in radiotherapy and some innovative applications of Re as well as the different therapeutic approaches and imaging techniques used in cancer therapy. In addition, the current application and future challenges and opportunities of Re are also discussed.
Collapse
Affiliation(s)
- Qingwen Qi
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
| | - Qian Wang
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| | - Dionisio Zaldivar Silva
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Faculty of Biology, University of Havana, Havana 10400, Cuba
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| | - Maria Eliana Lanio Ruiz
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Ruizhuo Ouyang
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
| | - Baolin Liu
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| |
Collapse
|
5
|
Cao D, Chen L, Zhang Z, Luo Y, Zhao L, Yuan C, Lu J, Liu X, Li J. Biodegradable nanomaterials for diagnosis and therapy of tumors. J Mater Chem B 2023; 11:1829-1848. [PMID: 36786439 DOI: 10.1039/d2tb02591d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although degradable nanomaterials have been widely designed and applied for cancer bioimaging and various cancer treatments, few reviews of biodegradable nanomaterials have been reported. Herein, we have summarized the representative research advances of biodegradable nanomaterials with respect to the mechanism of degradation and their application in tumor imaging and therapy. First, four kinds of tumor microenvironment (TME) responsive degradation are presented, including pH, glutathione (GSH), hypoxia and matrix metalloproteinase (MMP) responsive degradation. Second, external stimulation degradation is summarized briefly. Next, we have outlined the applications of nanomaterials in bioimaging. Finally, we have focused on some typical examples of biodegradable nanomaterials in radiotherapy (RT), photothermal therapy (PTT), starvation therapy, photodynamic therapy (PDT), chemotherapy, chemodynamic therapy (CDT), sonodynamic therapy (SDT), gene therapy, immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Dongmiao Cao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Linjing Zhao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Chunping Yuan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
6
|
Zhu H, Li B, Yu Chan C, Low Qian Ling B, Tor J, Yi Oh X, Jiang W, Ye E, Li Z, Jun Loh X. Advances in Single-component inorganic nanostructures for photoacoustic imaging guided photothermal therapy. Adv Drug Deliv Rev 2023; 192:114644. [PMID: 36493906 DOI: 10.1016/j.addr.2022.114644] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Phototheranostic based on photothermal therapy (PTT) and photoacoustic imaging (PAI), as one of avant-garde medical techniques, have sparked growing attention because it allows noninvasive, deeply penetrative, and highly selective and effective therapy. Among a variety of phototheranostic nanoagents, single-component inorganic nanostructures are found to be novel and attractive PAI and PTT combined nanotheranostic agents and received tremendous attention, which not only exhibit structural controllability, high tunability in physiochemical properties, size-dependent optical properties, high reproducibility, simple composition, easy functionalization, and simple synthesis process, but also can be endowed with multiple therapeutic and imaging functions, realizing the superior therapy result along with bringing less foreign materials into body, reducing systemic side effects and improving the bioavailability. In this review, according to their synthetic components, conventional single-component inorganic nanostructures are divided into metallic nanostructures, metal dichalcogenides, metal oxides, carbon based nanostructures, upconversion nanoparticles (UCNPs), metal organic frameworks (MOFs), MXenes, graphdiyne and other nanostructures. On the basis of this category, their detailed applications in PAI guide PTT of tumor treatment are systematically reviewed, including synthesis strategies, corresponding performances, and cancer diagnosis and therapeutic efficacy. Before these, the factors to influence on photothermal effect and the principle of in vivo PAI are briefly presented. Finally, we also comprehensively and thoroughly discussed the limitation, potential barriers, future perspectives for research and clinical translation of this single-component inorganic nanoagent in biomedical therapeutics.
Collapse
Affiliation(s)
- Houjuan Zhu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Bofan Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore
| | - Chui Yu Chan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Beverly Low Qian Ling
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Jiaqian Tor
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xin Yi Oh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore.
| |
Collapse
|
7
|
Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Hu Y, Zhang BY, Haque F, Ren G, Ou JZ. Plasmonic metal oxides and their biological applications. MATERIALS HORIZONS 2022; 9:2288-2324. [PMID: 35770972 DOI: 10.1039/d2mh00263a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal oxides modified with dopants and defects are an emerging class of novel materials supporting the localized surface plasmon resonance across a wide range of optical wavelengths, which have attracted tremendous research interest particularly in biological applications in the past decade. Compared to conventional noble metal-based plasmonic materials, plasmonic metal oxides are particularly favored for their cost efficiency, flexible plasmonic properties, and improved biocompatibility, which can be important to accelerate their practical implementation. In this review, we first explicate the origin of plasmonics in dopant/defect-enabled metal oxides and their associated tunable localized surface plasmon resonance through the conventional Mie-Gans model. The research progress of dopant incorporation and defect generation in metal oxide hosts, including both in situ and ex situ approaches, is critically discussed. The implementation of plasmonic metal oxides in biological applications in terms of therapy, imaging, and sensing is summarized, in which the uniqueness of dopant/defect-driven plasmonics for inducing novel functionalities is particularly emphasized. This review may provide insightful guidance for developing next-generation plasmonic devices for human health monitoring, diagnosis and therapy.
Collapse
Affiliation(s)
- Yihong Hu
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Farjana Haque
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Guanghui Ren
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
9
|
Yang Y, Yang T, Chen F, Zhang C, Yin B, Yin X, Han L, Xie Q, Zhang XB, Song G. Degradable Magnetic Nanoplatform with Hydroxide Ions Triggered Photoacoustic, MR Imaging, and Photothermal Conversion for Precise Cancer Theranostic. NANO LETTERS 2022; 22:3228-3235. [PMID: 35380847 DOI: 10.1021/acs.nanolett.1c04804] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Theranostic agents based on inorganic nanomaterials are still suffered from the nonbiodegradable substances with long-term retention in body and unavoidable biological toxicity, as well as nonspecificity biodistribution with potential damage toward normal tissues. Here, we develop magnetic ions (FeIII, FeII, GdIII, MnII, and MnIII) coordinated nanoplatform (MICN) with framework structure and modify them with PEG (MICN-PEG). Notably, MICN-PEG demonstrates hydroxide ions (OH-) triggered the structure collapse along with responsive near-infrared photoacoustic (PA) signal, magnetic resonance imaging (MRI), and photothermal therapy (PTT) performances. Thereby, MICN-PEG is able to remain stable in tumors and exert excellent PA/MRI and PTT effects for multimodal imaging-guided cancer treatment. In contrast, MICN-PEG is gradually collapsed in normal tissues, resulting in the significant improvement of imaging accuracy and treatment specificity. MICN-PEG is gradually cleared after administration, minimizing concerns about the long-term toxicity.
Collapse
Affiliation(s)
- Yudan Yang
- State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tengxiang Yang
- State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Fangfang Chen
- State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Cheng Zhang
- State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Baoli Yin
- State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xia Yin
- State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Linbo Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Guosheng Song
- State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, Shenzhen Research Institution of Hunan University, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Cyganowski P, Dzimitrowicz A. Heterogenous nanocomposite catalysts with rhenium nanostructures for the catalytic reduction of 4-nitrophenol. Sci Rep 2022; 12:6228. [PMID: 35422074 PMCID: PMC9010420 DOI: 10.1038/s41598-022-10237-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/04/2022] [Indexed: 11/12/2022] Open
Abstract
Stable and efficient heterogenous nanocatalysts for the reduction of 4-nitrophenol (4-NP) has attracted much attention in recent years. In this context, a unique and efficient in situ approach is used for the production of new polymeric nanocomposites (pNCs) containing rhenium nanostructures (ReNSs). These rare materials should facilitate the catalytic decomposition of 4-NP, in turn ensuring increased catalytic activity and stability. These nanomaterials were analyzed using Fourier-Transformation Infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). The efficiency of the catalytic reaction was estimated based on the acquired UV-Vis spectra, which enabled the estimation of the catalytic activity using pseud-first order modelling. The applied method resulted in the successful production and efficient loading of ReNSs in the polymeric matrices. Amino functionalities played a primary role in the reduction process. Moreover, the functionality that is derived from 1.1'-carbonyl imidazole improved the availability of the ReNSs, which resulted in 90% conversion of 4-NP with a maximum rate constant of 0.29 min-1 over 11 subsequent catalytic cycles. This effect was observed despite the trace amount of Re in the pNCs (~ 5%), suggesting a synergistic effect between the polymeric base and the ReNSs-based catalyst.
Collapse
Affiliation(s)
- Piotr Cyganowski
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze S. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze S. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
11
|
Guan S, Liu X, Fu Y, Li C, Wang J, Mei Q, Deng G, Zheng W, Wan Z, Lu J. A biodegradable "Nano-donut" for magnetic resonance imaging and enhanced chemo/photothermal/chemodynamic therapy through responsive catalysis in tumor microenvironment. J Colloid Interface Sci 2022; 608:344-354. [PMID: 34626980 DOI: 10.1016/j.jcis.2021.09.186] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Prussian blue (PB) is a safe photothermal agent for tumor therapy, yet poor photothermal effect and single therapeutic function severely restrict its further clinical applications. Herein, a biodegradable "Nano-donut" (CMPB-MoS2-PEG) is fabricated for magnetic resonance (MR) imaging and enhanced photothermal therapy (PTT)/ chemodynamic therapy (CDT)/chemotherapy through responsive catalysis in tumor microenvironment (TME). The "Nano-donut" is organically composed of Cu/Mn ions doped-PB and MoS2. The porous donut structure of CMPB-MoS2-PEG endows them as a carrier for delivery of doxorubicin hydrochloride (DOX) to tumor site. The framework of Nano-donut specifically decomposes in TME due to the reaction between Fe2+/Fe3+ and H2O2. The multivalent elements (Cu/Fe/Mn ions) decrease the bandgap and then enhance CDT by synergistically catalyzing H2O2 into toxic ·OH. Meanwhile, the Mn4+ also reacts with H2O2 to generate O2, improving the hypoxia of TME and enhancing the chemotherapy effect of released DOX. The MoS2 mingles in the PB, which significantly enhances photothermal conversion efficiency (η) effect of PB from 16.02% to 38.0%. In addition, Fe3+ as T2-weighted MR imaging agent can achieve MR imaging-guided therapy. The data clearly shows Nano-donut/DOX nanocomposites (NCs) have a remarkable inhibition for cancer cells and excellent biological safety in tumor treatment.
Collapse
Affiliation(s)
- Shaoqi Guan
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yang Fu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai 201600, China
| | - Chunlin Li
- Trauma Center, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, NO. 650 Xin Songjiang Road, Shanghai 201620, China
| | - Jinxia Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai 201600, China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, NO. 650 Xin Songjiang Road, Shanghai 201620, China
| | - Wenrui Zheng
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhiping Wan
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
12
|
Farooq A, Sabah S, Dhou S, Alsawaftah N, Husseini G. Exogenous Contrast Agents in Photoacoustic Imaging: An In Vivo Review for Tumor Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:393. [PMID: 35159738 PMCID: PMC8840344 DOI: 10.3390/nano12030393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
The field of cancer theranostics has grown rapidly in the past decade and innovative 'biosmart' theranostic materials are being synthesized and studied to combat the fast growth of cancer metastases. While current state-of-the-art oncology imaging techniques have decreased mortality rates, patients still face a diminished quality of life due to treatment. Therefore, improved diagnostics are needed to define in vivo tumor growths on a molecular level to achieve image-guided therapies and tailored dosage needs. This review summarizes in vivo studies that utilize contrast agents within the field of photoacoustic imaging-a relatively new imaging modality-for tumor detection, with a special focus on imaging and transducer parameters. This paper also details the different types of contrast agents used in this novel diagnostic field, i.e., organic-based, metal/inorganic-based, and dye-based contrast agents. We conclude this review by discussing the challenges and future direction of photoacoustic imaging.
Collapse
Affiliation(s)
- Afifa Farooq
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Shafiya Sabah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Salam Dhou
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Nour Alsawaftah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Ghaleb Husseini
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
13
|
Cai Y, Chen X, Si J, Mou X, Dong X. All-in-One Nanomedicine: Multifunctional Single-Component Nanoparticles for Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103072. [PMID: 34561968 DOI: 10.1002/smll.202103072] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Indexed: 05/05/2023]
Abstract
The development of cancer diagnostic imaging and treatment is a major concern worldwide. By integrating imaging and therapy into one theranostic nanoplatform for simultaneously detecting tumors, evaluating the targeting ability and timely monitoring therapeutic responses provide more opportunities for precision medicine. Among various theranostic nanosystems, a series of single-component nanoparticles (NPs) have been developed for "all-in-one" theranostics, which presents the unique properties of facile preparation, simple composition, defined structure, high reproducibility, and excellent biocompatibility. Specifically, utilizing single-component NPs for both diagnostics and therapeutics can reduce the possible numerous untoward side effects and risks to the living body. In this review, the recent progress of multifunctional single-component NPs in the applications of cancer theranostics is systematically summarized. Notably, the structure design, categories of NPs, targeted strategies, biomedical applications, potential barriers, challenges, and prospects for the future clinical practice of this rapidly growing field are discussed.
Collapse
Affiliation(s)
- Yu Cai
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaoyi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jingxing Si
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| |
Collapse
|
14
|
Cyganowski P, Terefinko D, Jamroz P, Pohl P, Dzimitrowicz A. Non-thermal atmospheric pressure plasma as a powerful tool for the synthesis of rhenium-based nanostructures for the catalytic hydrogenation of 4-nitrophenol. RSC Adv 2021; 11:38596-38604. [PMID: 35493235 PMCID: PMC9044135 DOI: 10.1039/d1ra07416d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Here we have presented a new method for the synthesis of Re nanostructures with defined optical, structural, and catalytic properties. The Re-based nanoparticles (NPs) were obtained using a reaction-discharge system that is unique in its class, because of its working in the high-throughput mode. Within this application, direct current atmospheric pressure glow discharge (dc-APGD) was used as a non-thermal atmospheric pressure plasma (NTAP) source, which led to the reduction of Re(vii) ions and the formation of Re nanostructures through the plasma-liquid interactions. The Re-based NPs were synthesized in a flow-mode reaction-discharge system, where their precursor solution was a flowing liquid anode (FLA) or a flowing liquid cathode (FLC). The resultant NPs were analyzed using UV/Vis absorption spectrophotometry and transmission electron microscopy (TEM), which were supported by selected area X-ray diffraction (SAED) and the energy dispersive X-ray spectroscopy (EDX). Additionally, the mechanism for the reduction of Re(vii) ions was explained by the differences in the concentrations of the selected reactive nitrogen species (RNS) and reactive oxygen species (ROS) produced by dc-APGD. It was found that the application of dc-APGD, operating in a FLA configuration (FLA-dc-APGD), resulted in the formation of ReNPs with Re0, while the use of dc-APGD operating in a FLC configuration (FLC-dc-APGD) led to the formation of Re oxide NPs. In the latter case, a much greater oxidizing environment was likely provided, therefore the RNS and ROS contributed to the formation of Re oxide nanostructures. The ReNPs with Re0 were characterized by a size of 6.02 ± 3.01 nm, and the Re oxide NPs were characterized by a size of 4.97 ± 3.82 nm. Both types of nanostructures were then employed in the catalytic hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Based on the results, both of the nanocatalysts effectively reduced 4-NP with an apparent rate constant (k app) of 2.6 × 10-3 s-1. At the same time, the catalytic activity was linked with the average size distribution of the Re nanostructures, as opposed to their morphology.
Collapse
Affiliation(s)
- Piotr Cyganowski
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeze Stanislawa Wyspianskiego 27 50-370 Wroclaw Poland
| | - Dominik Terefinko
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeze Stanislawa Wyspianskiego 27 50-370 Wroclaw Poland
| | - Piotr Jamroz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeze Stanislawa Wyspianskiego 27 50-370 Wroclaw Poland
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeze Stanislawa Wyspianskiego 27 50-370 Wroclaw Poland
| | - Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeze Stanislawa Wyspianskiego 27 50-370 Wroclaw Poland
| |
Collapse
|
15
|
Cyganowski P, Dzimitrowicz A, Jamroz P, Jermakowicz-Bartkowiak D, Pohl P. Rhenium Nanostructures Loaded into Amino-Functionalized Resin as a Nanocomposite Catalyst for Hydrogenation of 4-Nitrophenol and 4-Nitroaniline. Polymers (Basel) 2021; 13:3796. [PMID: 34771354 PMCID: PMC8588495 DOI: 10.3390/polym13213796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
The present work presents a new nanocomposite catalyst with rhenium nanostructures (ReNSs) for the catalytic hydrogenation of 4-nitrophenol and 4-nitroaniline. The catalyst, based on an anion exchange resin with functionality derived from 1,1'-carboimidazole, was obtained in the process involving anion exchange of ReO4- ions followed by their reduction with NaBH4. The amino functionality present in the resin played a primary role in the stabilization of the resultant ReNSs, consisting of ≈1% (w/w) Re in the polymer mass. The synthesized and capped ReNSs were amorphous and had the average size of 3.45 ± 1.85 nm. Then, the obtained catalyst was used in a catalytic reduction of 4-nitrophenol (4-NP) and 4-nitroaniline (4-NA). Following the pseudo-first-order kinetics, 5 mg of the catalyst led to a 90% conversion of 4-NP with the mass-normalized rate constant (km1) of 6.94 × 10-3 min-1 mg-1, while the corresponding value acquired for 4-NA was 7.2 × 10-3 min-1 mg-1, despite the trace amount of Re in the heterogenous catalyst. The obtained material was also conveniently reused.
Collapse
Affiliation(s)
- Piotr Cyganowski
- Department of Process Engineering and Technology of Polymer and Carbonaceous Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
| | - Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.D.); (P.J.); (P.P.)
| | - Piotr Jamroz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.D.); (P.J.); (P.P.)
| | - Dorota Jermakowicz-Bartkowiak
- Department of Process Engineering and Technology of Polymer and Carbonaceous Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.D.); (P.J.); (P.P.)
| |
Collapse
|
16
|
Chen Y, Wu H, Zhou H, Miao Z, Hong F, Zhao Q, Tao Z, Ma Y, Zhao W, Zha Z. PEGylated Indium Nanoparticles: A Metallic Contrast Agent for Multiwavelength Photoacoustic Imaging and Second Near-Infrared Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46343-46352. [PMID: 34558285 DOI: 10.1021/acsami.1c13578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Indium, a low melting point metal, is well-known for constructing eutectic gallium-indium liquid metal. However, unlike liquid metal nanoparticles, the biomedical applications of metallic indium nanoparticles (In NPs) remain in their infancy. Herein, an ultrasound-assisted liquid-reduction synthesis strategy was developed to prepare PEGylated In NPs, which were then used as a high-performance contrast agent for enhancing multiwavelength photoacoustic imaging and second near-infrared (NIR-II) photothermal therapy of the 4T1 breast tumor. The obtained In NPs depicted remarkable optical absorption from the first near-infrared (NIR-I) to NIR-II region and a high photothermal conversion efficiency of 41.3% at 1064 nm, higher than the majority of conventional NIR-II photothermal agents. Upon injection into the tumor, the photoacoustic intensities of the tumor section post-injection were obviously increased by 2.59-, 2.62-, and 4.27-fold of those of pre-injection by using excitation wavelengths of 750, 808, and 970 nm, respectively, depicting an excellent multiwavelength contrast capability of photoacoustic imaging. In addition, efficient ablation of the 4T1 tumor was achieved through the photothermal performance of PEGylated In NPs under NIR-II laser irradiation. Importantly, as the widely used element in the clinic, In NPs were highly biocompatible in vitro and in vivo. Therefore, this work pioneered the biomedical applications of PEGylated In NPs for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Haitao Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hu Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fengqiu Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenchao Tao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yan Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Weidong Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
17
|
Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev 2021; 50:8669-8742. [PMID: 34156040 DOI: 10.1039/d0cs00461h] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inorganic nanomaterials that have inherently exceptional physicochemical properties (e.g., catalytic, optical, thermal, electrical, or magnetic performance) that can provide desirable functionality (e.g., drug delivery, diagnostics, imaging, or therapy) have considerable potential for application in the field of biomedicine. However, toxicity can be caused by the long-term, non-specific accumulation of these inorganic nanomaterials in healthy tissues, preventing their large-scale clinical utilization. Over the past several decades, the emergence of biodegradable and clearable inorganic nanomaterials has offered the potential to prevent such long-term toxicity. In addition, a comprehensive understanding of the design of such nanomaterials and their metabolic pathways within the body is essential for enabling the expansion of theranostic applications for various diseases and advancing clinical trials. Thus, it is of critical importance to develop biodegradable and clearable inorganic nanomaterials for biomedical applications. This review systematically summarizes the recent progress of biodegradable and clearable inorganic nanomaterials, particularly for application in cancer theranostics and other disease therapies. The future prospects and opportunities in this rapidly growing biomedical field are also discussed. We believe that this timely and comprehensive review will stimulate and guide additional in-depth studies in the area of inorganic nanomedicine, as rapid in vivo clearance and degradation is likely to be a prerequisite for the future clinical translation of inorganic nanomaterials with unique properties and functionality.
Collapse
Affiliation(s)
- Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, China.
| | | | | | | | | |
Collapse
|
18
|
Jia T, Wang Z, Sun Q, Dong S, Xu J, Zhang F, Feng L, He F, Yang D, Yang P, Lin J. Intelligent Fe-Mn Layered Double Hydroxides Nanosheets Anchored with Upconversion Nanoparticles for Oxygen-Elevated Synergetic Therapy and Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001343. [PMID: 33107221 DOI: 10.1002/smll.202001343] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/30/2020] [Indexed: 05/14/2023]
Abstract
Multimodal synergistic therapy based on photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) has attracted increasing attention in cancer therapy. However, the scant therapeutic efficiency is always a barrier for further application. Herein, a smart tumor microenvironment (TME) responsive nanocatalysts are developed by adopting Fe-Mn layered double hydroxides (FeMn-LDH) as an effective photothermal nanocarrier to load mesoporous silica and chlorin e6 (Ce6)-covalently coated upconversion nanoparticles (UCSP) for multimodal imaging for directed therapy. Under acidic TME, FeMn-LDH degrades into Fe3+ and Mn2+ ions to initiate a Fenton-like reaction inducing CDT and enhancing magnetic resonance imaging. Additionally, Fe3+ can decompose H2 O2 to oxygen (O2 ), enhancing PDT guided by UCSP. As a representative noninvasive imaging probe, the upconversion luminescence will recover after decomposition of FeMn-LDH, and provide high-resolution upconversion luminescent imaging guidance for pinpointed PDT. Moreover, the photothermal properties of FeMn-LDH can further enhance CDT effects. The synergistic therapy and multifunctional imaging can realize the integration of diagnosis and treatment.
Collapse
Affiliation(s)
- Tao Jia
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qianqian Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jiating Xu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fangmei Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Lin
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
19
|
Yang L, Zhu X, Xu T, Han F, Liu G, Bu Y, Zhang J, Zhang F, Zhou H, Xie Y. Defect-engineered transition metal hydroxide nanosheets realizing tumor-microenvironment-responsive multimodal-imaging-guided NIR-II photothermal therapy. J Mater Chem B 2020; 8:8323-8336. [PMID: 32793936 DOI: 10.1039/d0tb01608j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Exploiting two-dimensional nanomaterials as photo-based theranostic agents is promising for the highly efficient ablation of deep-tissue-buried tumors. However, they are limited by their poor absorption in the second near-infrared-light (NIR-II) bio-window (1000-1300 nm) and intrinsic nonbiodegradability. Herein, defect-rich sulfur-doped Ni(OH)2 (S-Ni(OH)2) nanosheets decorated with bovine serum albumin (BSA) as a novel theranostic agent is developed, which can accomplish multimodal-imaging-guided photothermal ablation of mouse cancers in the NIR-II bio-window. Sulfur doping extends the absorption spectra of Ni(OH)2 nanosheets from the visible to NIR-II bio-window, affording highly efficient photothermal conversion (58.20% for 1064 nm), entailing it to become an excellent contrast agent for photoacoustic imaging. Further, because of their intrinsic paramagnetic property, they can be applied for magnetic resonance imaging. Owing to the abundant defective sites in S-Ni(OH)2 nanosheets, they exhibit response to the tumor microenvironment, resulting in effective biodegradation and excretion from the body. In vivo toxicity experiments indicated that S-Ni(OH)2-BSA NSs delivered no appreciable toxicity and good biocompatibility. This work provides an avenue for the rational design of effective theranostics agents.
Collapse
Affiliation(s)
- Li Yang
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Xiaojiao Zhu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Tianren Xu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Fusen Han
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Yingcui Bu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Jie Zhang
- Institute of Physical Science and Information Technology, Faculty of Health Sciences, Anhui University, Hefei, 230601, P. R. China
| | - Feng Zhang
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China. and School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Guan G, Li B, Zhang W, Cui Z, He SA, Zou R, Lu X, Hu J. High-efficiency and safe sulfur-doped iron oxides for magnetic resonance imaging-guided photothermal/magnetic hyperthermia therapy. Dalton Trans 2020; 49:5493-5502. [PMID: 32266911 DOI: 10.1039/d0dt00297f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heat therapy is a promising therapeutic modality for cancer treatment due to the minimum adverse effects of selective local hyperthermia; however, the low heating efficiency of heat therapy under safe conditions is an issue for its bioapplication. Here, we report the synthesis of water-dispersible sulfur doped iron oxides (SDIOs) with different phase structures and the exploration of the relationships between the different SDIOs and their induction heating capacities as a guideline to obtain a photo-magnetic hyperthermia agent. The agent exhibits good biocompatibility, excellent photothermal conversion efficiency (55.8%) and great T2 weighted magnetic resonance imaging (63.7 mM-1 s-1). Significantly, the SDIOs effectively eliminate tumours in a biologically safe AC magnetic field range (H·f = 4.3 < 5.0 × 106 kA m-1 s-1) and with 808 nm laser irradiation at a safe density of 0.33 W cm-2; also, they can be mostly metabolized from the body after one month. The work presented here adopts anion-doped iron oxides to dramatically improve photo-magnetic hyperthermia effects and may enable further exploration in thermotherapeutic research.
Collapse
Affiliation(s)
- Guoqiang Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang C, Li D, Pei P, Wang W, Chen B, Chu Z, Zha Z, Yang X, Wang J, Qian H. Rod-based urchin-like hollow microspheres of Bi 2S 3: Facile synthesis, photo-controlled drug release for photoacoustic imaging and chemo-photothermal therapy of tumor ablation. Biomaterials 2020; 237:119835. [PMID: 32035321 DOI: 10.1016/j.biomaterials.2020.119835] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
Hollow nanostructures have been evoked considerable attention owing to their intriguing hollow interior for important and potential applications in drug delivery, lithium battery, catalysis and etc. Herein, Bi2S3 hollow microspheres with rod-based urchin-like nanostructures (denoted as U-BSHM) were synthesized through a facile and rapid ion exchanging method using a particular hard template. The growth mechanism of the U-BSHM has been investigated and illustrated by the morphological evolution of the different samples at early stages. The obtained U-BSHM exhibited strong and wide UV-vis-NIR absorption ability and outstanding photothermal conversion efficiency. Thus, the U-BSHM can be used as spatio-temporal precisely controlled carrier by loading the mixture of 1-tetradecanol (phase change material, PCM) with melting point around 38 °C and hydrophilic chemotherapeutic doxorubicin hydrochloride (denoted as DOX) into the hollow interior to form (PCM + DOX)@Bi2S3 nanocomposites (denoted as PD@BS) for photoacoustic (PA) imaging and chemo-photothermal therapy of the tumors. When exposed to 808 nm near infrared light (NIR) laser irradiation, this nanocomposites could elevate the temperature of the surroundings by absorption and conversion of the NIR photons into heat energy, which inducing the triggered release of DOX from the hollow interior once the temperature reach up to the melting point of PCM. The killing efficiency of the chemo-photothermal therapy was systematically validated both in vitro and in vivo. In the meanwhile, the implanted tumor was completely restrained through PA imaging and combined therapies. Therefore, this kind of urchin-like hollow nanostructures would be used as important candidates for the multimodal bioimaging and therapy of tumors.
Collapse
Affiliation(s)
- Chenyang Zhang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Dongdong Li
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Pei Pei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Wanni Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Benjin Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Zhaoyou Chu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Xianzhu Yang
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China.
| | - Jinbing Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Center for Oral Disease, 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
22
|
Lei Z, Zhang W, Li B, Guan G, Huang X, Peng X, Zou R, Hu J. A full-spectrum-absorption from nickel sulphide nanoparticles for efficient NIR-II window photothermal therapy. NANOSCALE 2019; 11:20161-20170. [PMID: 31616888 DOI: 10.1039/c9nr04005f] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Near-infrared (NIR) light has been widely applied in the field of photothermal therapy (PTT). Recent advances in the light wavelength for efficient cancer PTT have gradually shifted from the first NIR (NIR-I) biowindow (700-1000 nm) to the second NIR (NIR-II) biowindow (1000-1350 nm) owing to its intrinsic deeper tissue penetration ability and a higher maximum permissible exposure (MPE) value. Herein, we have prepared nickel sulphide (Ni9S8) nanoparticles (NPs) with a full-spectrum-absorption (400 nm-1100 nm) in the NIR region. By a fair comparison, it is found that the PTT using the NPs upon irradiation from an NIR-II (i.e., 1064 nm) laser is more efficient than that from an NIR-I (i.e., 808, 915, and 976 nm) laser. The large mass extinction coefficient value (22.18 L g-1 cm-1) and high photothermal conversion efficiency (46%) at 1064 nm make these NPs promising candidates for NIR-II photo-thermal therapy. This study will benefit future exploration and optimization of nickel-based photoabsorbers utilizing NIR-II light for photothermal applications.
Collapse
Affiliation(s)
- Ziyu Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Wenlong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guoqiang Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xiaojuan Huang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Centre for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xuan Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rujia Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Junqing Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. and College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
23
|
Peng X, Liu J, Li B, Guan G, Zhang W, Huang X, Chen Y, Zou R, Lu X, Hu J. Janus Ag/Ag 2S beads as efficient photothermal agents for the eradication of inflammation and artery stenosis. NANOSCALE 2019; 11:20324-20332. [PMID: 31641707 DOI: 10.1039/c9nr04804a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Janus heterostructural materials as photothermal agents with enhanced optical conversion capability are promising for artery inflammation treatment by the hyperthermia of macrophages, a primordial part in the artery inflammation response that can deteriorate into atherosclerosis and even break the vessels. Herein, a synthesis route of Janus Ag/Ag2S beads with hydrophilic ligands has been developed with a precise control over concentration, time and surface functionalization. These Ag/Ag2S heterodimers show desirable sizes of around 90 nm in diameter, in which Ag nanocrystals have a diameter of around 25 nm, and they exhibit a photothermal conversion efficiency of up to 50.0% as well as relatively low biotoxicity and good biocompatibility. Importantly, the as-prepared Janus Ag/Ag2S beads with a high biological safety can be effectively swallowed by macrophages and have a remarkable benefit of eliminating these cells from the original state of artery inflammation through the excellent photothermal effect of this material, without causing any further damage to the arteries and major organs in vivo. This study further promotes the development of treatment for vascular inflammation by the photothermal melting of macrophage cells in intima environments.
Collapse
Affiliation(s)
- Xuan Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Junchao Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Guoqiang Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Wenlong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xiaojuan Huang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Centre for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yusheng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rujia Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Junqing Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. and College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
24
|
Hu X, Mandika C, He L, You Y, Chang Y, Wang J, Chen T, Zhu X. Construction of Urokinase-Type Plasminogen Activator Receptor-Targeted Heterostructures for Efficient Photothermal Chemotherapy against Cervical Cancer To Achieve Simultaneous Anticancer and Antiangiogenesis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39688-39705. [PMID: 31588724 DOI: 10.1021/acsami.9b15751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rational design and construction of theranostic nanomedicines based on clinical characteristics of cervical cancer is an important strategy to achieve precise cancer therapy. Herein, we fabricate a cervical cancer-targeting gold nanorod-mesoporous silica heterostructure for codelivery of synergistic cisplatin and antiangiogenic drug Avastin (cisplatin-AuNRs@SiO2-Avastin@PEI/AE105) to achieve synergistic chemophotothermal therapy. Based on database analysis and clinical sample staining, conjugation of the AE105-targeting peptide obviously improves the intracellular uptake of the nanosystem and enhances the cancer-killing ability and selectivity between cervical cancer and normal cells. It could also be used to specifically monitor the urokinase-type plasminogen activator receptor (uPAR) expression level in clinical cervical specimens, which would be an early indicator of prognosis in cancer treatment. Under 808 nm laser irradiation, the nanosystem demonstrates smart NIR-light-triggered drug release and prominent photodynamic activity via induction of reactive oxygen species overproduction-mediated cell apoptosis. The nanosystem also simultaneously suppresses HeLa tumor growth and angiogenesis in vivo, with no evident histological damage observed in the major organs. In short, this study not only provides a clinical data-based rational design strategy of smart nanomedicine for precise treatment and rapid clinical diagnosis of cervical cancer but also contributes to the development of the clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Chetry Mandika
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Lizhen He
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yuanyuan You
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yanzhou Chang
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Jing Wang
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Tianfeng Chen
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| |
Collapse
|
25
|
Cui M, Liu S, Song B, Guo D, Wang J, Hu G, Su Y, He Y. Fluorescent Silicon Nanorods-Based Nanotheranostic Agents for Multimodal Imaging-Guided Photothermal Therapy. NANO-MICRO LETTERS 2019; 11:73. [PMID: 34138032 PMCID: PMC7770883 DOI: 10.1007/s40820-019-0306-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/25/2019] [Indexed: 05/20/2023]
Abstract
The utilization of diagnosis to guide/aid therapy procedures has shown great prospects in the era of personalized medicine along with the recognition of tumor heterogeneity and complexity. Herein, a kind of multifunctional silicon-based nanostructure, i.e., gold nanoparticles-decorated fluorescent silicon nanorods (Au@SiNRs), is fabricated and exploited for tumor-targeted multimodal imaging-guided photothermal therapy. In particular, the prepared Au@SiNRs feature high photothermal conversion efficiency (~ 43.9%) and strong photothermal stability (photothermal performance stays constant after five-cycle NIR laser irradiation), making them high-performance agents for simultaneously photoacoustic and infrared thermal imaging. The Au@SiNRs are readily modified with targeting peptide ligands, enabling an enhanced tumor accumulation with a high value of ~ 8.74% ID g-1. Taking advantages of these unique merits, the Au@SiNRs are superbly suitable for specifically ablating tumors in vivo without appreciable toxicity under the guidance of multimodal imaging. Typically, all the mice treated with the Au@SiNRs remain alive, and no distinct tumor recurrence is observed during 60-day investigation.
Collapse
Affiliation(s)
- Mingyue Cui
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Sangmo Liu
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Daoxia Guo
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jinhua Wang
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Guyue Hu
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuanyuan Su
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Wu W, Yao J, Liu S, Zhao L, Xu L, Sun Y, Lou Y, Zhao J, Choi JH, Jiang L, Wang H, Zou G. Nanostructured hexagonal ReO 3 with oxygen vacancies for efficient electrocatalytic hydrogen generation. NANOTECHNOLOGY 2019; 30:355701. [PMID: 31082809 DOI: 10.1088/1361-6528/ab214c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report oxygen vacancies (OVs) rich hexagonal ReO3 nanostructured electrocatalysts for efficient hydrogen generation. Through a simple argon plasma exposure, OVs are introduced into the ReO3 nanoparticles (NP) and nanosheets to enhance electrocatalytic activities with decreasing overpotentails from 157 mV and 178 mV to 138 mV and 145 mV at the current density of 10 mA cm-2, respectively. As-processed OVs rich ReO3 NP exhibit a good stability during electrochemical measurements for 20 h in acidic electrolyte. The huge active surface area, abundant OVs and excellent conductivity contribute to the performance according to the experimental data. Further theoretical calculations show that the abundant OVs adsorb H with lower Gibbs free energy facilitating hydrogen evolution.
Collapse
Affiliation(s)
- Wenqi Wu
- College of Energy, Soochow Institute for Energy and Materials InnovationS and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu Y, Zhen W, Wang Y, Liu J, Jin L, Zhang T, Zhang S, Zhao Y, Yin N, Niu R, Song S, Zhang L, Zhang H. Double Switch Biodegradable Porous Hollow Trinickel Monophosphide Nanospheres for Multimodal Imaging Guided Photothermal Therapy. NANO LETTERS 2019; 19:5093-5101. [PMID: 31242732 DOI: 10.1021/acs.nanolett.9b01370] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Due to the limitation of inorganic nanomaterials in present clinical applications induced by their inherent nonbiodegradability and latent long-term side effects, we successfully prepared double switch degradable and clearable trinickel monophosphide porous hollow nanospheres (NiP PHNPs) modified with bovine serum albumin (BSA). Attributed to their acidic and oxidative double switch degradation capacities, NiP PHNPs can be effectively excreted from mice without long-term toxicity. Moreover, because of the paramagnetic and high molar extinction coefficient property resulting from the strong absorption in the second near-infrared light (NIR II) biowindow, NiP PHNPs have potential to be used for photoacoustic imaging (PAI) and T1-weighted magnetic resonance imaging (MRI) guided photothermal ablation of tumors in the NIR II biowindow. Specifically, it is interesting that the hollow structure and acidic degradation property enable NiP PHNPs to act as intelligent drug carriers with an on-demand release ability. These findings highlight the great potential of NiP PHNPs in the cancer theranostics field and inspire us to further broaden the bioapplications of transition metal phosphides.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
- University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Wenyao Zhen
- University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
| | - Jianhua Liu
- Department of Radiology , The Second Hospital of Jilin University , Changchun , Jilin 130041 , P. R. China
| | - Longhai Jin
- Department of Radiology , The Second Hospital of Jilin University , Changchun , Jilin 130041 , P. R. China
| | - Tianqi Zhang
- Department of Radiology , The Second Hospital of Jilin University , Changchun , Jilin 130041 , P. R. China
| | - Songtao Zhang
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
| | - Ying Zhao
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
- University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Na Yin
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
- University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Rui Niu
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
- University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
- University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Lei Zhang
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
- University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
- University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| |
Collapse
|
28
|
Zhang W, Yang C, Lei Z, Guan G, He SA, Zhang Z, Zou R, Shen H, Hu J. New Strategy for Specific Eradication of Implant-Related Infections Based on Special and Selective Degradability of Rhenium Trioxide Nanocubes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25691-25701. [PMID: 31264401 DOI: 10.1021/acsami.9b07359] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The greatest bottleneck for photothermal antibacterial therapy could be the difficulty in heating the infection site directly and specifically to evade the unwanted damage for surrounding healthy tissues. In recent years, infectious microenvironments (IMEs) have been increasingly recognized as a crucial contributor to bacterial infections. Here, based on the unique IMEs and rhenium trioxide (ReO3) nanocubes (NCs), a new specific photothermal antibacterial strategy is reported. These NCs synthesized by a rapid and straightforward space-confined on-substrate approach have good biocompatibility and exhibit efficient photothermal antibacterial ability. Especially when they are utilized in antibiofilm, the expression levels of biofilm-related genes (icaA, fnbA, atlE, and sarA for Staphylococcus aureus) can be effectively inhibited to block bacterial adhesion and formation of biofilm. Importantly, the ReO3 NCs can transform into hydrogen rhenium bronze (HxReO3) in an aqueous environment, making them relatively stable within the low pH of IMEs for photothermal therapy, while rapidly degradable within the surrounding healthy tissues to decrease photothermal damage. Note that under phosphate-buffered saline (PBS) at pH 7.4 without assistant conditions, these ReO3 NCs have the highest degradation rate among all known degradable inorganic photothermal nanoagents. This special and IME-sensitive selective degradability of the ReO3 NCs not only facilitates safe, efficient, and specific elimination of implant-related infections, but also enables effective body clearance after therapy. Solely containing the element (Re) whose atomic number is higher than clinic-applied iodine in all reported degradable inorganic photothermal nanoagents under the PBS (pH 7.4) without any assistant condition, the ReO3 NCs with high X-ray attenuation ability could be further applied to X-ray computed tomography imaging-guided therapy against implant-related infections. The present work described here is the first to adopt degradable inorganic photothermal nanoagents to achieve specific antibacterial therapy and inspires other therapies on this concept.
Collapse
Affiliation(s)
- Wenlong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Chuang Yang
- Department of Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233 , China
| | - Ziyu Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Guoqiang Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Shu-Ang He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital , Shanghai Jiao Tong University , Shanghai 200080 , China
| | - Rujia Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Hao Shen
- Department of Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233 , China
| | - Junqing Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
- College of Health Science and Environmental Engineering , Shenzhen Technology University , Shenzhen 518118 , China
| |
Collapse
|
29
|
Soleimani Zohr Shiri M, Henderson W, Mucalo MR. A Review of The Lesser-Studied Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble Metals, Os, Re, Ir and Rh. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1896. [PMID: 31212850 PMCID: PMC6631116 DOI: 10.3390/ma12121896] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Abstract
This review focuses on the recent advances in the lesser-studied microemulsion synthesis methodologies of the following noble metal colloid systems (i.e., Os, Re, Ir, and Rh) using either a normal or reverse micelle templating system. The aim is to demonstrate the utility and potential of using this microemulsion-based approach to synthesize these noble metal nanoparticle systems. Firstly, some fundamentals and important factors of the microemulsion synthesis methodology are introduced. Afterward, a review of the investigations on the microemulsion syntheses of Os, Re, Ir, and Rh nanoparticle (NP) systems (in all forms, viz., metallic, oxide, mixed-metal, and discrete molecular complexes) is presented for work published in the last ten years. The chosen noble metals are traditionally very reactive in nanosized dimensions and have a strong tendency to aggregate when prepared via other methods. Also, the particle size and particle size distribution of these colloids can have a significant impact on their catalytic performance. It is shown that the microemulsion approach has the capability to better stabilize these metal colloids and can control the size of the synthesized NPs. This generally leads to smaller particles and higher catalytic activity when they are tested in applications.
Collapse
Affiliation(s)
| | - William Henderson
- School of Science, University of Waikato, Hamilton 3240, New Zealand.
| | - Michael R Mucalo
- School of Science, University of Waikato, Hamilton 3240, New Zealand.
| |
Collapse
|
30
|
Miao Z, Chen S, Xu CY, Ma Y, Qian H, Xu Y, Chen H, Wang X, He G, Lu Y, Zhao Q, Zha Z. PEGylated rhenium nanoclusters: a degradable metal photothermal nanoagent for cancer therapy. Chem Sci 2019; 10:5435-5443. [PMID: 31293725 PMCID: PMC6544121 DOI: 10.1039/c9sc00729f] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/22/2019] [Indexed: 11/21/2022] Open
Abstract
A common issue of functional nanoagents for potential clinical translation is whether they are biodegradable or renal clearable. Previous studies have widely explored noble metal nanoparticles (Au and Pd) as the first generation of photothermal nanoagents for cancer therapy, but all of the reported noble metal nanoparticles are non-degradable. On the other hand, rhenium (Re), one of the noble and precious metals with a high atomic number (Z = 75), has been mainly utilized as a jet superalloy or chemical catalyst, but the biological characteristics and activity of Re nanoparticles have never been evaluated until now. To address these issues, here we report a simple and scalable liquid-reduction strategy to synthesize PEGylated Re nanoclusters, which exhibit intrinsically high photothermal conversion efficacy (33.0%) and high X-ray attenuation (21.2 HU mL mg-1), resulting in excellent photothermal ablation (100% tumor elimination) and higher CT enhancement (15.9 HU mL mg-1 for commercial iopromide in clinics). Impressively, biocompatible Re nanoclusters can degrade into renal clearable ReO4 - ions after exposure to H2O2, and thus achieve much higher renal clearance efficiency than conventional gold nanoparticles. This work reveals the potential of theranostic application of metallic Re nanoclusters with both biodegradation and renal clearance properties and provides insights into the design of degradable metallic platforms with high clinical prospects.
Collapse
Affiliation(s)
- Zhaohua Miao
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China . ;
- State Key Laboratory of Advanced Welding and Joining , Harbin Institute of Technology , Harbin , 150001 , P. R. China
| | - Sheng Chen
- School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China .
| | - Cheng-Yan Xu
- State Key Laboratory of Advanced Welding and Joining , Harbin Institute of Technology , Harbin , 150001 , P. R. China
| | - Yan Ma
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China . ;
| | - Haisheng Qian
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China . ;
| | - Yunjun Xu
- The First Affiliated Hospital of University of Science and Technology of China , Anhui Province Hospital , Hefei 230001 , P. R. China
| | - Huajian Chen
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China . ;
| | - Xianwen Wang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China . ;
| | - Gang He
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China . ;
| | - Yang Lu
- School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China .
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics , Center for Molecular Imaging and Translational Medicine , School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Zhengbao Zha
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China . ;
| |
Collapse
|
31
|
Guan G, Wang X, Li B, Zhang W, Cui Z, Lu X, Zou R, Hu J. "Transformed" Fe 3S 4 tetragonal nanosheets: a high-efficiency and body-clearable agent for magnetic resonance imaging guided photothermal and chemodynamic synergistic therapy. NANOSCALE 2018; 10:17902-17911. [PMID: 30226246 DOI: 10.1039/c8nr06507a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To retain the agents in tumors for cancer diagnosis and therapy, and then to remove them from the body, are key for the clinical applications of ideal inorganic theranostic agents. To meet these needs, we have developed a transformed theranostic platform, employing PVP coated Fe3S4 tetragonal nanosheets (TNSs), which could effectively accumulate in the tumor under magnetic targeting, whilst gradually transforming to small particles (∼5 nm) over three weeks. These were then effectively excreted from the body in normal physiological conditions after exerting their therapeutic effect. The aqueous dispersion of PVP coated Fe3S4 TNSs had an intense near-infrared absorption, excellent photothermal conversion efficiency (64.3%) and great T2 weighted magnetic resonance imaging properties (71.3 mM-1 S-1). In addition, Fe3S4 TNSs could realize a synergistic photothermal therapy (PTT)/chemodynamic therapy (CDT), because the localized heat produced by PTT from the defect-rich structure could enhance the Fenton process by utilizing the overproduced H2O2 in the tumor microenvironment, and in return, the produced ˙OH could inhibit tumor growth and recurrence after PPT. We thus developed a high-efficiency inorganic theranostic platform which was effectively cleared from the body. This will open up a new avenue for the design of inorganic agents for clinical applications in the future.
Collapse
Affiliation(s)
- Guoqiang Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bi H, He F, Dai Y, Xu J, Dong Y, Yang D, Gai S, Li L, Li C, Yang P. Quad-Model Imaging-Guided High-Efficiency Phototherapy Based on Upconversion Nanoparticles and ZnFe2O4 Integrated Graphene Oxide. Inorg Chem 2018; 57:9988-9998. [DOI: 10.1021/acs.inorgchem.8b01159] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunxia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
| | | |
Collapse
|
33
|
Zhang W, Xiao J, Cao Q, Wang W, Peng X, Guan G, Cui Z, Zhang Y, Wang S, Zou R, Wan X, Qiu H, Hu J. An easy-to-fabricate clearable CuS-superstructure-based multifunctional theranostic platform for efficient imaging guided chemo-photothermal therapy. NANOSCALE 2018; 10:11430-11440. [PMID: 29882950 DOI: 10.1039/c8nr03271h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite drug delivery systems (DDSs) receiving ever-increasing attention, development of a simple, effective, sensitive and clearable drug delivery and multifunctional theranostic nanoplatform for cancer therapy is still highly desirable and remains a challenge. Herein, using a one-step solvothermal method, hollow acanthosphere-like CuS superstructures assembled from ∼10 nm nanoparticles (NPs) were successfully obtained and used as an efficient drug delivery and theranostic platform for photoacoustic (PA) and infrared (IR) thermal imaging-guided cancer combination therapy. The special hollow characteristic of CuS superstructures with mesoporous shells and large cavities grants them high drug loading capacity; they demonstrate near-infrared (NIR)/pH stimuli-sensitive drug release and pronounced synergetic effects of chemo-photothermal therapy both in vitro and in vivo. In particular, our as-fabricated hollow loose CuS superstructures, with easily breakable characteristic, are biodegradable and able to be cleared from the body when their therapy task is completed. This CuS-superstructure-based clearable drug delivery and "all-in-one" cancer theranostic platform might provide possibilities for improving therapeutic efficacy and minimizing adverse effects.
Collapse
Affiliation(s)
- Wenlong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xu C, Chen F, Valdovinos HF, Jiang D, Goel S, Yu B, Sun H, Barnhart TE, Moon JJ, Cai W. Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy. Biomaterials 2018; 165:56-65. [PMID: 29501970 DOI: 10.1016/j.biomaterials.2018.02.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 02/12/2018] [Accepted: 02/22/2018] [Indexed: 01/15/2023]
Abstract
Mesoporous silica nanoshell (MSN) coating has been demonstrated as a versatile surface modification strategy for various kinds of inorganic functional nanoparticles, such as gold nanorods (GNRs), to achieve not only improved nanoparticle stability but also concomitant drug loading capability. However, limited drug loading capacity and low tumor accumulation rate in vivo are two major challenges for the biomedical applications of MSN-coated GNRs (GNR@MSN). In this study, by coating uniformly sized GNRs with MSN in an oil-water biphase reaction system, we have successfully synthesized a new bacteria-like GNR@MSN (i.e., bGNR@MSN) with a significantly enlarged pore size (4-8 nm) and surface area (470 m2/g). After PEGylation and highly efficient loading of doxorubicin (DOX, 40.9%, w/w), bGNR@MSN were used for positron emission tomography (PET, via facile and chelator-free 89Zr-labeling) and photoacoustic imaging-guided chemo-photothermal cancer therapy in vivo. PET imaging showed that 89Zr-labeled bGNR@MSN(DOX)-PEG can passively target to the 4T1 murine breast cancer-bearing mice with high efficiency (∼10 %ID/g), based on enhanced permeability and retention effect. Significantly enhanced chemo-photothermal combination therapy was also achieved due to excellent photothermal effect and near-infrared-light-triggered drug release by bGNR@MSN(DOX)-PEG at the tumor site. The promising results indicate great potential of bGNR@MSN-PEG nanoplatforms for future cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Radiology, University of Wisconsin-Madison, WI 53705, United States
| | - Feng Chen
- Department of Radiology, University of Wisconsin-Madison, WI 53705, United States
| | - Hector F Valdovinos
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, United States
| | - Dawei Jiang
- Department of Radiology, University of Wisconsin-Madison, WI 53705, United States
| | - Shreya Goel
- Department of Materials Science and Engineering, University of Wisconsin-Madison, WI 53706, United States
| | - Bo Yu
- Department of Radiology, University of Wisconsin-Madison, WI 53705, United States
| | - Haiyan Sun
- Department of Radiology, University of Wisconsin-Madison, WI 53705, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, United States
| | - James J Moon
- Department of Pharmaceutical Science, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, WI 53705, United States; Department of Medical Physics, University of Wisconsin-Madison, WI 53705, United States; Department of Materials Science and Engineering, University of Wisconsin-Madison, WI 53706, United States; University of Wisconsin Carbone Cancer Center, Madison, WI 53705, United States.
| |
Collapse
|