1
|
Suurmond CE, Leeuwenburgh SCG, van den Beucken JJJP. Modelling bone metastasis in spheroids to study cancer progression and screen cisplatin efficacy. Cell Prolif 2024; 57:e13693. [PMID: 38899562 PMCID: PMC11503253 DOI: 10.1111/cpr.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Most bone metastases are caused by primary breast or prostate cancer cells settling in the bone microenvironment, affecting normal bone physiology and function and reducing 5-year survival rates to 10% and 6%, respectively. To expedite clinical availability of novel and effective bone metastases treatments, reliable and predictive in vitro models are urgently required to screen for novel therapies as current in vitro 2D planar mono-culture models do not accurately predict the clinical efficacy. We herein engineered a novel human in vitro 3D co-culture model based on spheroids to study dynamic cellular quantities of (breast or prostate) cancer cells and human bone marrow stromal cells and screen chemotherapeutic efficacy and specificity of the common anticancer drug cisplatin. Bone metastatic spheroids (BMSs) were formed rapidly within 24 h, while the morphology of breast versus prostate cancer BMS differed in terms of size and circularity upon prolonged culture periods. Prestaining cell types prior to BMS formation enabled confocal imaging and quantitative image analysis of in-spheroid cellular dynamics for up to 7 days of BMS culture. We found that cancer cells in BMS proliferated faster and were less susceptible to cisplatin treatment compared to 2D control cultures. Based on these findings and the versatility of our methodology, BMS represent a feasible 3D in vitro model for screening of new bone cancer metastases therapies.
Collapse
|
2
|
Brennen WN, Le Magnen C, Karkampouna S, Anselmino N, Bock N, Choo N, Clark AK, Coleman IM, Dolgos R, Ferguson AM, Goode DL, Krutihof-de Julio M, Navone NM, Nelson PS, O'Neill E, Porter LH, Ranasinghe W, Sunada T, Williams ED, Butler LM, Corey E, van Weerden WM, Taylor RA, Risbridger GP, Lawrence MG. Defining the challenges and opportunities for using patient-derived models in prostate cancer research. Prostate 2024; 84:623-635. [PMID: 38450798 PMCID: PMC11014775 DOI: 10.1002/pros.24682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND There are relatively few widely used models of prostate cancer compared to other common malignancies. This impedes translational prostate cancer research because the range of models does not reflect the diversity of disease seen in clinical practice. In response to this challenge, research laboratories around the world have been developing new patient-derived models of prostate cancer, including xenografts, organoids, and tumor explants. METHODS In May 2023, we held a workshop at the Monash University Prato Campus for researchers with expertise in establishing and using a variety of patient-derived models of prostate cancer. This review summarizes our collective ideas on how patient-derived models are currently being used, the common challenges, and future opportunities for maximizing their usefulness in prostate cancer research. RESULTS An increasing number of patient-derived models for prostate cancer are being developed. Despite their individual limitations and varying success rates, these models are valuable resources for exploring new concepts in prostate cancer biology and for preclinical testing of potential treatments. Here we focus on the need for larger collections of models that represent the changing treatment landscape of prostate cancer, robust readouts for preclinical testing, improved in vitro culture conditions, and integration of the tumor microenvironment. Additional priorities include ensuring model reproducibility, standardization, and replication, and streamlining the exchange of models and data sets among research groups. CONCLUSIONS There are several opportunities to maximize the impact of patient-derived models on prostate cancer research. We must develop large, diverse and accessible cohorts of models and more sophisticated methods for emulating the intricacy of patient tumors. In this way, we can use the samples that are generously donated by patients to advance the outcomes of patients in the future.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Clémentine Le Magnen
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nathalie Bock
- School of Biomedical Sciences at Translational Research Institute, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Choo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Ashlee K Clark
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Robin Dolgos
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alison M Ferguson
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, Division of Research and Enterprise, University of New South Wales, Sydney, NSW, Australia
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marianna Krutihof-de Julio
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Translational Organoid Resource, University of Bern, Bern, Switzerland
| | - Nora M Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Edward O'Neill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Weranja Ranasinghe
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Department of Surgery, Monash University, Melbourne, VIC, Australia
- Department of Urology, Monash Health, Melbourne, VIC, Australia
- Department of Urology, Austin Health, Melbourne, VIC, Australia
| | - Takuro Sunada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Elizabeth D Williams
- School of Biomedical Sciences at Translational Research Institute, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre-Queensland, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | | | - Renea A Taylor
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Physiology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Paindelli C, Parietti V, Barrios S, Shepherd P, Pan T, Wang WL, Satcher RL, Logothetis CJ, Navone N, Campbell MT, Mikos AG, Dondossola E. Bone mimetic environments support engineering, propagation, and analysis of therapeutic response of patient-derived cells, ex vivo and in vivo. Acta Biomater 2024; 178:83-92. [PMID: 38387748 PMCID: PMC12016311 DOI: 10.1016/j.actbio.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Bone metastases are the most common milestone in the lethal progression of prostate cancer and prominent in a substantial portion of renal malignancies. Interactions between cancer and bone host cells have emerged as drivers of both disease progression and therapeutic resistance. To best understand these central host-epithelial cell interactions, biologically relevant preclinical models are required. To achieve this goal, we here established and characterized tissue-engineered bone mimetic environments (BME) capable of supporting the growth of patient-derived xenograft (PDX) cells, ex vivo and in vivo. The BME consisted of a polycaprolactone (PCL) scaffold colonized by human mesenchymal stem cells (hMSCs) differentiated into osteoblasts. PDX-derived cells were isolated from bone metastatic prostate or renal tumors, engineered to express GFP or luciferase and seeded onto the BMEs. BMEs supported the growth and therapy response of PDX-derived cells, ex vivo. Additionally, BMEs survived after in vivo implantation and further sustained the growth of PDX-derived cells, their serial transplant, and their application to study the response to treatment. Taken together, this demonstrates the utility of BMEs in combination with patient-derived cells, both ex vivo and in vivo. STATEMENT OF SIGNIFICANCE: Our tissue-engineered BME supported the growth of patient-derived cells and proved useful to monitor the therapy response, both ex vivo and in vivo. This approach has the potential to enable co-clinical strategies to monitor bone metastatic tumor progression and therapy response, including identification and prioritization of new targets for patient treatment.
Collapse
Affiliation(s)
- Claudia Paindelli
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Vanessa Parietti
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Sergio Barrios
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States; Rice University, Department of Bioengineering, Houston, TX, 77030, United States
| | - Peter Shepherd
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Tianhong Pan
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Robert L Satcher
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Nora Navone
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Matthew T Campbell
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Antonios G Mikos
- Rice University, Department of Bioengineering, Houston, TX, 77030, United States
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States.
| |
Collapse
|
4
|
Stanford SM, Nguyen TP, Chang J, Zhao Z, Hackman GL, Santelli E, Sanders CM, Katiki M, Dondossola E, Brauer BL, Diaz MA, Zhan Y, Ramsey SH, Watson PA, Sankaran B, Paindelli C, Parietti V, Mikos AG, Lodi A, Bagrodia A, Elliott A, McKay RR, Murali R, Tiziani S, Kettenbach AN, Bottini N. Targeting prostate tumor low-molecular weight tyrosine phosphatase for oxidation-sensitizing therapy. SCIENCE ADVANCES 2024; 10:eadg7887. [PMID: 38295166 PMCID: PMC10830117 DOI: 10.1126/sciadv.adg7887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low-molecular weight PTP (LMPTP)-encoded by the ACP1 gene-is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9-generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2-mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress.
Collapse
Affiliation(s)
| | - Tiffany P. Nguyen
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joseph Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zixuan Zhao
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - G. Lavender Hackman
- Department of Nutritional Sciences, College of Natural Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Eugenio Santelli
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Colton M. Sanders
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brooke L. Brauer
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Michael A. Diaz
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yuan Zhan
- Department of Pediatrics and Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, College of Natural Sciences, The University of Texas at Austin, Austin, TX USA
| | - Sterling H. Ramsey
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Philip A. Watson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Claudia Paindelli
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vanessa Parietti
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Aditya Bagrodia
- Department of Urology, University of California, San Diego, La Jolla, CA, USA
| | - Andrew Elliott
- Department of Clinical and Translational Research, Caris Life Sciences, Phoenix, AZ, USA
| | - Rana R. McKay
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics and Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, College of Natural Sciences, The University of Texas at Austin, Austin, TX USA
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
5
|
Let’s Go 3D! New Generation of Models for Evaluating Drug Response and Resistance in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24065293. [PMID: 36982368 PMCID: PMC10049142 DOI: 10.3390/ijms24065293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PC) is the third most frequently diagnosed cancer worldwide and the second most frequent in men. Several risk factors can contribute to the development of PC, and those include age, family history, and specific genetic mutations. So far, drug testing in PC, as well as in cancer research in general, has been performed on 2D cell cultures. This is mainly because of the vast benefits these models provide, including simplicity and cost effectiveness. However, it is now known that these models are exposed to much higher stiffness; lose physiological extracellular matrix on artificial plastic surfaces; and show changes in differentiation, polarization, and cell–cell communication. This leads to the loss of crucial cellular signaling pathways and changes in cell responses to stimuli when compared to in vivo conditions. Here, we emphasize the importance of a diverse collection of 3D PC models and their benefits over 2D models in drug discovery and screening from the studies done so far, outlining their benefits and limitations. We highlight the differences between the diverse types of 3D models, with the focus on tumor–stroma interactions, cell populations, and extracellular matrix composition, and we summarize various standard and novel therapies tested on 3D models of PC for the purpose of raising awareness of the possibilities for a personalized approach in PC therapy.
Collapse
|
6
|
Parlani M, Boccalatte F, Yeaton A, Wang F, Zhang J, Aifantis I, Dondossola E. 223Ra Induces Transient Functional Bone Marrow Toxicity. J Nucl Med 2022; 63:1544-1550. [PMID: 35177425 PMCID: PMC9536707 DOI: 10.2967/jnumed.121.263310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
223Ra is a bone-seeking, α-particle-emitting radionuclide approved for the treatment of patients with metastatic prostate cancer and is currently being tested in a variety of clinical trials for primary and metastatic cancers to bone. Clinical evaluation of 223Ra hematologic safety showed a significantly increased rate of neutropenia and thrombocytopenia in patients, hinting at myelosuppression as a side effect. Methods: In this study, we investigated the consequences of 223Ra treatment on bone marrow biology by combining flow cytometry, single-cell RNA sequencing, three-dimensional multiphoton microscopy and bone marrow transplantation analyses. Results: 223Ra accumulated in bones and induced zonal radiation damage confined to the bone interface, followed by replacement of the impaired areas with adipocyte infiltration, as monitored by 3-dimensional multiphoton microscopy ex vivo. Flow cytometry and single-cell transcriptomic analyses on bone marrow hematopoietic populations revealed transient, nonspecific 223Ra-mediated cytotoxicity on resident populations, including stem, progenitor, and mature leukocytes. This toxicity was paralleled by a significant decrease in white blood cells and platelets in peripheral blood-an effect that was overcome within 40 d after treatment. 223Ra exposure did not impair full hematopoietic reconstitution, suggesting that bone marrow function is not permanently hampered. Conclusion: Our results provide a comprehensive explanation of 223Ra reversible effects on bone marrow cells and exclude long-term myelotoxicity, supporting safety for patients.
Collapse
Affiliation(s)
- Maria Parlani
- Genitourinary Medical Oncology Department and David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Francesco Boccalatte
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York; and
| | - Anna Yeaton
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York; and
| | - Feng Wang
- Department of Genomic Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Iannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York; and
| | - Eleonora Dondossola
- Genitourinary Medical Oncology Department and David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas M.D. Anderson Cancer Center, Houston, Texas;
| |
Collapse
|
7
|
Paindelli C, Casarin S, Wang F, Diaz-Gomez L, Zhang J, Mikos AG, Logothetis CJ, Friedl P, Dondossola E. Enhancing 223Ra Treatment Efficacy by Anti- β1 Integrin Targeting. J Nucl Med 2022; 63:1039-1045. [PMID: 34711616 PMCID: PMC9258579 DOI: 10.2967/jnumed.121.262743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Indexed: 01/03/2023] Open
Abstract
223Ra is an α-emitter approved for the treatment of bone metastatic prostate cancer (PCa), which exerts direct cytotoxicity toward PCa cells near the bone interface, whereas cells positioned in the core respond poorly because of short α-particle penetrance. β1 integrin (β1I) interference has been shown to increase radiosensitivity and significantly enhance external-beam radiation efficiency. We hypothesized that targeting β1I would improve 223Ra outcome. Methods: We tested the effect of combining 223Ra and anti-β1I antibody treatment in PC3 and C4-2B PCa cell models expressing high and low β1I levels, respectively. In vivo tumor growth was evaluated through bioluminescence. Cellular and molecular determinants of response were analyzed by ex vivo 3-dimensional imaging of bone lesions and by proteomic analysis and were further confirmed by computational modeling and in vitro functional analysis in tissue-engineered bone mimetic systems. Results: Interference with β1I combined with 223Ra reduced PC3 cell growth in bone and significantly improved overall mouse survival, whereas no change was achieved in C4-2B tumors. Anti-β1I treatment decreased the PC3 tumor cell mitosis index and spatially expanded 223Ra lethal effects 2-fold, in vivo and in silico. Regression was paralleled by decreased expression of radioresistance mediators. Conclusion: Targeting β1I significantly improves 223Ra outcome and points toward combinatorial application in PCa tumors with high β1I expression.
Collapse
Affiliation(s)
- Claudia Paindelli
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas M.D. Anderson Cancer Center, Houston, Texas
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefano Casarin
- Center for Computational Surgery, Department of Surgery and Houston Methodist Academic Institute, Houston Methodist Research Institute, Houston, Texas
| | - Feng Wang
- Department of Genomic Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Luis Diaz-Gomez
- Department of Bioengineering, Rice University, Houston, Texas; and
| | - Jianhua Zhang
- Department of Genomic Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas; and
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Peter Friedl
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas M.D. Anderson Cancer Center, Houston, Texas
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
- Cancer Genomics Centre, Utrecht, The Netherlands
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas M.D. Anderson Cancer Center, Houston, Texas;
| |
Collapse
|
8
|
Lee S, Mendoza TR, Burner DN, Muldong MT, Wu CCN, Arreola-Villanueva C, Zuniga A, Greenburg O, Zhu WY, Murtadha J, Koutouan E, Pineda N, Pham H, Kang SG, Kim HT, Pineda G, Lennon KM, Cacalano NA, Jamieson CHM, Kane CJ, Kulidjian AA, Gaasterland T, Jamieson CAM. Novel Dormancy Mechanism of Castration Resistance in Bone Metastatic Prostate Cancer Organoids. Int J Mol Sci 2022; 23:ijms23063203. [PMID: 35328625 PMCID: PMC8952299 DOI: 10.3390/ijms23063203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Advanced prostate cancer (PCa) patients with bone metastases are treated with androgen pathway directed therapy (APDT). However, this treatment invariably fails and the cancer becomes castration resistant. To elucidate resistance mechanisms and to provide a more predictive pre-clinical research platform reflecting tumor heterogeneity, we established organoids from a patient-derived xenograft (PDX) model of bone metastatic prostate cancer, PCSD1. APDT-resistant PDX-derived organoids (PDOs) emerged when cultured without androgen or with the anti-androgen, enzalutamide. Transcriptomics revealed up-regulation of neurogenic and steroidogenic genes and down-regulation of DNA repair, cell cycle, circadian pathways and the severe acute respiratory syndrome (SARS)-CoV-2 host viral entry factors, ACE2 and TMPRSS2. Time course analysis of the cell cycle in live cells revealed that enzalutamide induced a gradual transition into a reversible dormant state as shown here for the first time at the single cell level in the context of multi-cellular, 3D living organoids using the Fucci2BL fluorescent live cell cycle tracker system. We show here a new mechanism of castration resistance in which enzalutamide induced dormancy and novel basal-luminal-like cells in bone metastatic prostate cancer organoids. These PDX organoids can be used to develop therapies targeting dormant APDT-resistant cells and host factors required for SARS-CoV-2 viral entry.
Collapse
MESH Headings
- Androgens/pharmacology
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Benzamides/pharmacology
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/secondary
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Male
- Mice
- Nitriles/pharmacology
- Organoids/metabolism
- Phenylthiohydantoin/pharmacology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- SARS-CoV-2/metabolism
- SARS-CoV-2/physiology
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Transplantation, Heterologous
- Virus Internalization
Collapse
Affiliation(s)
- Sanghee Lee
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Theresa R. Mendoza
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Danielle N. Burner
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Michelle T. Muldong
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Christina C. N. Wu
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Catalina Arreola-Villanueva
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Abril Zuniga
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Olga Greenburg
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - William Y. Zhu
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Jamillah Murtadha
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Evodie Koutouan
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Naomi Pineda
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Hao Pham
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Sung-Gu Kang
- Department of Urology, Korea University College of Medicine, Seongbuk-Gu, Seoul 02841, Korea;
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Gabriel Pineda
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Kathleen M. Lennon
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Nicholas A. Cacalano
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA;
| | - Catriona H. M. Jamieson
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Department of Urology, Korea University College of Medicine, Seongbuk-Gu, Seoul 02841, Korea;
| | - Christopher J. Kane
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | | | - Terry Gaasterland
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA;
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina A. M. Jamieson
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Correspondence: ; Tel.: +1-858-534-2921
| |
Collapse
|
9
|
Sethakorn N, Heninger E, Sánchez-de-Diego C, Ding AB, Yada RC, Kerr SC, Kosoff D, Beebe DJ, Lang JM. Advancing Treatment of Bone Metastases through Novel Translational Approaches Targeting the Bone Microenvironment. Cancers (Basel) 2022; 14:757. [PMID: 35159026 PMCID: PMC8833657 DOI: 10.3390/cancers14030757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Bone metastases represent a lethal condition that frequently occurs in solid tumors such as prostate, breast, lung, and renal cell carcinomas, and increase the risk of skeletal-related events (SREs) including pain, pathologic fractures, and spinal cord compression. This unique metastatic niche consists of a multicellular complex that cancer cells co-opt to engender bone remodeling, immune suppression, and stromal-mediated therapeutic resistance. This review comprehensively discusses clinical challenges of bone metastases, novel preclinical models of the bone and bone marrow microenviroment, and crucial signaling pathways active in bone homeostasis and metastatic niche. These studies establish the context to summarize the current state of investigational agents targeting BM, and approaches to improve BM-targeting therapies. Finally, we discuss opportunities to advance research in bone and bone marrow microenvironments by increasing complexity of humanized preclinical models and fostering interdisciplinary collaborations to translational research in this challenging metastatic niche.
Collapse
Affiliation(s)
- Nan Sethakorn
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Division of Hematology/Oncology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erika Heninger
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
| | - Cristina Sánchez-de-Diego
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Adeline B. Ding
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
| | - Ravi Chandra Yada
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Sheena C. Kerr
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - David Kosoff
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Division of Hematology/Oncology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Beebe
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joshua M. Lang
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Division of Hematology/Oncology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institutes for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
| |
Collapse
|
10
|
Computational modeling identifies multitargeted kinase inhibitors as effective therapies for metastatic, castration-resistant prostate cancer. Proc Natl Acad Sci U S A 2021; 118:2103623118. [PMID: 34593636 PMCID: PMC8501846 DOI: 10.1073/pnas.2103623118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 01/02/2023] Open
Abstract
Metastatic, castration-resistant prostate cancer (mCRPC) is an advanced prostate cancer with limited therapeutic options and poor patient outcomes. To investigate whether multitargeted kinase inhibitors (KIs) represent an opportunity for mCRPC drug development, we applied machine learning–based functional screening and identified two KIs, PP121 and SC-1, which demonstrated strong suppression of CRPC growth in vitro and in vivo. Furthermore, we show the marked ability of these KIs to improve on standard-of-care chemotherapy in both tumor response and survival, suggesting that combining multitargeted KIs with chemotherapy represents a promising avenue for mCRPC treatment. Overall, our findings demonstrate the application of a multidisciplinary strategy that blends bench science with machine-learning approaches for rapidly identifying KIs that result in desired phenotypic effects. Castration-resistant prostate cancer (CRPC) is an advanced subtype of prostate cancer with limited therapeutic options. Here, we applied a systems-based modeling approach called kinome regularization (KiR) to identify multitargeted kinase inhibitors (KIs) that abrogate CRPC growth. Two predicted KIs, PP121 and SC-1, suppressed CRPC growth in two-dimensional in vitro experiments and in vivo subcutaneous xenografts. An ex vivo bone mimetic environment and in vivo tibia xenografts revealed resistance to these KIs in bone. Combining PP121 or SC-1 with docetaxel, standard-of-care chemotherapy for late-stage CRPC, significantly reduced tibia tumor growth in vivo, decreased growth factor signaling, and vastly extended overall survival, compared to either docetaxel monotherapy. These results highlight the utility of computational modeling in forming physiologically relevant predictions and provide evidence for the role of multitargeted KIs as chemosensitizers for late-stage, metastatic CRPC.
Collapse
|
11
|
Muscarella AM, Aguirre S, Hao X, Waldvogel SM, Zhang XHF. Exploiting bone niches: progression of disseminated tumor cells to metastasis. J Clin Invest 2021; 131:143764. [PMID: 33720051 PMCID: PMC7954594 DOI: 10.1172/jci143764] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many solid cancers metastasize to the bone and bone marrow (BM). This process may occur even before the diagnosis of primary tumors, as evidenced by the discovery of disseminated tumor cells (DTCs) in patients without occult malignancies. The cellular fates and metastatic progression of DTCs are determined by complicated interactions between cancer cells and BM niches. Not surprisingly, these niches also play important roles in normal biology, including homeostasis and turnover of skeletal and hematopoiesis systems. In this Review, we summarize recent findings on functions of BM niches in bone metastasis (BoMet), particularly during the early stage of colonization. In light of the rich knowledge of hematopoiesis and osteogenesis, we highlight how DTCs may progress into overt BoMet by taking advantage of niche cells and their activities in tissue turnover, especially those related to immunomodulation and bone repair.
Collapse
Affiliation(s)
- Aaron M. Muscarella
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Sergio Aguirre
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah M. Waldvogel
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Risbridger GP, Lawrence MG, Taylor RA. PDX: Moving Beyond Drug Screening to Versatile Models for Research Discovery. J Endocr Soc 2020; 4:bvaa132. [PMID: 33094211 PMCID: PMC7566391 DOI: 10.1210/jendso/bvaa132] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
Patient-derived xenografts (PDXs) are tools of the trade for many researchers from all disciplines and medical specialties. Most endocrinologists, and especially those working in oncology, commonly use PDXs for preclinical drug testing and development, and over the last decade large collections of PDXs have emerged across all tumor streams. In this review, we examine how the field has evolved to include PDXs as versatile resources for research discoveries, providing evidence for guidelines and changes in clinical practice.
Collapse
Affiliation(s)
- Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Melbourne, Victoria, Australia.,Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Melbourne, Victoria, Australia.,Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Renea A Taylor
- Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Physiology, Biomedicine Discovery Institute Cancer Program, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Dereli Can G, Akcan G, Can ME, Akdere ÖE, Çaylı S, Şimşek G, Gümüşderelioğlu M. Surgical and Immunohistochemical Outcomes of Scleral Reconstruction with Autogenic, Allogenic and Xenogenic Grafts: An Experimental Rabbit Model. Curr Eye Res 2020; 45:1572-1582. [PMID: 32366164 DOI: 10.1080/02713683.2020.1764976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose: Choukroun's platelet-rich fibrin (PRF), a second-generation platelet concentrate, has unique morphological and chemical features and may be considered as a scaffold for scleral reinforcement and regeneration. The purpose of this study was to compare the use of xenogenic human-derived amniotic membrane (HAM), allogenic sclera, and autogenic PRF in rabbit lamellar scleral defect model with respect to both anatomical and immunohistochemical improvement. Methods: A total of 45 adult New Zealand rabbits were randomized into five groups: normal control; without surgical procedure, negative control; scleral defect model (SDM), xenogenic HAM; SDM+HAM graft, allogenic sclera; SDM+allogenic sclera graft, autogenic PRF; SDM+autogenic PRF graft. Clinical findings, Hematoxylin&Eozin (HE), Masson Trichrome, Verhoeff Acid Fuchsin, Transforming Growth Factor β Receptor 1, Fibroblast Growth Factor, Bone Morphogenetic Protein 2, collagen type 1, aggrecan, and Matrix Metalloproteinase 2 were evaluated. Results: Ocular surface inflammation was significantly lower in normal control and autogenic PRF groups (p < .001). Graft was avascular and not integrated to scleral wound area in 25% rabbits of allogenic sclera group (p = .02), was out of the scleral wound in 33.3% rabbits of xenogenic HAM group (p > .05), all the grafts were at the normal location and viable in autogenic PRF group. The inflammation and vascularization in autogenic PRF group was significantly lower than negative control and xenogenic HAM groups in HE (p < .001). The collagen score of negative control and xenogenic HAM groups were significantly lower than normal control (p < .001) and autogenic PRF (p < .001) groups. There were insignificant differences between allogenic sclera and autogenic PRF groups (p > .05). For immunohistochemistry, the closest values to normal control group were detected in autogenic PRF group for all immunomarkers. Conclusion: Autogenic PRF showed superior features via its excellent anatomical and chemical composition for scleral regeneration when compared to single-layered xenogenic HAM and allogenic sclera grafts.
Collapse
Affiliation(s)
- Gamze Dereli Can
- Department of Ophthalmology, Bursa Yüksek Ihtisas Training and Research Hospital , Bursa, Turkey
| | - Gülben Akcan
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Medical Faculty , Ankara, Turkey
| | - Mehmet Erol Can
- Department of Ophthalmology, Bursa City Hospital , Bursa, MD, Turkey
| | - Özge Ekin Akdere
- Department of Bioengineering, Hacettepe University Institute of Science and Engineering , Ankara, Turkey
| | - Sevil Çaylı
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Medical Faculty , Ankara, Turkey
| | - Gülçin Şimşek
- Department of Pathology, Keçiören Training and Research Hospital , Ankara, MD, Turkey
| | - Menemşe Gümüşderelioğlu
- Department of Bioengineering, Hacettepe University Institute of Science and Engineering , Ankara, Turkey.,Department of Chemical Engineering, Hacettepe University Faculty of Engineering , Ankara, Turkey
| |
Collapse
|
14
|
Dondossola E, Paindelli C. In vitro three-dimensional modeling for prostate cancer. BIOMATERIALS FOR 3D TUMOR MODELING 2020:251-286. [DOI: 10.1016/b978-0-12-818128-7.00012-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Molina ER, Chim LK, Salazar MC, Koons GL, Menegaz BA, Ruiz-Velasco A, Lamhamedi-Cherradi SE, Vetter AM, Satish T, Cuglievan B, Smoak MM, Scott DW, Ludwig JA, Mikos AG. 3D Tissue-Engineered Tumor Model for Ewing's Sarcoma That Incorporates Bone-like ECM and Mineralization. ACS Biomater Sci Eng 2019; 6:539-552. [PMID: 33463239 DOI: 10.1021/acsbiomaterials.9b01068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The tumor microenvironment harbors essential components required for cancer progression including biochemical signals and mechanical cues. To study the effects of microenvironmental elements on Ewing's sarcoma (ES) pathogenesis, we tissue-engineered an acellular three-dimensional (3D) bone tumor niche from electrospun poly(ε-caprolactone) (PCL) scaffolds that incorporate bone-like architecture, extracellular matrix (ECM), and mineralization. PCL-ECM constructs were generated by decellularizing PCL scaffolds harboring cultures of osteogenic human mesenchymal stem cells. The PCL-ECM constructs simulated in vivo-like tumor architecture and increased the proliferation of ES cells compared to PCL scaffolds alone. Compared to monolayer controls, 3D environments facilitated the downregulation of the canonical insulin-like growth factor 1 receptor (IGF-1R) signal cascade through mechanistic target of rapamycin (mTOR), both of which are targets of recent clinical trials. In addition to the downregulation of canonical IGF-1R signaling, 3D environments promoted a reduction in the clathrin-dependent nuclear localization and transcriptional activity of IGF-1R. In vitro drug testing revealed that 3D environments generated cell phenotypes that were resistant to mTOR inhibition and chemotherapy. Our versatile PCL-ECM constructs allow for the investigation of the roles of various microenvironmental elements in ES tumor growth, cancer cell morphology, and induction of resistant cell phenotypes.
Collapse
Affiliation(s)
| | | | | | | | - Brian A Menegaz
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, United States
| | - Alejandra Ruiz-Velasco
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, United States
| | - Salah-Eddine Lamhamedi-Cherradi
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, United States
| | - Amelia M Vetter
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, United States
| | | | - Branko Cuglievan
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, United States
| | | | | | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, United States
| | | |
Collapse
|
16
|
Landgraf M, Lahr CA, Sanchez-Herrero A, Meinert C, Shokoohmand A, Pollock PM, Hutmacher DW, Shafiee A, McGovern JA. Humanized bone facilitates prostate cancer metastasis and recapitulates therapeutic effects of zoledronic acid in vivo. Bone Res 2019; 7:31. [PMID: 31646018 PMCID: PMC6804745 DOI: 10.1038/s41413-019-0072-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
Advanced prostate cancer (PCa) is known for its high prevalence to metastasize to bone, at which point it is considered incurable. Despite significant effort, there is no animal model capable of recapitulating the complexity of PCa bone metastasis. The humanized mouse model for PCa bone metastasis used in this study aims to provide a platform for the assessment of new drugs by recapitulating the human-human cell interactions relevant for disease development and progression. The humanized tissue-engineered bone construct (hTEBC) was created within NOD-scid IL2rgnull (NSG) mice and was used for the study of experimental PC3-Luc bone metastases. It was confirmed that PC3-Luc cells preferentially grew in the hTEBC compared with murine bone. The translational potential of the humanized mouse model for PCa bone metastasis was evaluated with two clinically approved osteoprotective therapies, the non-species-specific bisphosphonate zoledronic acid (ZA) or the human-specific antibody Denosumab, both targeting Receptor Activator of Nuclear Factor Kappa-Β Ligand. ZA, but not Denosumab, significantly decreased metastases in hTEBCs, but not murine femora. These results highlight the importance of humanized models for the preclinical research on PCa bone metastasis and indicate the potential of the bioengineered mouse model to closely mimic the metastatic cascade of PCa cells to human bone. Eventually, it will enable the development of new effective antimetastatic treatments.
Collapse
Affiliation(s)
- Marietta Landgraf
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Christoph A. Lahr
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Alvaro Sanchez-Herrero
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Christoph Meinert
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Ali Shokoohmand
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Pamela M. Pollock
- School of Biomedical Science, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Dietmar W. Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Research Council (ARC) Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
| | - Abbas Shafiee
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD Australia
| | - Jacqui A. McGovern
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
17
|
Bray LJ, Hutmacher DW, Bock N. Addressing Patient Specificity in the Engineering of Tumor Models. Front Bioeng Biotechnol 2019; 7:217. [PMID: 31572718 PMCID: PMC6751285 DOI: 10.3389/fbioe.2019.00217] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer treatment is challenged by the heterogeneous nature of cancer, where prognosis depends on tumor type and disease stage, as well as previous treatments. Optimal patient stratification is critical for the development and validation of effective treatments, yet pre-clinical model systems are lacking in the delivery of effective individualized platforms that reflect distinct patient-specific clinical situations. Advances in cancer cell biology, biofabrication, and microengineering technologies have led to the development of more complex in vitro three-dimensional (3D) models to act as drug testing platforms and to elucidate novel cancer mechanisms. Mostly, these strategies have enabled researchers to account for the tumor microenvironment context including tumor-stroma interactions, a key factor of heterogeneity that affects both progression and therapeutic resistance. This is aided by state-of-the-art biomaterials and tissue engineering technologies, coupled with reproducible and high-throughput platforms that enable modeling of relevant physical and chemical factors. Yet, the translation of these models and technologies has been impaired by neglecting to incorporate patient-derived cells or tissues, and largely focusing on immortalized cell lines instead, contributing to drug failure rates. While this is a necessary step to establish and validate new models, a paradigm shift is needed to enable the systematic inclusion of patient-derived materials in the design and use of such models. In this review, we first present an overview of the components responsible for heterogeneity in different tumor microenvironments. Next, we introduce the state-of-the-art of current in vitro 3D cancer models employing patient-derived materials in traditional scaffold-free approaches, followed by novel bioengineered scaffold-based approaches, and further supported by dynamic systems such as bioreactors, microfluidics, and tumor-on-a-chip devices. We critically discuss the challenges and clinical prospects of models that have succeeded in providing clinical relevance and impact, and present emerging concepts of novel cancer model systems that are addressing patient specificity, the next frontier to be tackled by the field.
Collapse
Affiliation(s)
- Laura J. Bray
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
- Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Dietmar W. Hutmacher
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
- Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane, QLD, Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Nathalie Bock
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
- Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane, QLD, Australia
| |
Collapse
|