1
|
Stinson NC, Matsuoka Y, Agarwal A, Dziewior CS, McDonald SM, Li Y, Godwin K, Ji RR, Becker ML. Pre-Clinical Assessment of Bupivacaine-Loaded Poly(ester urea) Thin Films for Controlled Drug Release and Effective Pain Management After Surgery. Adv Healthc Mater 2025; 14:e2402800. [PMID: 39668463 PMCID: PMC11959288 DOI: 10.1002/adhm.202402800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Safe, effective pain management remains one of the biggest challenges following surgical procedures. Despite widespread recognition of this problem and advances in the mechanistic understanding of pain signaling, post-surgical pain is often undermanaged, with opioid use remaining the clinical standard. As an alternative to current oral, systemic treatments, a degradable bupivacaine-loaded poly(ester urea) (PEU) thin film has been developed to deliver bupivacaine directly to the site of injury over an extended duration. The dose and duration of bupivacaine delivery is controlled using polymer composition and bupivacaine concentration. Systemic bupivacaine concentrations are more than an order of magnitude lower when delivered locally versus intravenous injection. Tissue analysis showed that the majority of bupivacaine is deposited into subcutaneous tissue directly surrounding the implant. Bupivacaine concentration in soft tissue around the implant are 30-fold higher than plasma values, indicating that release from PEU implants remains localized. Bupivacaine-loaded PEU films are assessed into two established mouse models for diabetic neuropathic pain and post-surgical incisional pain. In each model, bupivacaine eluting PEU films effectively block pain for 3-5 days before returning to baseline levels without loss of motor function and without signs of neurotoxicity.
Collapse
Affiliation(s)
| | - Yutaka Matsuoka
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, NC, 27708
| | - Anshu Agarwal
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708
| | | | | | - Yize Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, NC, 27708
| | - Kacey Godwin
- Department of Chemistry, Duke University, Durham, NC, 27708
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, NC, 27708
| | - Matthew L. Becker
- Department of Chemistry, Duke University, Durham, NC, 27708
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708
- Departments of Biomedical Engineering and Orthopedic Surgery, Duke University, Durham, NC, 27708
| |
Collapse
|
2
|
Dal-Fabbro R, Anselmi C, Swanson WB, Medeiros Cardoso L, Toledo PTA, Daghrery A, Kaigler D, Abel A, Becker ML, Soliman S, Bottino MC. Amino Acid-Based Poly(ester urea) Biodegradable Membrane for Guided Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53419-53434. [PMID: 39329195 DOI: 10.1021/acsami.4c09742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Barrier membranes (BM) for guided bone regeneration (GBR) aim to support the osteogenic healing process of a defined bony defect by excluding epithelial (gingival) ingrowth and enabling osteoprogenitor and stem cells to proliferate and differentiate into bone tissue. Currently, the most widely used membranes for these approaches are collagen-derived, and there is a discrepancy in defining the optimal collagen membrane in terms of biocompatibility, strength, and degradation rates. Motivated by these clinical observations, we designed a collagen-free membrane based on l-valine-co-l-phenylalanine-poly(ester urea) (PEU) copolymer via electrospinning. Degradation and mechanical properties of these membranes were performed on as-spun and water-aged samples. Alveolar-bone-derived stem cells (AvBMSCs) were seeded on the PEU BM to assess their cell compatibility and osteogenic characteristics, including cell viability, attachment/spreading, proliferation, and mineralized tissue-associated gene expression. In vivo, PEU BMs were subcutaneously implanted in rats to evaluate their potential to cause inflammatory responses and facilitate angiogenesis. Finally, critical-size calvarial defects and a periodontal model were used to assess the regenerative capacity of the electrospun PEU BM compared to clinically available Cytoflex synthetic membranes. PEU BM demonstrated equal biocompatibility to Cytoflex with superior mechanical performance in strength and elasticity. Additionally, after 14 days, PEU BM exhibited a higher expression of BGLAP/osteocalcin and superior in vivo performance-less inflammation and increased CD31 and VWF expression over time. When placed in critical-sized defects in the calvaria of rats, the PEU BM led to robust bone formation with high expression of osteogenesis and angiogenesis markers. Moreover, our membrane enhanced alveolar bone and cementum regeneration in an established periodontal model after 8 weeks. We demonstrate that the PEU BM exhibits favorable clinical properties, including mechanical stability, cytocompatibility, and facilitated bone formation in vitro and in vivo. This highlights its suitability for GBR in periodontal and craniofacial bone defects.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Caroline Anselmi
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, United States
- Department of Morphology and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo 01049-010, Brazil
| | - W Benton Swanson
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Lais Medeiros Cardoso
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, United States
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo 01049-010, Brazil
| | - Priscila T A Toledo
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, United States
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo 01049-010, Brazil
| | - Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan 82943, Kingdom of Saudi Arabia
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Alexandra Abel
- Departments of Chemistry, Mechanical Engineering and Material Science, Orthopaedic Surgery, Duke University, Durham, North Carolina 27710, United States
| | - Matthew L Becker
- Departments of Chemistry, Mechanical Engineering and Material Science, Orthopaedic Surgery, Duke University, Durham, North Carolina 27710, United States
| | - Sherif Soliman
- Matregenix, Inc., Mission Viejo, California 92691, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48104, United States
| |
Collapse
|
3
|
Toledo PTA, Anselmi C, Dal-Fabbro R, Mahmoud AH, Abel AK, Becker ML, Delbem ACB, Bottino MC. Calcium Trimetaphosphate-Loaded Electrospun Poly(Ester Urea) Nanofibers for Periodontal Tissue Engineering. J Funct Biomater 2023; 14:350. [PMID: 37504845 PMCID: PMC10381820 DOI: 10.3390/jfb14070350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
The objective of this research was to create and appraise biodegradable polymer-based nanofibers containing distinct concentrations of calcium trimetaphosphate (Ca-TMP) for periodontal tissue engineering. Poly(ester urea) (PEU) (5% w/v) solutions containing Ca-TMP (15%, 30%, 45% w/w) were electrospun into fibrous scaffolds. The fibers were evaluated using SEM, EDS, TGA, FTIR, XRD, and mechanical tests. Degradation rate, swelling ratio, and calcium release were also evaluated. Cell/Ca-TMP and cell/scaffold interaction were assessed using stem cells from human exfoliated deciduous teeth (SHEDs) for cell viability, adhesion, and alkaline phosphatase (ALP) activity. Analysis of variance (ANOVA) and post-hoc tests were used (α = 0.05). The PEU and PEU/Ca-TMP-based membranes presented fiber diameters at 469 nm and 414-672 nm, respectively. Chemical characterization attested to the Ca-TMP incorporation into the fibers. Adding Ca-TMP led to higher degradation stability and lower dimensional variation than the pure PEU fibers; however, similar mechanical characteristics were observed. Minimal calcium was released after 21 days of incubation in a lipase-enriched solution. Ca-TMP extracts enhanced cell viability and ALP activity, although no differences were found between the scaffold groups. Overall, Ca-TMP was effectively incorporated into the PEU fibers without compromising the morphological properties but did not promote significant cell function.
Collapse
Affiliation(s)
- Priscila T. A. Toledo
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.T.A.T.); (C.A.); (R.D.-F.); (A.H.M.)
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil;
| | - Caroline Anselmi
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.T.A.T.); (C.A.); (R.D.-F.); (A.H.M.)
- Department of Morphology and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.T.A.T.); (C.A.); (R.D.-F.); (A.H.M.)
| | - Abdel H. Mahmoud
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.T.A.T.); (C.A.); (R.D.-F.); (A.H.M.)
| | - Alexandra K. Abel
- Departments of Chemistry, Mechanical Engineering and Material Science, Orthopaedic Surgery, Duke University, Durham, NC 27708, USA; (A.K.A.); (M.L.B.)
| | - Matthew L. Becker
- Departments of Chemistry, Mechanical Engineering and Material Science, Orthopaedic Surgery, Duke University, Durham, NC 27708, USA; (A.K.A.); (M.L.B.)
| | - Alberto C. B. Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil;
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (P.T.A.T.); (C.A.); (R.D.-F.); (A.H.M.)
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Nikam SP, Hsu YH, Marks JR, Mateas C, Brigham NC, McDonald SM, Guggenheim DS, Ruppert D, Everitt JI, Levinson H, Becker ML. Anti-adhesive bioresorbable elastomer-coated composite hernia mesh that reduce intraperitoneal adhesions. Biomaterials 2023; 292:121940. [PMID: 36493714 DOI: 10.1016/j.biomaterials.2022.121940] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
Intraperitoneal adhesions (IAs) are a major complication arising from abdominal repair surgeries, including hernia repair procedures. Herein, we fabricated a composite mesh device using a macroporous monofilament polypropylene mesh and a degradable elastomer coating designed to meet the requirements of this clinical application. The degradable elastomer was synthesized using an organo-base catalyzed thiol-yne addition polymerization that affords independent control of degradation rate and mechanical properties. The elastomeric coating was further enhanced by the covalent tethering of antifouling zwitterion molecules. Mechanical testing demonstrated the elastomer forms a robust coating on the polypropylene mesh does not exhibit micro-fractures, cracks or mechanical delamination under cyclic fatigue testing that exceeds peak abdominal loads (50 N/cm). Quartz crystal microbalance measurements showed the zwitterionic functionalized elastomer further reduced fibrinogen adsorption by 73% in vitro when compared to unfunctionalized elastomer controls. The elastomer exhibited degradation with limited tissue response in a 10-week murine subcutaneous implantation model. We also evaluated the composite mesh in an 84-day study in a rabbit cecal abrasion hernia adhesion model. The zwitterionic composite mesh significantly reduced the extent and tenacity of IAs by 94% and 90% respectively with respect to uncoated polypropylene mesh. The resulting composite mesh device is an excellent candidate to reduce complications related to abdominal repair through suppressed fouling and adhesion formation, reduced tissue inflammation, and appropriate degradation rate.
Collapse
Affiliation(s)
- Shantanu P Nikam
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Yen-Hao Hsu
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Jessica R Marks
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - Catalin Mateas
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Natasha C Brigham
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | | | - Dana S Guggenheim
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - David Ruppert
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Jeffrey I Everitt
- Department of Pathology, Duke University, Durham, NC, 27708, United States
| | - Howard Levinson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States.
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, United States; Department of Orthopaedic Surgery, Duke University, Durham, NC, 27708, United States; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
5
|
Wang W, Huang Z, Huang Y, Zhang X, Huang J, Cui Y, Yue X, Ma C, Fu F, Wang W, Wu C, Pan X. Pulmonary delivery nanomedicines towards circumventing physiological barriers: Strategies and characterization approaches. Adv Drug Deliv Rev 2022; 185:114309. [PMID: 35469997 DOI: 10.1016/j.addr.2022.114309] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/01/2022]
Abstract
Pulmonary delivery of nanomedicines is very promising in lung local disease treatments whereas several physiological barriers limit its application via the interaction with inhaled nanomedicines, namely bio-nano interactions. These bio-nano interactions may affect the pulmonary fate of nanomedicines and impede the distribution of nanomedicines in its targeted region, and subsequently undermine the therapeutic efficacy. Pulmonary diseases are under worse scenarios as the altered physiological barriers generally induce stronger bio-nano interactions. To mitigate the bio-nano interactions and regulate the pulmonary fate of nanomedicines, a number of manipulating strategies were established based on size control, surface modification, charge tuning and co-delivery of mucolytic agents. Visualized and non-visualized characterizations can be employed to validate the robustness of the proposed strategies. This review provides a guiding overview of the physiological barriers affecting the in vivo fate of inhaled nanomedicines, the manipulating strategies, and the validation methods, which will assist with the rational design and application of pulmonary nanomedicine.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Jiayuan Huang
- School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, PR China.
| | - Yingtong Cui
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Xiao Yue
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Cheng Ma
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Fangqin Fu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
6
|
A review of recent developments of polypropylene surgical mesh for hernia repair. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Li M, Wang X, Gong G, Tang Y, Zhang Y, Guo J, Liao X, Shi B. Natural polyphenol-based nanoengineering of collagen-constructed hemoperfusion adsorbent for the excretion of heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128145. [PMID: 35007965 DOI: 10.1016/j.jhazmat.2021.128145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Designing a hemoperfusion adsorbent for the excretion therapy of toxic heavy metals still remains a great challenge due to the biosafety risks of non-biological materials and the desired highly efficient removal capacity. Herein, inspired from the homeostasis mechanism of plants, natural polyphenols are integrated with collagen matrix to construct a polyphenol-functionalized collagen-based artificial liver (PAL) for heavy metals excretion and free radicals scavenging therapy. PAL presents high adsorption capacities for Cu2+, Pb2+, and UO22+ ions, up to 76.98 μmol g-1, 106.70 μmol g-1, and 252.48 μmol g-1, respectively. Remarkably, PAL possesses a high binding affinity for UO22+, Pb2+, and Cu2+ ions even in the complex serum environment with the presence of biologically-relevant ions (e.g., Mg2+, Ca2+ ions). Low hemolysis ratio (1.77%), high cell viability (> 85%), high plasma recalcification time (17.4 min), and low protein adsorption (1.02 μmol g-1) indicate outstanding biocompatibility of this material. This natural polyphenol/collagen-based fully bio-derived hemoperfusion adsorbent provides a novel and potentially applicable strategy for constructing a hemoperfusion adsorbent for heavy metal ions excretion therapy with efficiency and biosafety.
Collapse
Affiliation(s)
- Meifeng Li
- Department of Biomass Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaoling Wang
- Department of Biomass Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Guidong Gong
- Department of Biomass Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yi Tang
- Department of Biomass Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yaoyao Zhang
- Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, The Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Junling Guo
- Department of Biomass Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Xuepin Liao
- Department of Biomass Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Bi Shi
- Department of Biomass Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
8
|
Cai Z, Tang Y, Wei Y, Wang P, Zhang H. Physically Cross-Linked Hyaluronan-Based Ultrasoft Cryogel Prepared by Freeze-Thaw Technique as a Barrier for Prevention of Postoperative Adhesions. Biomacromolecules 2021; 22:4967-4979. [PMID: 34499463 DOI: 10.1021/acs.biomac.1c00878] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Postsurgical peritoneal adhesions are a common and serious postoperative complication after various peritoneal surgeries, such as pelvic and abdominal surgery. Various studies have shown that peritoneal adhesions can be minimized or prevented by physical anti-adhesion barriers, including membranes, knits, and hydrogels. Hydrogels have attracted great attention in preventing peritoneal adhesions because the dimensional architecture of hydrogels is similar to that of the native extracellular matrix. However, chemical cross-linkers had to be used in the preparation of chemical hydrogels, which may have problems in cytotoxicity or unwanted side effects. This fact prompts us to create alternative cross-linking methods for the development of biocompatible hydrogels as physical barriers. Herein, we report a physically cross-linked flexible hyaluronan (HA) cryogel prepared via a freeze-thaw technique as a novel anti-adhesion biomaterial for completely preventing postsurgical peritoneal adhesions. In vitro studies demonstrated that this physically cross-linked HA cryogel exhibited excellent biocompatibility, the inherently desirable biocompatibility and functionality of HA being integrally retained as much as possible. Intriguingly, the rheological properties and appropriate biodegradability of the cryogels were readily tailored and tunable by way of the gelation process. In vivo assessments suggested that the cryogel, as a physical barrier, satisfactorily prevented fibroblast penetration and attachment between the injured tissues and nearby normal organs. Furthermore, the molecular mechanism studies revealed that the HA cryogel could prevent peritoneal adhesion by inhibiting inflammatory response and modulation of the fibrinolytic system. Our results show that HA ultrasoft cryogel is a promising clinical candidate for prolonged adhesion prevention.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanmei Tang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, P. R. China.,National Center for Stomatology, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai 200011, P. R. China
| | - Yue Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Pengguang Wang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
9
|
Nikam SP, Nettleton K, Everitt JI, Barton HA, Becker ML. Antibiotic eluting poly(ester urea) films for control of a model cardiac implantable electronic device infection. Acta Biomater 2020; 111:65-79. [PMID: 32447067 DOI: 10.1016/j.actbio.2020.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Cardiac implantable electronic device (CIED) infections acquired during or after surgical procedures are a major complication that are challenging to treat therapeutically, resulting in chronic and sometimes fatal infections. Localized delivery of antibiotics at the surgical site could be used to supplement traditional systemic administration as a preventative measure. Herein, we investigate a cefazolin-eluting l-valine poly(ester urea) (PEU) films as a model system for localized antibiotic delivery for CIEDs. Poly(1-VAL-8) PEU was used to fabricate a series of antibiotic-loaded films with varied loading concentrations (2%, 5%, 10% wt/wt) and thicknesses (40 µm, 80 µm, 140 µm). In vitro release measurements show thickness and loading concentration influence the amount and rate of cefazolin release. Group 10%-140 µm (load-thickness) showed 22.5% release of active pharmaceutical ingredient (API) in the first 24 h and 81.2% of cumulative percent release through day 14 and was found most effective in bacterial clearance in vitro. This group was also effective in clearing a bacterial infection in a model in vivo rat study while eliciting a limited inflammatory response. Our results suggest the feasibility of cefazolin-loaded PEU films as an effective sustained release matrix for localized delivery of antibiotics. SIGNIFICANCE STATEMENT: Implant-associated infections acquired during surgical procedures are a major complication that have proven a challenge to treat clinically, resulting in chronic and sometimes fatal infections. In this manuscript, we investigate an antibiotic-eluting L-valine poly(ester urea) (PEU) films as a model system for localized delivery of cefazolin. Significantly, we demonstrate a wide variation in temporal delivery and dosing within this family of PEUs and show that the delivery can be extended by varying the film thickness. The in vivo results show efficacy in an infected wound model and suggest antibiotic loaded PEU films function as an effective sustained release matrix for localized delivery of antibiotics across a number of clinical indications.
Collapse
|
10
|
Nikam SP, Chen P, Nettleton K, Hsu YH, Becker ML. Zwitterion Surface-Functionalized Thermoplastic Polyurethane for Antifouling Catheter Applications. Biomacromolecules 2020; 21:2714-2725. [DOI: 10.1021/acs.biomac.0c00456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shantanu P. Nikam
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Peiru Chen
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Karissa Nettleton
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Yen-Hao Hsu
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department of Chemistry, Mechanical Engineering and Materials Science, Orthopaedic Surgery, and Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|