1
|
Sun Y, He J, Chen W, Wang Y, Wang K, Zhou M, Zheng Y. Inhalable DNase I@Au hybrid nanoparticles for radiation sensitization and metastasis inhibition by elimination of neutrophil extracellular traps. Biomaterials 2025; 317:123095. [PMID: 39813970 DOI: 10.1016/j.biomaterials.2025.123095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
High-dose radiation therapy is a widely used clinical strategy to inhibit tumor growth. However, the rapid generation of excessive reactive oxygen species (ROS) triggers the formation of neutrophil extracellular traps (NETs), which capture free tumor cells in the bloodstream, promoting metastasis. In this study, we developed a hybrid nanoparticle composed of DNase I and gold (DNase I@Au) to enhance radiotherapy efficacy while mitigating metastasis by precisely eliminating NETs. The DNase I@Au nanoparticles, administered via aerosol inhalation, are efficiently delivered to lung tumor tissue, improving radiosensitization and reducing tumor size. Crucially, the nanoparticles could gradually release DNase I, effectively degrading ROS-induced NETs and preventing the interaction of free malignant cells with tumor sites or vasculature, thereby inhibiting metastasis. Therefore, we provide an enzyme and sensitizer co-loaded strategy that offers a promising approach to improve the therapeutic outcome of radiotherapy and reduce the risk of lung cancer metastasis under ROS stimulation.
Collapse
Affiliation(s)
- Yuchao Sun
- Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jian He
- University-University of Edinburgh Institute (ZJU-UoE Institute), and liangzhu Laboratory, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Yongfang Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Min Zhou
- Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; University-University of Edinburgh Institute (ZJU-UoE Institute), and liangzhu Laboratory, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Key Laboratory of Cancer Prevention and Intervention of China (MOE), Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yichun Zheng
- Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
2
|
Zhang H, Wang Y, Jiang M, Wang K, Yan J, Li G, Zheng Z. Inherently anti-metastatic peptide hydrogels for sonodynamic-amplified ferroptosis in cancer therapy. Mater Today Bio 2025; 32:101688. [PMID: 40206142 PMCID: PMC11980000 DOI: 10.1016/j.mtbio.2025.101688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer metastasis remains a significant challenge in oncology, prompting the exploration of innovative biomaterials to enhance treatment efficacy. While many hydrogels only serve as passive carriers, this study presents two novel self-assembling peptides, CWEWTWY and NapFFSGP, which form supramolecular hydrogels with intrinsic anti-metastatic properties. We demonstrate a correlation between the nanofibrous morphology of these peptides and their enhanced anti-metastatic activity, mediated by disruption of F-actin organization and impacting pathways related to cancer cell adhesion and actin filament dynamics. In vivo studies confirm a significant reduction in lung metastasis using a 4T1 pulmonary metastasis model. We also demonstrate their potential as a simple, synergistic platform integrating sonodynamic therapy (SDT) and ferroptosis. Ironporphyrin (FP), incorporated into Gel@FP, acts as both a sonosensitizer and ferroptosis inducer. Upon ultrasound irradiation, FP generates localized reactive oxygen species, further amplifying ferroptosis through enhanced lipid peroxidation. Gel@FP combined with ultrasound demonstrates potent antitumor efficacy in vitro and in vivo, promoting apoptosis, ferroptosis, and immunogenic cell death, leading to enhanced tumor regression and robust immune activation. Our findings highlight the potential of anti-metastatic hydrogels as a promising multifunctional platform to address the challenges of metastasis while enhancing antitumor immunity.
Collapse
Affiliation(s)
- Hongxia Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yamei Wang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mengmeng Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Kunyu Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jingru Yan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhen Zheng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
3
|
Ma Y, Jiang Q, Liu X, Sun X, Liang G. In situ peptide assembly for cell membrane rewiring in tumor therapy. J Control Release 2025; 381:113637. [PMID: 40107514 DOI: 10.1016/j.jconrel.2025.113637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Peptide assembly on the cell membrane is capable of endowing cells with novel biological properties that are distinct from their original states, thereby playing a pivotal role in the regulation of diverse cellular biological events. In practical biomedical scenarios, in order to make peptide assembly more precisely meet the requirements of cells at different physiological stages and conditions to achieve desired effects of cell function regulation, it becomes particularly crucial to conduct precise in situ spatiotemporal control of peptide assembly on the cell membrane, thus attracting great attentions. Particularly for tumor treatment, this artificially manipulated cell surface engineering can achieve excellent anti-tumor effects by altering the cell membrane structure, influencing receptor clustering or interfering with relevant signal pathways. Of note, membrane-anchoring peptides play a key role in these processes. In this review, we focus on three main types of membrane-anchoring peptides, elaborating in detail on how their assembly regulation mechanisms influence the cell membrane remodeling effect, and further exert therapeutic effects on tumors. On this basis, we further introduce a variety of tumor treatment strategies combined with in situ peptide assembly on the cell membrane, and discuss the current opportunities and challenges in this field, aiming to present the overall research panorama and trend of in situ peptide self-assembly on the cell membrane for efficient tumor treatment.
Collapse
Affiliation(s)
- Yu Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Qiaochu Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China.
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China.
| |
Collapse
|
4
|
Alaei E, Hashemi F, Farahani N, Tahmasebi S, Nabavi N, Daneshi S, Mahmoodieh B, Rahimzadeh P, Taheriazam A, Hashemi M. Peptides in breast cancer therapy: From mechanisms to emerging drug delivery and immunotherapy strategies. Pathol Res Pract 2025; 269:155946. [PMID: 40174279 DOI: 10.1016/j.prp.2025.155946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Breast cancer therapy can be improved by the application of multifunctional peptides and they have unique features, such as high specificity, minimized toxicity, and the capability to influence diverse processes. The role of peptides in breas cancer therapy is highlighted in the present review, examining their functions as therapeutic agents, diagnostic tools, and drug delivery application. Therapeutic peptides have displayed the ability to regulate key pathways in breast tumor, including HER2, VEGF, and EGFR, providing ideal alternatives to the conventional chemotherapy with reduced adverse effects. Additionally, peptide-based vaccines and immune-modulating peptides have demonstrated the capacity in enhancing anti-cancer immunity. The incorporation of peptides into nanoparticles has improved the delivery of drugs and genes, enhanced anti-cancer efficacy while minimizing side impacts. The progresses in the peptide engineering, including stapled peptides, peptide-drug conjugates, and cell-penetrating peptides, have remarkably increased their therapeutic efficacy and stability, elevating their applications in breast cancer therapy. Peptides can be developed using bioinformatics and high-throughput screening technologies to optimize pharmacokinetics and bioavailability. Despite their promise, peptides demonstrate challenges such as enzymatic degradation, limited stability, and high production costs. These obstacles can be addressed through strategies such as peptide cyclization, the employement of non-natural amino acids, and nanoparticle encapsulation. This review explores these recent advancements and strategies, providing ideal insights into the clinical potential of peptides in breast tumor therapy.
Collapse
Affiliation(s)
- Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Tu L, Xing B, Ma S, Zou Z, Wang S, Feng J, Cheng M, Jin Y. A review on polysaccharide-based tumor targeted drug nanodelivery systems. Int J Biol Macromol 2025; 304:140820. [PMID: 39933669 DOI: 10.1016/j.ijbiomac.2025.140820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
The tumor-targeted drug delivery system (TTDNS) uses nanocarriers to transport chemotherapeutic agents to target tumor cells or tissues precisely. This innovative approach considerably increases the effective concentration of these drugs at the tumor site, thereby enhancing their therapeutic efficacy. Many chemotherapeutic agents face challenges, such as low bioavailability, high cytotoxicity, and inadequate drug resistance. To address these obstacles, TTDNS comprising natural polysaccharides have gained increasing popularity in the field of nanotechnology owing to their ability to improve safety, bioavailability, and biocompatibility while reducing toxicity. In addition, it enhances permeability and allows for controlled drug delivery and release. This review focuses on the sources of natural polysaccharides and their direct and indirect mechanisms of anti-tumor activity. We also explored the preparation of various polysaccharide-based nanocarriers, including nanoparticles, nanoemulsions, nanohydrogels, nanoliposomes, nanocapsules, nanomicelles, nanocrystals, and nanofibers. Furthermore, this review delves into the versatile applications of polysaccharide-based nanocarriers, elucidating their capabilities for in vivo targeting, controlled release, and responsiveness to endogenous and exogenous stimuli, such as pH, reactive oxygen species, glutathione, light, ultrasound, and magnetic fields. This sophisticated design substantially enhances the chemotherapeutic efficacy of the encapsulated drugs at tumor sites and provides a basis for preclinical and clinical research. However, the in vivo stability, drug loading, and permeability of these preparations into tumor tissues still need to be improved. Most of the currently developed biomarker-sensitive polysaccharide nanocarriers are still in the laboratory stage, more innovative delivery mechanisms and clinical studies are needed to develop commercial nanocarriers for medical use.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Shufei Ma
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China; Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
6
|
Yang J, Xu P, Zhang G, Wang D, Ye B, Wu L. Advances and potentials in platelet-circulating tumor cell crosstalk. Am J Cancer Res 2025; 15:407-425. [PMID: 40084364 PMCID: PMC11897628 DOI: 10.62347/jayk5667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/27/2025] [Indexed: 03/16/2025] Open
Abstract
Tumor metastasis leads to circulating tumor cells (CTCs) that separate from primary malignant tumors and enter blood circulation. CTCs survive and engage with other cells to cope with obstacles, including shear stress, disease, immune attacks, and drugs. Platelets are the best partners for CTCs. Platelets provide a good protective layer for CTCs to ensure that are not monitored and cleared by the native immune system, and protected from shear stress and survive better. Here, we review current reports on platelet-CTC interaction and the clinical relevance of their combination and summarize new techniques for CTC capture and treatment based on platelet-CTC interaction. We discuss current data, identify its shortcomings, and suggest future developments.
Collapse
Affiliation(s)
- Jie Yang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Pingyao Xu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Guiji Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Bo Ye
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Lichun Wu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| |
Collapse
|
7
|
Nie Y, Wei Y, Zhang Y, Liang Z, Lei Z, Chang M, Peng Y. Design and implication of a breast cancer-targeted drug delivery system utilizing the Kisspeptin/GPR54 system. Int J Pharm 2025; 670:125154. [PMID: 39755342 DOI: 10.1016/j.ijpharm.2024.125154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Kisspeptins function as endogenous ligands for the G protein-coupled receptor GPR54. While the primary role of the Kisspeptin/GPR54 signaling pathway pertains to reproduction, several studies have shown that GPR54 is highly expressed in breast cancer, and we further confirmed this result that GPR54 expression is significantly upregulated in breast cancer cells. Based on this finding, we developed a liposomal drug delivery system utilizing the Kisspeptin/GPR54 system to treat breast cancer after confirming the safety of Kp-10-228. By surface-modifying liposomes with Kp-10-228 (228-K3-EG8-Liposome), we demonstrated enhanced accumulation of these liposomes in tumor cells, both in vitro and in vivo. Doxorubicin-loaded 228-K3-EG8-Liposome exhibited a remarkable inhibition of cancer cell proliferation, significantly extending the median survival time in mice with breast tumors compared to model mice treated with non-targeted liposomes or free doxorubicin. Our results suggest that the liposomal drug delivery system utilizing the Kisspeptin/GPR54 system is a promising novel strategy for the management of breast cancer.
Collapse
Affiliation(s)
- Yaoyan Nie
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; Institute of Biology, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Yanzhu Wei
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yuhuan Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhuansheng Liang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zelin Lei
- The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
8
|
Sun C, Li S, Ding J. Biomaterials-mediated biomineralization for tumor blockade therapy. Nanomedicine (Lond) 2025; 20:417-425. [PMID: 39800898 PMCID: PMC11812332 DOI: 10.1080/17435889.2025.2451018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/06/2025] [Indexed: 02/12/2025] Open
Abstract
Recent advancements in tumor therapy have underscored the potential of biomaterials-mediated biomineralization for tumor blockade. By precisely regulating biomineralization and constructing nanomineralized structures at the cellular level, this therapy achieves multi-dimensional targeted inhibition of tumors. Mineralized precursor molecules are engineered to selectively recognize and bind to proteins on the tumor cell membrane, obstructing signal transduction. Biomineralized materials directly target the tumor cell membrane, disrupting its biological functions and inducing cell apoptosis. Additionally, these materials infiltrate the mitochondria of tumor cells, disrupting energy metabolism through mineralization and significantly impairing tumor viability. This biomaterials-mediated approach enhances treatment precision and efficacy while mitigating side effects, offering a unique approach to tumor therapy.
Collapse
Affiliation(s)
- Chao Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Shuqiang Li
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, P. R. China
| |
Collapse
|
9
|
Song X, Gul A, Zhao H, Qian R, Fang L, Huang C, Xi L, Wang L, Cheang UK. Hybrid Membrane Biomimetic Photothermal Nanorobots for Enhanced Chemodynamic-Chemotherapy-Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5784-5798. [PMID: 39818731 DOI: 10.1021/acsami.4c16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive and fatal brain tumor with a grim prognosis, where current treatment modalities, including postoperative radiotherapy and temozolomide chemotherapy, yield a median survival of only 15 months. The challenges of tumor heterogeneity, drug resistance, and the blood-brain barrier necessitate innovative therapeutic approaches. This study introduces a strategy employing biomimetic magnetic nanorobots encapsulated with hybrid membranes derived from platelets and M1 macrophages to enhance blood-brain barrier penetration and target GBM. The nanorobots encapsulate a polypyrrole/Fe3O4 nanocomplex (PPy@F) for photothermal therapy (PTT) and promote the Fenton reaction of Fe3O4 to generate chemodynamic therapy (CDT). Additionally, temozolomide and PD-L1 antibody (SNTSESF) act as chemotherapy drug and immune checkpoint inhibitor, respectively. The biomimetic design leverages the functional properties of cell membranes to improve the blood residence time and tumor targeting. The integration of PTT and CDT aims to transform "cold" tumors into "hot" tumors, thereby enhancing immunotherapeutic efficacy. This multifaceted approach, PTT, CT, CDT, and immune checkpoint blockade therapy, offers a promising strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Reproductive Medicine Centre, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Aaiza Gul
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongkai Zhao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Rongxin Qian
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lijun Fang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuanxiu Huang
- Reproductive Medicine Centre, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Liping Wang
- Reproductive Medicine Centre, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
10
|
Cao L, Yang X, Li Y, Yang Y, Liu Q, Bottini M, Jin Y, Wang B, Zhang J, Liang XJ. Near-Infrared Light-Activatable DNA Tentacles for Efficient Inhibition of Tumor Metastasis by Bio-Orthogonal Cell Assembly. ACS NANO 2024; 18:18046-18057. [PMID: 38937261 DOI: 10.1021/acsnano.4c05216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Tumor metastasis remains a major challenge in cancer management. Among various treatment strategies, immune cell-based cancer therapy holds a great potential for inhibiting metastasis. However, its wide application in cancer therapy is restricted by complex preparations, as well as inadequate homing and controllability. Herein, we present a groundbreaking approach for bioorthogonally manipulating tumor-NK (natural killer) cell assembly to inhibit tumor metastasis. Multiple dibenzocyclootyne (DBCO) groups decorated long single-stranded DNA were tail-modified on core-shell upconversion nanoparticles (CSUCNPs) and condensed by photosensitive chemical linker (PC-Linker) DNA to shield most of the DBCO groups. On the one hand, the light-triggered DNA scaffolds formed a cross-linked network by click chemistry, effectively impeding tumor cell migration. On the other hand, the efficient cellular assembly facilitated the effective communication between tumor cells and NK-92 cells, leading to enhanced immune response against tumors and further suppression of tumor metastasis. These features make our strategy highly applicable to a wide range of metastatic cancers.
Collapse
Affiliation(s)
- Lingzhi Cao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Xinjian Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Yimei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Yang Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Qiulin Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Sanford Burnham Prebys, La Jolla,California 92037, United States
| | - Yi Jin
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Bei Wang
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, PR China
| |
Collapse
|
11
|
Liu H, Wang H. From cells to subcellular organelles: Next-generation cancer therapy based on peptide self-assembly. Adv Drug Deliv Rev 2024; 209:115327. [PMID: 38703895 DOI: 10.1016/j.addr.2024.115327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Due to the editability, functionality, and excellent biocompatibility of peptides, in situ self-assembly of peptides in cells is a powerful strategy for biomedical applications. Subcellular organelle targeting of peptides assemblies enables more precise drug delivery, enhances selectivity to disease cells, and mitigates drug resistance, providing an effective strategy for disease diagnosis and therapy. This reviewer first introduces the triggering conditions, morphological changes, and intracellular locations of self-assembling peptides. Then, the functions of peptide assemblies are summarized, followed by a comprehensive understanding of the interactions between peptide assemblies and subcellular organelles. Finally, we provide a brief outlook and the remaining challenges in this field.
Collapse
Affiliation(s)
- Huayang Liu
- Department of Chemistry, School of Science, Westlake University, No. 600 Dunyu Road, Sandun Town, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University, No. 600 Dunyu Road, Sandun Town, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
12
|
Ghafoor MH, Song BL, Zhou L, Qiao ZY, Wang H. Self-Assembly of Peptides as an Alluring Approach toward Cancer Treatment and Imaging. ACS Biomater Sci Eng 2024; 10:2841-2862. [PMID: 38644736 DOI: 10.1021/acsbiomaterials.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cancer is a severe threat to humans, as it is the second leading cause of death after cardiovascular diseases and still poses the biggest challenge in the world of medicine. Due to its higher mortality rates and resistance, it requires a more focused and productive approach to provide the solution for it. Many therapies promising to deliver favorable results, such as chemotherapy and radiotherapy, have come up with more negatives than positives. Therefore, a new class of medicinal solutions and a more targeted approach is of the essence. This review highlights the alluring properties, configurations, and self-assembly of peptide molecules which benefit the traditional approach toward cancer therapy while sparing the healthy cells in the process. As targeted drug delivery systems, self-assembled peptides offer a wide spectrum of conjugation, biocompatibility, degradability-controlled responsiveness, and biomedical applications, including cancer treatment and cancer imaging.
Collapse
Affiliation(s)
- Muhammad Hamza Ghafoor
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
13
|
Sun B, Zhang L, Li M, Wang X, Wang W. Applications of peptide-based nanomaterials in targeting cancer therapy. Biomater Sci 2024; 12:1630-1642. [PMID: 38404259 DOI: 10.1039/d3bm02026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
To meet the demand for precision medicine, researchers are committed to developing novel strategies to reduce systemic toxicity and side effects in cancer treatment. Targeting peptides are widely applied due to their affinity and specificity, and their ability to be high-throughput screened, chemically synthesized and modified. More importantly, peptides can form ordered self-assembled structures through non-covalent supramolecular interactions, which can form nanostructures with different morphologies and functions, playing crucial roles in targeted diagnosis and treatment. Among them, in targeted immunotherapy, utilizing targeting peptides to block the binding between immune checkpoints and ligands, thereby activating the immune system to eliminate cancer cells, is an advanced therapeutic strategy. In this mini-review, we summarize the screening, self-assembly, and biomedical applications of targeting peptide-based nanomaterials. Furthermore, this mini-review summarizes the potential and optimization strategies of targeting peptides.
Collapse
Affiliation(s)
- Beilei Sun
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Mengzhen Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xin Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
14
|
Dai Q, Xie L, Ren E, Liu G. Cathepsin B Responsive Peptide-Purpurin Conjugates Assembly-Initiated in Situ Self-Aggregation for Cancer Sonotheranostics. NANO LETTERS 2024; 24:950-957. [PMID: 38198622 DOI: 10.1021/acs.nanolett.3c04371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Sonodynamic therapy (SDT) was hampered by the sonosensitizers with low bioavailability, tumor accumulation, and therapeutic efficiency. In situ responsive sonosensitizer self-assembly strategy may provide a promising route for cancer sonotheranositics. Herein, an intelligent sonotheranostic peptide-purpurin conjugate (P18-P) is developed that can self-assemble into supramolecular structures via self-aggregation triggered by rich enzyme cathepsin B (CTSB). After intravenous injection, the versatile probe could achieve deep tissue penetration because of the penetration sequence of P18-P. More importantly, CTSB-triggered self-assembly strongly prolonged retention time, amplified photoacoustic imaging signal for sensitive CTSB detection, and boosted reactive oxygen species for advanced SDT, evoking specific CTSB responsive sonotheranostics. This peptide-purpurin conjugate may serve as an efficient sonotheranostic platform for the early diagnosis of CTSB activity and effective cancer therapy.
Collapse
Affiliation(s)
- Qixuan Dai
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lisi Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - En Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
15
|
Pandey G, Phatale V, Khairnar P, Kolipaka T, Shah S, Famta P, Jain N, Srinivasarao DA, Rajinikanth PS, Raghuvanshi RS, Srivastava S. Supramolecular self-assembled peptide-engineered nanofibers: A propitious proposition for cancer therapy. Int J Biol Macromol 2024; 256:128452. [PMID: 38042321 DOI: 10.1016/j.ijbiomac.2023.128452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Cancer is a devastating disease that causes a substantial number of deaths worldwide. Current therapeutic interventions for cancer include chemotherapy, radiation therapy, or surgery. These conventional therapeutic approaches are associated with disadvantages such as multidrug resistance, destruction of healthy tissues, and tissue toxicity. Therefore, there is a paradigm shift in cancer management wherein nanomedicine-based novel therapeutic interventions are being explored to overcome the aforementioned disadvantages. Supramolecular self-assembled peptide nanofibers are emerging drug delivery vehicles that have gained much attention in cancer management owing to their biocompatibility, biodegradability, biomimetic property, stimuli-responsiveness, transformability, and inherent therapeutic property. Supramolecules form well-organized structures via non-covalent linkages, the intricate molecular arrangement helps to improve tissue permeation, pharmacokinetic profile and chemical stability of therapeutic agents while enabling targeted delivery and allowing efficient tumor imaging. In this review, we present fundamental aspects of peptide-based self-assembled nanofiber fabrication their applications in monotherapy/combinatorial chemo- and/or immuno-therapy to overcome multi-drug resistance. The role of self-assembled structures in targeted/stimuli-responsive (pH, enzyme and photo-responsive) drug delivery has been discussed along with the case studies. Further, recent advancements in peptide nanofibers in cancer diagnosis, imaging, gene therapy, and immune therapy along with regulatory obstacles towards clinical translation have been deliberated.
Collapse
Affiliation(s)
- Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
16
|
Li X, Guan S, Li H, Li D, Liu D, Wang J, Zhu W, Xing G, Yue L, Cai D, Zhang Q. Polysialic acid-functionalized liposomes for efficient honokiol delivery to inhibit breast cancer growth and metastasis. Drug Deliv 2023; 30:2181746. [PMID: 36803115 PMCID: PMC9946320 DOI: 10.1080/10717544.2023.2181746] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
To improve the anti-metastasis effects of honokiol (HNK) on breast cancer, we designed cationic liposomes (Lip) in which HNK was encapsulated into Lip, and its surface was modified with negatively charged polysialic acid (PSA-Lip-HNK) for efficient treatment of breast cancer. PSA-Lip-HNK possessed a homogeneous spherical shape and high encapsulation efficiency. In vitro 4T1 cell experiments indicated that PSA-Lip-HNK increased cellular uptake and cytotoxicity via the endocytosis pathway mediated by PSA and selectin receptors. Furthermore, the significant antitumor metastasis impact of PSA-Lip-HNK was confirmed by wound healing and cell migration and invasion. Enhanced in vivo tumor accumulation of the PSA-Lip-HNK was observed in 4T1 tumor-bearing mice by living fluorescence imaging. For in vivo antitumor experiments using 4T1 tumor-bearing mice, PSA-Lip-HNK exhibited a higher tumor growth and metastasis inhibition compared with unmodified liposomes. Therefore, we believe that PSA-Lip-HNK well combined biocompatible PSA nano-delivery and chemotherapy, providing a promising drug delivery approach for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Xin Li
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Shuang Guan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Henan Li
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Dong Li
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Dan Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Jing Wang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Wenquan Zhu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, P.R. China
| | - Guihua Xing
- College of Pathology, Qiqihar Medical University, Qiqihar, P.R. China
| | - Liling Yue
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Qi Zhang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| |
Collapse
|
17
|
Zou J, Sun R, He M, Chen Y, Cheng Y, Xia C, Ma Y, Zheng S, Fu X, Yuan Z, Lan M, Lou K, Chen X, Gao F. Sequential Rocket-Mode Bioactivating Ticagrelor Prodrug Nanoplatform Combining Light-Switchable Diphtherin Transgene System for Breast Cancer Metastasis Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53198-53216. [PMID: 37942626 DOI: 10.1021/acsami.3c11594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The increased risk of breast cancer metastasis is closely linked to the effects of platelets. Our previously light-switchable diphtheria toxin A fragment (DTA) gene system, known as the LightOn system, has demonstrated significant therapeutic potential; it lacks antimetastatic capabilities. In this study, we devised an innovative system by combining cell membrane fusion liposomes (CML) loaded with the light-switchable transgene DTA (pDTA) and a ticagrelor (Tig) prodrug. This innovative system, named the sequential rocket-mode bioactivating drug delivery system (pDTA-Tig@CML), aims to achieve targeted pDTA delivery while concurrently inhibiting platelet activity through the sequential release of Tig triggered by reactive oxygen species with the tumor microenvironment. In vitro investigations have indicated that pDTA-Tig@CML, with its ability to sequentially release Tig and pDTA, effectively suppresses platelet activity, resulting in improved therapeutic outcomes and the mitigation of platelet driven metastasis in breast cancer. Furthermore, pDTA-Tig@CML exhibits enhanced tumor aggregation and successfully restrains tumor growth and metastasis. It also reduces the levels of ADP, ATP, TGF-β, and P-selectin both in vitro and in vivo, underscoring the advantages of combining the bioactivating Tig prodrug nanoplatform with the LightOn system. Consequently, pDTA-Tig@CML emerges as a promising light-switchable DTA transgene system, offering a novel bioactivating prodrug platform for breast cancer treatment.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Sun
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Muye He
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - You Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Cheng
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Ma
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shulei Zheng
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuzhi Fu
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyan Lou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianjun Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
18
|
Yan Z, Liu Y, Zhao L, Hu J, Du Y, Peng X, Liu Z. In situ stimulus-responsive self-assembled nanomaterials for drug delivery and disease treatment. MATERIALS HORIZONS 2023; 10:3197-3217. [PMID: 37376926 DOI: 10.1039/d3mh00592e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The individual motifs that respond to specific stimuli for the self-assembly of nanomaterials play important roles. In situ constructed nanomaterials are formed spontaneously without human intervention and have promising applications in bioscience. However, due to the complex physiological environment of the human body, designing stimulus-responsive self-assembled nanomaterials in vivo is a challenging problem for researchers. In this article, we discuss the self-assembly principles of various nanomaterials in response to the tissue microenvironment, cell membrane, and intracellular stimuli. We propose the applications and advantages of in situ self-assembly in drug delivery and disease diagnosis and treatment, with a focus on in situ self-assembly at the lesion site, especially in cancer. Additionally, we introduce the significance of introducing exogenous stimulation to construct self-assembly in vivo. Based on this foundation, we put forward the prospects and possible challenges in the field of in situ self-assembly. This review uncovers the relationship between the structure and properties of in situ self-assembled nanomaterials and provides new ideas for innovative drug molecular design and development to solve the problems in the targeted delivery and precision medicine.
Collapse
Affiliation(s)
- Ziling Yan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Licheng Zhao
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
- Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan Province, P. R. China
| |
Collapse
|
19
|
Wang Y, Wang Q, Wang X, Yao P, Dai Q, Qi X, Yang M, Zhang X, Huang R, Yang J, Wang Q, Xia P, Zhang D, Sun F. Docetaxel-loaded pH/ROS dual-responsive nanoparticles with self-supplied ROS for inhibiting metastasis and enhancing immunotherapy of breast cancer. J Nanobiotechnology 2023; 21:286. [PMID: 37608285 PMCID: PMC10464340 DOI: 10.1186/s12951-023-02013-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Although stimuli-responsive nanoplatforms were developed to deliver immunogenic cell death (ICD) inducers to enhance cancer immunotherapy, the complete release of ICD inducers into the tumor microenvironment (TME) was limited by the inadequate supplementation of endogenous stimulus (e.g., reactive oxygen species (ROS)). To address this issue, we synthesized a self-responsive nanomaterial with self-supplied ROS, which mainly consists of a ROS responsive moiety HPAP and cinnamaldehyde (CA) as the ROS-generating agent. The endogenous ROS can accelerate the degradation of HPAP in materials to release docetaxel (DTX, an ICD inducer). In intracellular acidic environment, the pH-sensitive acetal was cleaved to release CA. The released CA in turn induces the generation of more ROS through mitochondrial damage, resulting in amplified DTX release. Using this self-cycling and self-responsive nanomaterial as a carrier, DTX-loaded pH/ROS dual-responsive nanoparticles (DTX/FA-CA-Oxi-αCD NPs) were fabricated and evaluated in vitro and in vivo. RESULTS In vitro experiments validated that the NPs could be effectively internalized by FA-overexpressed cells and completely release DTX in acidic and ROS microenvironments to induce ICD effect. These NPs significantly blocked 4T1 cell migration and decreased cell invasion. In vivo experiments demonstrated that the tumor-targeted NPs significantly inhibited tumor growth and blocked tumor metastasis. More importantly, these NPs significantly improved immunotherapy through triggering effector T-cell activation and relieving the immunosuppressive state of the TME. CONCLUSIONS Our results demonstrated that DTX/FA-CA-Oxi-αCD NPs displayed great potential in preventing tumor metastasis, inhibiting tumor growth, and improving the efficacy of anti-PD-1antibody.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qianmei Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaowen Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qing Dai
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xiao Zhang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Rong Huang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jing Yang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qian Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
- Department of Urology, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing, 400038, China.
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
20
|
Tang Y, Zhang D, Robinson S, Zheng J. Inhibition of Pancreatic Cancer Cells by Different Amyloid Proteins Reveals an Inverse Relationship between Neurodegenerative Diseases and Cancer. Adv Biol (Weinh) 2023; 7:e2300070. [PMID: 37080947 DOI: 10.1002/adbi.202300070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Indexed: 04/22/2023]
Abstract
Neurodegenerative diseases and cancers are considered to be two families of diseases caused by completely opposite cell-death mechanisms: the former caused by premature cell death, with the latter due to the increased resistance to cell death. Growing epidemiologic evidence appear to suggest an inverse correlation between neurodegenerative diseases and cancers. However, pathological links, particularly from a protein-cell interaction perspective, between these two families of diseases remains to be proven. Here, a fundamental study investigates the effects of three amyloid proteins of Aβ (associated with AD), hIAPP (associated with T2D), and hCT (associated with MTC) on pancreatic cancer (PANC-1) cells. Collective results demonstrate a general inhibitory activity of all of three amyloid proteins on cancer cell proliferation, but inhibition efficiencies are strongly dependent on amyloid sequence (Aβ, hIAPP, hCT), concentration (IC25, IC50, IC75), and aggregation states (monomers, oligomers). Amyloid proteins exhibit two pathways against cancer cells: amyloid monomer-induced ROS production to inhibit cell growth and amyloid oligomer-induced membrane disruption to kill cells. Collectively, the results demonstrate a general inhibition function of amyloid proteins to induce cancer cell death by preventing cell proliferation, suppressing cell migration, promoting reactive oxygen species production, and disrupting cell membranes.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Sarah Robinson
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
21
|
Zhou Y, Li Q, Wu Y, Li X, Zhou Y, Wang Z, Liang H, Ding F, Hong S, Steinmetz NF, Cai H. Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy. ACS NANO 2023; 17:8004-8025. [PMID: 37079378 DOI: 10.1021/acsnano.3c01452] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembly has emerged as an extensively used method for constructing biomaterials with sizes ranging from nanometers to micrometers. Peptides have been extensively investigated for self-assembly. They are widely applied owing to their desirable biocompatibility, biodegradability, and tunable architecture. The development of peptide-based nanoparticles often requires complex synthetic processes involving chemical modification and supramolecular self-assembly. Stimuli-responsive peptide nanoparticles, also termed "smart" nanoparticles, capable of conformational and chemical changes in response to stimuli, have emerged as a class of promising materials. These smart nanoparticles find a diverse range of biomedical applications, including drug delivery, diagnostics, and biosensors. Stimuli-responsive systems include external stimuli (such as light, temperature, ultrasound, and magnetic fields) and internal stimuli (such as pH, redox environment, salt concentration, and biomarkers), facilitating the generation of a library of self-assembled biomaterials for biomedical imaging and therapy. Thus, in this review, we mainly focus on peptide-based nanoparticles built by self-assembly strategy and systematically discuss their mechanisms in response to various stimuli. Furthermore, we summarize the diverse range of biomedical applications of peptide-based nanomaterials, including diagnosis and therapy, to demonstrate their potential for medical translation.
Collapse
Affiliation(s)
- Yang Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Ye Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Xinyu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ya Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Zhu Wang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Hui Liang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Nicole F Steinmetz
- Department of NanoEngineering, Department of Biongineering, Department of Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Center for Engineering in Cancer, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| |
Collapse
|
22
|
Han SI, Sarkes DA, Hurley MM, Renberg R, Huang C, Li Y, Jahnke JP, Sumner JJ, Stratis-Cullum DN, Han A. Identification of Microorganisms that Bind Specifically to Target Materials of Interest Using a Magnetophoretic Microfluidic Platform. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11391-11402. [PMID: 36847552 PMCID: PMC10848205 DOI: 10.1021/acsami.2c15192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Discovery of microorganisms and their relevant surface peptides that specifically bind to target materials of interest can be achieved through iterative biopanning-based screening of cellular libraries having high diversity. Recently, microfluidics-based biopanning methods have been developed and exploited to overcome the limitations of conventional methods where controlling the shear stress applied to remove cells that do not bind or only weakly bind to target surfaces is difficult and the overall experimental procedure is labor-intensive. Despite the advantages of such microfluidic methods and successful demonstration of their utility, these methods still require several rounds of iterative biopanning. In this work, a magnetophoretic microfluidic biopanning platform was developed to isolate microorganisms that bind to target materials of interest, which is gold in this case. To achieve this, gold-coated magnetic nanobeads, which only attached to microorganisms that exhibit high affinity to gold, were used. The platform was first utilized to screen a bacterial peptide display library, where only the cells with surface peptides that specifically bind to gold could be isolated by the high-gradient magnetic field generated within the microchannel, resulting in enrichment and isolation of many isolates with high affinity and high specificity toward gold even after only a single round of separation. The amino acid profile of the resulting isolates was analyzed to provide a better understanding of the distinctive attributes of peptides that contribute to their specific material-binding capabilities. Next, the microfluidic system was utilized to screen soil microbes, a rich source of extremely diverse microorganisms, successfully isolating many naturally occurring microorganisms that show strong and specific binding to gold. The results show that the developed microfluidic platform is a powerful screening tool for identifying microorganisms that specifically bind to a target material surface of interest, which can greatly accelerate the development of new peptide-driven biological materials and hybrid organic-inorganic materials.
Collapse
Affiliation(s)
- Song-I Han
- Department
of Electrical and Computer Engineering, Texas A&M University, College
Station, Texas 77843, USA
| | - Deborah A. Sarkes
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Margaret M. Hurley
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Rebecca Renberg
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Can Huang
- Department
of Electrical and Computer Engineering, Texas A&M University, College
Station, Texas 77843, USA
| | - Yuwen Li
- Department
of Electrical and Computer Engineering, Texas A&M University, College
Station, Texas 77843, USA
| | - Justin P. Jahnke
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - James J. Sumner
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Dimitra N. Stratis-Cullum
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Arum Han
- Department
of Electrical and Computer Engineering, Texas A&M University, College
Station, Texas 77843, USA
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, USA
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
23
|
Zhu L, Yu X, Cao T, Deng H, Tang X, Lin Q, Zhou Q. Immune cell membrane-based biomimetic nanomedicine for treating cancer metastasis. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
|
24
|
Peng X, Hao J, Tao W, Guo D, Liang T, Hu X, Xu H, Fan X, Chen C. Amyloid-like aggregates of short self-assembly peptide selectively induce melanoma cell apoptosis. J Colloid Interface Sci 2023; 640:498-509. [PMID: 36871514 DOI: 10.1016/j.jcis.2023.02.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
With the rising global incidence of melanoma, new anti-melanoma drugs with low-inducing drug resistance and high selectivity are in urgent need. Inspired by the physiological events in which fibrillar aggregates formed by amyloid proteins are toxic to normal tissues, we here rationally design a tyrosinase responsive peptide, I4K2Y* (Ac-IIIIKKDopa-NH2). Such peptide self-assembled into long nanofibers outside the cells, while it was catalyzed into amyloid-like aggregates by tyrosinase which was rich in melanoma cells. The newly formed aggregates concentrated around the nucleus of melanoma cells, blocking the exchange of biomolecules between the nucleus and cytoplasm and finally leading to cell apoptosis via the S phase arrest in cell cycle distribution and dysfunction of mitochondria. Furthermore, I4K2Y* effectively inhibited B16 melanoma growth in a mouse model but with minimal side effects. We believe that the strategy of combining the usage of toxic amyloid-like aggregates and in-situ enzymatic reactions by specific enzymes in tumor cells will bring profound implications for designing new anti-tumor drugs with high selectivity.
Collapse
Affiliation(s)
- Xiaoting Peng
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Jiachen Hao
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Wenwen Tao
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Diange Guo
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Tiantian Liang
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Xuelei Hu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Xinglong Fan
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China.
| | - Cuixia Chen
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China.
| |
Collapse
|
25
|
Liang X, Zhang Y, Zhou J, Bu Z, Liu J, Zhang K. Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
26
|
Core-shell nanosystems designed for effective oral delivery of polypeptide drugs. J Control Release 2022; 352:540-555. [PMID: 36323363 DOI: 10.1016/j.jconrel.2022.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
The stomach acid degradation, mucus clearance and intestinal epithelial impermeability severely limit the oral delivery of polypeptide drugs. To simultaneously address the three major barriers, novel self-assembled core-shell nanosystems (CA-NPs) were designed. The fabricated shell of citric acid cross-linked carboxymethyl cellulose (CA-CMC) wrapped on core nanoparticles (HA-NPs) maintained the integrity of CA-NPs in the stomach. When CA-NPs passed through the stomach, the CA-CMC shell was gradually degraded to release the core HA-NPs in the intestine. HA-NPs with numerous hydrophilic groups and mannose side chains rapidly penetrated through the mucus layer and efficiently transcellular transported via the glucose transporter (GLUT)-mediated and paracellular transport through reversible opening of tight junctions (TJs) by CA-CMC. The oral bioavailability and therapeutic effects of CA-NPs-loaded polypeptide colistin against Escherichia coli (E. coli) bacteremia in mice were significantly increased compared with the native colistin, respectively. Good safety was observed following oral daily delivery for 14 consecutive days. Thus, CA-NPs may offer a promising strategy for the oral delivery of polypeptide drugs.
Collapse
|
27
|
Jia C, Zhang Y, Wang Y, Gao J, Raza A, Ogawa T, Wada S, Xie D, Wang JY. Positively charged and neutral drug-loaded liposomes as the aerosolized formulations for the efficacy assessment of tumor metastases to lungs. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Inflammation-responsive nanoparticles suppress lymphatic clearance for prolonged arthritis therapy. J Control Release 2022; 352:700-711. [PMID: 36347402 DOI: 10.1016/j.jconrel.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
The clearance of nanomedicine in inflamed joints has been accelerated due to the increased lymph angiogenesis and lymph flow in arthritic sites. To maximize the therapeutic efficacy for rheumatoid arthritis (RA), it is necessary to facilitate targeted delivery and extended drug retention in inflamed synovium simultaneously. In general, nanosized particles are more likely to achieve prolonged circulation and targeted delivery. While drug carriers with larger dimension might be more beneficial for extending drug retention. To balance the conflicting requirements, an inflammation-responsive shape transformable nanoparticle, comprised of amyloid β-derived KLVFF peptide and polysialic acid (PSA), coupled with therapeutic agent dexamethasone (Dex) via an acid-sensitive linker, was fabricated and termed as Dex-KLVFF-PSA (DKPNPs). Under physiological condition, DKPNPs can keep stable nanosized morphology, and PSA shell could endow DKPNPs with long circulation and active targeting to arthritic sites. While in inflamed joints, acidic pH-triggered Dex dissociation or macrophages-induced specific binding with PSA would induce the re-assembly of DKPNPs from nanoparticles to nanofibers. Our results reveal that intravenously injected DKPNPs display prolonged in vivo circulation and preferential distribution in inflamed joints, where DKPNPs undergo shape transition to fibrous structures, leading to declined lymphatic clearance and prolonged efficacy. Overall, our dual-stimulus responsive transformable nanoparticle offers an intelligent solution to achieve enhanced therapeutic efficacy in RA.
Collapse
|
29
|
Sharma AR, Lee YH, Bat-Ulzii A, Bhattacharya M, Chakraborty C, Lee SS. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnology 2022; 20:501. [PMID: 36434667 PMCID: PMC9700905 DOI: 10.1186/s12951-022-01650-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Recent efforts in designing nanomaterials to deliver potential therapeutics to the targeted site are overwhelming and palpable. Engineering nanomaterials to deliver biological molecules to exert desirable physiological changes, with minimized side effects and optimal dose, has revolutionized the next-generation therapy for several diseases. The rapid progress of nucleic acids as biopharmaceutics is going to alter the traditional pharmaceutics practices in modern medicine. However, enzymatic instability, large size, dense negative charge (hydrophilic for cell uptake), and unintentional adverse biological responses-such as prolongation of the blood coagulation and immune system activation-hamper the potential use of nucleic acids for therapeutic purposes. Moreover, the safe delivery of nucleic acids into the clinical setting is an uphill task, and several efforts are being put forward to deliver them to targeted cells. Advances in Metal-based NanoParticles (MNPs) are drawing attention due to the unique properties offered by them for drug delivery, such as large surface-area-to-volume ratio for surface modification, increased therapeutic index of drugs through site-specific delivery, increased stability, enhanced half-life of the drug in circulation, and efficient biodistribution to the desired targeted site. Here, the potential of nanoparticles delivery systems for the delivery of nucleic acids, specially MNPs, and their ability and advantages over other nano delivery systems are reviewed.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Yeon-Hee Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Altanzul Bat-Ulzii
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Manojit Bhattacharya
- grid.444315.30000 0000 9013 5080Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020 India
| | - Chiranjib Chakraborty
- grid.502979.00000 0004 6087 8632Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Ba-rasat-Barrackpore Rd, Kolkata, West Bengal 700126 India
| | - Sang-Soo Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| |
Collapse
|
30
|
Zhou X, Li Y, Li X, Huang J, Kong R, Liu L, Cheng H. Carrier free nanomedicine to reverse anti-apoptosis and elevate endoplasmic reticulum stress for enhanced photodynamic therapy. Acta Biomater 2022; 152:507-518. [PMID: 36030050 DOI: 10.1016/j.actbio.2022.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 11/01/2022]
Abstract
As a first studied and generally accepted programmed cell death regulator, Bcl-2 has been identified to overexpress in many types of cancer promoting tumor proliferation and progression. Herein, inspired by drug self-delivery systems, a self-assembled nanomedicine (designated as GosCe) was designed based on the hydrophobic interaction between chlorin e6 (Ce6) and gossypol (Gos). Without extra carriers, GosCe exhibited high drug loading rates, favorable size distribution, and a long-term stability at aqueous phase. More importantly, GosCe could be internalized by tumor cells more effectively than free Ce6, which brought about its multiple toxicity. Upon intravenous injection, GosCe preferred to accumulate in tumor site through enhanced permeability and retention (EPR) effect. After cellular internalization, Gos contributed to increasing the lethality of Ce6-guided photodynamic therapy (PDT) by down-regulating Bcl-2 protein expression and inducing endoplasmic reticulum (ER) stress. Both in vitro and in vivo investigations indicated that the Gos-assisted PDT greatly inhibit cell proliferation and tumor growth. This study might shed light on developing carrier free nanomedicine for PDT-based synergistic tumor therapy. STATEMENT OF SIGNIFICANCE: Metabolic abnormalities of tumor cells create defensive microenvironments which induce a therapeutic resistance against photodynamic therapy (PDT). Among which, the upregulated B-cell lymphoma (Bcl-2) in tumors could inhibit the PDT-induced cell apoptosis. In this work, a self-delivery nanomedicine (GosCe) was developed based on a Bcl-2 inhibitor and photosensitizer through intermolecular interactions, which had favorable size distribution, high drug contents and improved drug delivery efficiency. Importantly, GosCe increased the PDT efficacy by Bcl-2 inhibition and endoplasmic reticulum stress elevation. Thus, GosCe greatly inhibited the tumor growth while caused a reduced side effect in vivo. This carrier free nanomedicine with tumor microenvironment regulation would advance the development of photodynamic nanoplatform in tumor treatment.
Collapse
Affiliation(s)
- Xiang Zhou
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Yanmei Li
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Xinyu Li
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Jiaqi Huang
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Renjiang Kong
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Lingshan Liu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Hong Cheng
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
31
|
Tan H, Zhang M, Xu L, Zhang X, Zhao Y. Gypensapogenin H suppresses tumor growth and cell migration in triple-negative breast cancer by regulating PI3K/AKT/NF-κB/MMP-9 signaling pathway. Bioorg Chem 2022; 126:105913. [DOI: 10.1016/j.bioorg.2022.105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
|
32
|
Curcio M, Vittorio O, Bell JL, Iemma F, Nicoletta FP, Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162851. [PMID: 36014715 PMCID: PMC9413373 DOI: 10.3390/nano12162851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Self-assembling nanoparticles (SANPs) based on hyaluronic acid (HA) represent unique tools in cancer therapy because they combine the HA targeting activity towards cancer cells with the advantageous features of the self-assembling nanosystems, i.e., chemical versatility and ease of preparation and scalability. This review describes the key outcomes arising from the combination of HA and SANPs, focusing on nanomaterials where HA and/or HA-derivatives are inserted within the self-assembling nanostructure. We elucidate the different HA derivatization strategies proposed for this scope, as well as the preparation methods used for the fabrication of the delivery device. After showing the biological results in the employed in vivo and in vitro models, we discussed the pros and cons of each nanosystem, opening a discussion on which approach represents the most promising strategy for further investigation and effective therapeutic protocol development.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jessica Lilian Bell
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
33
|
Yang L, Zhang Y, Zhang Y, Xu Y, Li Y, Xie Z, Wang H, Lin Y, Lin Q, Gong T, Sun X, Zhang Z, Zhang L. Live Macrophage-Delivered Doxorubicin-Loaded Liposomes Effectively Treat Triple-Negative Breast Cancer. ACS NANO 2022; 16:9799-9809. [PMID: 35678390 DOI: 10.1021/acsnano.2c03573] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Triple-negative breast cancer is often aggressive and resistant to various cancer therapies, especially corresponding targeted drugs. It is shown that targeted delivery of chemotherapeutic drugs to tumor sites could enhance treatment outcome against triple-negative breast cancer. In this study, we exploited the active tumor-targeting capability of macrophages by loading doxorubicin-carrying liposomes on their surfaces via biotin-avidin interactions. Compared with conventional liposomes, this macrophage-liposome (MA-Lip) system further increased doxorubicin accumulation in tumor sites, penetrated deeper into tumor tissue, and enhanced antitumor immune response. As a result, the MA-Lip system significantly lengthened the survival rate of 4T1 cell-bearing mice with low toxicity. Besides, the MA-Lip system used highly biocompatible and widely approved materials, which ensured its long-term safety. This study provides a system for triple-negative breast cancer treatment and offers another macrophage-based strategy for tumor delivery.
Collapse
Affiliation(s)
- Lan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yongshun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yani Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yuai Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhiqiang Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yunzhu Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qing Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| |
Collapse
|
34
|
Zheng S, Cai Y, Hong Y, Gong Y, Gao L, Li Q, Li L, Sun X. Legumain/pH dual-responsive lytic peptide-paclitaxel conjugate for synergistic cancer therapy. Drug Deliv 2022; 29:1764-1775. [PMID: 35638851 PMCID: PMC9176665 DOI: 10.1080/10717544.2022.2081380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
After molecule targeted drug, monoclonal antibody and antibody–drug conjugates (ADCs), peptide–drug conjugates (PDCs) have become the next generation targeted anti-tumor drugs due to its properties of low molecule weight, efficient cell penetration, low immunogenicity, good pharmacokinetic and large-scale synthesis by solid phase synthesis. Herein, we present a lytic peptide PTP7-drug paclitaxel conjugate assembling nanoparticles (named PPP) that can sequentially respond to dual stimuli in the tumor microenvironment, which was designed for passive tumor-targeted delivery and on-demand release of a tumor lytic peptide (PTP-7) as well as a chemotherapeutic agent of paclitaxel (PTX). To achieve this, tumor lytic peptide PTP-7 was connected with polyethylene glycol by a peptide substrate of legumain to serve as hydrophobic segments of nanoparticles to protect the peptide from enzymatic degradation. After that, PTX was connected to the amino group of the polypeptide side chain through an acid-responsive chemical bond (2-propionic-3-methylmaleic anhydride, CDM). Therefore, the nanoparticle (PPP) collapsed when it encountered the weakly acidic tumor microenvironment where PTX molecules fell off, and further triggered the cleavage of the peptide substrate by legumain that is highly expressed in tumor stroma and tumor cell surface. Moreover, PPP presents improved stability, improved drug solubility, prolonged blood circulation and significant inhibition ability on tumor growth, which gives a reasonable strategy to accurately deliver small molecule drugs and active peptides simultaneously to tumor sites.
Collapse
Affiliation(s)
- Shanshan Zheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yulu Hong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yubei Gong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Licheng Gao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qingyong Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Le Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
35
|
Zhou Y, Ke P, Bao X, Wu H, Xia Y, Zhang Z, Zhong H, Dai Q, Wu L, Wang T, Lin M, Li Y, Jiang X, Yang Q, Lu Y, Zhong X, Han M, Gao J. Peptide nano-blanket impedes fibroblasts activation and subsequent formation of pre-metastatic niche. Nat Commun 2022; 13:2906. [PMID: 35614076 PMCID: PMC9132894 DOI: 10.1038/s41467-022-30634-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
There is evidence to suggest that the primary tumor induces the formation of a pre-metastatic niche in distal organs by stimulating the production of pro-metastatic factors. Given the fundamental role of the pre-metastatic niche in the development of metastases, interruption of its formation would be a promising strategy to take early action against tumor metastasis. Here we report an enzyme-activated assembled peptide FR17 that can serve as a “flame-retarding blanket” in the pre-metastatic niche specifically to extinguish the “fire” of tumor-supportive microenvironment adaption. We show that the in-situ assembled peptide nano-blanket inhibits fibroblasts activation, suppressing the remodeling of the metastasis-supportive host stromal tissue, and reversing vascular destabilization and angiogenesis. Furthermore, we demonstrate that the nano-blanket prevents the recruitment of myeloid cells to the pre-metastatic niche, regulating the immune-suppressive microenvironment. We show that FR17 administration effectively inhibits the formation of the pulmonary pre-metastatic niche and postoperative metastasis, offering a therapeutic strategy against pre-metastatic niche formation. Primary tumors “spread the spark” by establishing a pre-metastatic niche. Here the authors develop an in-situ assembled peptide FR17 to serve as a “flame-retarding blanket” to extinguish the “fire” of the pre-metastatic microenvironment.
Collapse
Affiliation(s)
- Yi Zhou
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Peng Ke
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.,Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, PR China
| | - Xiaoyan Bao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Honghui Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Yiyi Xia
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Zhentao Zhang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Haiqing Zhong
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Qi Dai
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.,Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Linjie Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Tiantian Wang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Mengting Lin
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Yaosheng Li
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Xinchi Jiang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Qiyao Yang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.,Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Yiying Lu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Xincheng Zhong
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| | - Jianqing Gao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
36
|
Jiang Z, Liu Y, Shi R, Feng X, Xu W, Zhuang X, Ding J, Chen X. Versatile Polymer-Initiating Biomineralization for Tumor Blockade Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110094. [PMID: 35202501 DOI: 10.1002/adma.202110094] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Tumor blockade therapy is a promising penetration-independent antitumor modality, which effectively inhibits the exchange of nutrients, oxygen, and information between the tumor and surrounding microenvironments. However, the current blockade therapy strategies have limited antitumor efficacy due to defects of inadequate tumor obstruction, possible side effects, and short duration. For these reasons, a facilely synthesized versatile polymer 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-alendronate (DSPE-PEG-ALN, DPA) is developed to initiate the formation of biomineral shell around osteosarcoma as a potent physical barrier. The DSPE moiety shares a similar chemical structure with the cytomembrane, allowing the membrane insertion of DPA. The bisphosphonic acid groups in ALN attract ions to realize biomineralization around cells. After injection in the invasive osteosarcoma tissue, DPA inserts into the cytomembrane, induces continuous mineral deposition, and ultimately builds a physical barrier around the tumor. Meanwhile, ALN in DPA alleviates bone destruction by suppressing the activity of osteoclasts. Through hindering the exchange of necessary substances, the biomineralization coating inhibits the growth of primary osteosarcoma and pulmonary metastasis simultaneously. Therefore, the multifunctional polymer-initiating blockade therapy provides a promising modality for tumor inhibition in clinics with high efficacy and negligible side effects.
Collapse
Affiliation(s)
- Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Yang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, P. R. China
| | - Xiangru Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- School of Life Science and Technology, South Campus, Changchun University of Science and Technology, 7168 Weixing Street, Changchun, 130022, P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
37
|
Feng J, Xiang L, Fang C, Tan Y, Li Y, Gong T, Wu Q, Gong T, Zhang Z. Dual-Targeting of Tumor Cells and Tumor-Associated Macrophages by Palmitic Acid Modified Albumin Nanoparticles for Antitumor and Antimetastasis Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14887-14902. [PMID: 35344323 DOI: 10.1021/acsami.1c23274] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor-associated macrophages (TAMs), the most abundant immune cells in the tumor microenvironment (TME), profoundly affect the occurrence and development of tumors. To overcome the common limitations of TAMs-targeted delivery systems, such as off-target toxicity, high cost, and transformation probability, we fabricated pirarubicin (THP)-loaded palmitic acid modified human serum albumin nanoparticles (THP-PSA NPs) for dual-targeting of tumor cells and TAMs via acidic secretory proteins rich in cysteine (SPARC) and scavenger receptor-A (SR-A), respectively. In vitro, the THP-PSA NPs exhibit stronger cytotoxicity against 4T1 and M2 macrophages compared with THP-loaded human serum albumin nanoparticles (THP-HSA NPs). In vivo, the infiltration of myeloid-derived suppressor cells (MDSCs) and the secretion of immunosuppressive cytokines significantly decrease after effective elimination of the TAMs through the THP-PSA NPs treatment; this is accompanied by an increase in the immunostimulatory cytokine expression level. Moreover, the antitumor and antimetastasis experimental results indicate that the tumor volumes in mice treated with the THP-PSA NPs are effectively controlled, resulting in an inhibition rate of 81.0% and almost no metastases in the lung tissues. Finally, in terms of biological safety, the THP-PSA NPs perform similar to THP-HSA NPs, causing no damage to the liver or kidney.
Collapse
Affiliation(s)
- Jiaxing Feng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Changlong Fang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yulu Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan Li
- Sichuan Institute for Drug Control NMPA Key Laboratory for Quality Control and Evaluation of Vaccines and Biological Products, Chengdu 611731, China
| | - Ting Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qingsi Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Xue Y, Bai S, Wang L, Luo S, Zhang Z, Gong T, Zhang L. A dual-responsive nanoplatform with feedback amplification improves antitumor efficacy of photodynamic therapy. NANOSCALE 2022; 14:2758-2770. [PMID: 35113116 DOI: 10.1039/d1nr06875j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A good photosensitizer (PS) delivery system could enhance the efficiency and reduce the side effects of anti-tumor photodynamic therapy (PDT) by improving accumulation in the tumor, uptake by tumor cells, and intracellular release of the PS. Thus, we rationally developed a multi-stimulus-responsive PS nanocarrier with a double-layered core-shell structure: mPEG-azo-hyaluronic acid-sulfide-Ce6 (PaHAsC). In PaHAsC, the mPEG coat provides protection before entering the hypoxic tumor microenvironment, where mPEG leaves to expose the HA layer. HA then targets overexpressed CD44 on tumor cells for enhanced internalization. Finally, GSH-mediated intracellular release of Ce6 augments ROS generation and O2 consumption under light stimulation. This also aggravates hypoxia in tumor sites to accelerate mPEG removal, forming a positive feedback loop. Data show that PaHAsC dramatically improved the PDT efficacy of Ce6, eliminating most tumors and 80% of tumor-bearing mice survived. With a safe profile, PaHAsC has potential for further development and is a useful example of a PS delivery system.
Collapse
Affiliation(s)
- Yuan Xue
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuting Bai
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Leilei Wang
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shi Luo
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
39
|
Li S, Li L, Lin X, Chen C, Luo C, Huang Y. Targeted Inhibition of Tumor Inflammation and Tumor-Platelet Crosstalk by Nanoparticle-Mediated Drug Delivery Mitigates Cancer Metastasis. ACS NANO 2022; 16:50-67. [PMID: 34873906 DOI: 10.1021/acsnano.1c06022] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sowing malignant cells (the "seeds" of metastasis) to engraft secondary sites requires a conducive premetastatic niche (PMN, the "soil" of metastasis). Inflammation and tumor associated platelet (TAP) has been hijacked by primary tumors to induce PMN "soil" in distant organs, as well as facilitate the dissemination of "seeds". This study reports a combinatory strategy with activated platelet-targeting nanoparticles to aim at the dynamic process of entire cancer metastasis, which exerts robust antimetastasis efficacy by simultaneously inhibiting tumor inflammation and tumor-platelet crosstalk. Our results reveals that the PSN peptide (a P-selectin-targeting peptide) modification enriched the accumulation of nanoparticles in primary tumor, pulmonary PMN, and metastases via capturing activated platelet. Such characteristics contribute to the efficient inhibition on almost every crucial and consecutive step of the metastasis cascade by retarding epithelial-mesenchymal transition (EMT) progression within tumors, specifically blocking the tumor-platelet crosstalk to remove the platelets "protective shield" around disseminated "seeds", and reversing the inflammatory microenvironment to interfere with the "soil" formation. Consisting of inflammation inhibiting and TAP impeding nanoparticles, this approach prominently reduces various metastasis in abscopal lung, including spontaneous metastasis, disseminated tumor cells metastasis, and post-operative metastasis. This work provides a generalizable nanoplatform of parallel inflammation disturbance and tumor-TAP crosstalk blockade to resist metastatic tumors.
Collapse
Affiliation(s)
- Shujie Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Xi Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Cheng Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Chaohui Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| |
Collapse
|
40
|
Qiao L, Yang H, Gao S, Li L, Fu X, Wei Q. Research progress on self-assembled nanodrug delivery systems. J Mater Chem B 2022; 10:1908-1922. [DOI: 10.1039/d1tb02470a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, nanodrug delivery systems have attracted increasing attention due to their advantages, such as the high drug loading, low toxicity and side effects, improved bioavailability, long half-life, well...
Collapse
|
41
|
Zhang X, Chen Y, He X, Zhang Y, Zhou M, Peng C, He Z, Gui S, Li Z. Smart Nanogatekeepers for Tumor Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103712. [PMID: 34677898 DOI: 10.1002/smll.202103712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticulate drug delivery systems (nano-DDSs) are required to reliably arrive and persistently reside at the tumor site with minimal off-target side effects for clinical theranostics. However, due to the complicated environment and high interstitial pressure in tumor tissue, they can return to the bloodstream and cause secondary side effects in normal organs. Recently, a number of nanogatekeepers have been engineered via structure-transformable/stable strategies to overcome this undesirable dilemma. The emerging structure-transformable nanogatekeepers for tumor imaging and therapy are first overviewed here, particularly for nanogatekeepers undergoing structural transformation in tumor microenvironments, cell membranes, and organelles. Thereafter, intelligent structure-stable nanogatekeepers through reversible activation and artificial individualization receptors are overviewed. Finally, the ongoing challenges and prospects of nanogatekeepers for clinical translation are briefly discussed.
Collapse
Affiliation(s)
- Xunfa Zhang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xian He
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Yachao Zhang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Mei Zhou
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chengjun Peng
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Zhenbao Li
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| |
Collapse
|
42
|
Yu W, Hu C, Gao H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv Drug Deliv Rev 2021; 178:113909. [PMID: 34352354 DOI: 10.1016/j.addr.2021.113909] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common tumor in women, and the metastasis further increases the malignancy with extremely high mortality. However, there is almost no effective method in the clinic to completely inhibit breast cancer metastasis due to the dynamic multistep process with complex pathways and scattered occurring site. Nowadays, nanomedicines have been evidenced with great potential in treating cancer metastasis. In this review, we summarize the latest research advances of nanomedicines in anti-metastasis treatment. Strategies are categorized according to the metastasis dynamics, including primary tumor, circulating tumor cells, pre-metastatic niches and secondary tumor. In each different stage of metastasis process, nanomedicines are designed specifically with different functions. At the end of the review, we give our perspectives on current limitations and future directions in anti-metastasis therapy. We expect the review provides comprehensive understandings of anti-metastasis therapy for breast cancer, and boosts the clinical translation in the future to improve women's health.
Collapse
|
43
|
Della Sala F, Fabozzi A, di Gennaro M, Nuzzo S, Makvandi P, Solimando N, Pagliuca M, Borzacchiello A. Advances in Hyaluronic-Acid-Based (Nano)Devices for Cancer Therapy. Macromol Biosci 2021; 22:e2100304. [PMID: 34657388 DOI: 10.1002/mabi.202100304] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the main cause of fatality all over the world with a considerable growth rate. Many biologically active nanoplatforms are exploited for tumor treatment. Of nanodevices, hyaluronic acid (HA)-based systems have shown to be promising candidates for cancer therapy due to their high biocompatibility and cell internalization. Herein, surface functionalization of different nanoparticles (NPs), e.g., organic- and inorganic-based NPs, is highlighted. Subsequently, HA-based nanostructures and their applications in cancer therapy are presented.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Antonio Fabozzi
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Mario di Gennaro
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Stefano Nuzzo
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Pooyan Makvandi
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Nicola Solimando
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Maurizio Pagliuca
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| |
Collapse
|
44
|
Wang MD, Hou DY, Lv GT, Li RX, Hu XJ, Wang ZJ, Zhang NY, Yi L, Xu WH, Wang H. Targeted in situ self-assembly augments peptide drug conjugate cell-entry efficiency. Biomaterials 2021; 278:121139. [PMID: 34624753 DOI: 10.1016/j.biomaterials.2021.121139] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/18/2021] [Indexed: 11/26/2022]
Abstract
Peptide drug conjugate (PDC) has emerged as one of the new generations of targeted therapeutics for cancer, which owns the advantages of improved drug targetability and reduced adverse effects compared with traditional chemotherapy. However, the poor permeability of PDC drugs regarding tumor cells is an urgent problem to be solved. Herein, we design a PDC drug molecule, which is composed of three modules: targeting motif (RGD target), assembly motif (GNNNQNY) and cytotoxic payload (CPT molecule). This PDC in situ forms nanoclusters upon binding cellular receptor, resulting in improved PDC cell-entry efficiency and treatment efficacy. In addition, the PDC shows increased therapeutic efficacy and raises the maximum tolerance dose of the drug in breast and bladder xenografted mice models. This strategy leverages the assembly principle to promote penetration of peptide molecules into cells and increase intracellular drug bioavailability, which is of great significance for the development of PDC drugs in the future.
Collapse
Affiliation(s)
- Man-Di Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Da-Yong Hou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Gan-Tian Lv
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ru-Xiang Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xing-Jie Hu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhi-Jia Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wan-Hai Xu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
45
|
Sun C, Wang Z, Yang K, Yue L, Cheng Q, Ma YL, Lu S, Chen G, Wang R. Polyamine-Responsive Morphological Transformation of a Supramolecular Peptide for Specific Drug Accumulation and Retention in Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101139. [PMID: 34114343 DOI: 10.1002/smll.202101139] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The precise accumulation and extended retention of nanomedicines in the tumor tissue has been highly desired for cancer therapy. Here a novel supramolecular-peptide derived nanodrug (SPN) that can be transformed to microfibers in response to intracellular polyamine in cancer cells for significantly enhanced tumor specific accumulation and retention is developed. The supramolecular-peptide is constructed via the non-covalent interactions between cucurbit[7]uril (CB[7]) and Phe on Phe-Phe-Val-Leu-Lys-camptothecin conjugates (FFVLK-CPT, PC). The resultant amphiphilic supramolecular complex subsequently self-assembles into nanoparticles with a hydrodynamic diameter of 164.2 ± 3.7 nm. Upon internalization into spermine-overexpressed cancer cells, the CB[7]-Phe host-guest pairs can be competitively dissociated by spermine and can release free PC, which immediately form β-sheet structures and subsequently reorganize into microfibers, leading to dramatically improved accumulation, retention, and sustained release of CPT in tumor cells for highly effective cancer therapy. Accordingly, this SPN exhibit rather low toxicity against non-cancerous cells due to the morphological stability and fast exocytosis of the nanodrugs in those cells without abundant spermine. This study reports the first supramolecular peptide capable of polyamine-responsive "nanoparticle-to-microfiber" transformation for specific tumor therapy with minimal side effects. This work also offers novel insights to the design and development of stimuli-responsive nanomaterials as precision medicine.
Collapse
Affiliation(s)
- Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Ziyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Kuikun Yang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Ludan Yue
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yan-Long Ma
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Guosong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
46
|
Transformable amyloid-beta mimetic peptide amphiphiles for lysosomal disruption in non-small cell lung cancer. Biomaterials 2021; 277:121078. [PMID: 34461458 PMCID: PMC9969961 DOI: 10.1016/j.biomaterials.2021.121078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the largest contributor to cancer mortality in the United States. Traditional chemotherapies are toxic and prone to the development of drug-resistance. Recently, several drug candidates were shown to induce lysosomal membrane permeabilization (LMP) in aggressive cancers. This has led to increased interest in lysosome dysregulation as a therapeutic target. However, approaches are needed to overcome two limitations of current lysosomal inhibitors: low specificity and potency. Here, we report the development of a transformable nanomaterial which is triggered to induce LMP of lysosomes in NSCLC. The nanomaterial consists of peptide amphiphiles, which self-assemble into nanoparticles, colocalize with the lysosome, and change conformation to nanofibrils due to lysosomal pH shift, which leads to the disruption of the lysosome, cell death, and cisplatin sensitization. We have found that this cell-penetrating transformable peptide nanoparticle (CPTNP) was cytotoxic to NSCLC cells in the low-micromolar range and it synergized cisplatin cytotoxicity four-fold. Moreover, we demonstrate CPTNP's promising antitumor effect in mouse xenograft models with limited toxicity when given in combination with low dose cisplatin chemotherapy. This is the first example of enhanced LMP via transformable peptide nanomaterial and offers a promising new strategy for cancer therapy.
Collapse
|
47
|
Oladipo AO, Unuofin JO, Iku SI, Nkambule TT, Mamba BB, Msagati TA. Nuclear targeted multimodal 3D-bimetallic Au@Pd nanodendrites promote doxorubicin efficiency in breast cancer therapy. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
48
|
Sheng Q, Li T, Tang X, Zhao W, Guo R, Cun X, Zang S, Zhang Z, Li M, He Q. Comprehensively enhanced delivery cascade by transformable beaded nanofibrils for pancreatic cancer therapy. NANOSCALE 2021; 13:13328-13343. [PMID: 34477739 DOI: 10.1039/d1nr02017j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Facing the barriers in each step of the in vivo delivery cascade, the low drug delivery efficiency remains problematic in tumor therapy. Although recently the nanofibril drug delivery systems have shown improved circulation and accumulation compared with nanoparticles, the poor deep penetration and cellular internalization hinder their application, especially for pancreatic cancer with dense stroma. To comprehensively address the hurdles in the delivery cascade, a matrix metalloproteinase 2 (MMP-2) responsive transformable beaded nanofibril, which integrates the merits of nanofibril and small-sized nanoparticles, is established. The beaded nanofibril (GD@PPF) is prepared by conjugating gemcitabine-loaded small-sized nanoparticles (GD) with fibrous PEG-PCL (PPF) via GPLGVRG, a substrate peptide of MMP-2. GD@PPF escapes the clearance of the reticuloendothelial system (RES), prolongs the circulation time, and increases the selective accumulation in the tumor as fibrous micelles. Once accumulated in the tumor, small positively-charged GD is released from the beaded nanofibrils in response to MMP-2 overexpression in the stroma of pancreatic cancer, enabling permeation in the dense tumor matrix and cellular internalization, which makes up for the shortcomings of fibrous micelles. Furthermore, the remaining fibrous PPF surround the tumor tightly to impede the efflux of drugs, leading to improved retention. GD@PPF is biocompatible and exhibits excellent antitumor effect in Pan 02 subcutaneous tumor models. Therefore, the MMP-2 responsive transformable beaded nanofibril, which enhances the delivery efficiency in multiple stage of the delivery cascade, presents a promising strategy for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Qinglin Sheng
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Advances in the synthesis and application of self-assembling biomaterials. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:46-62. [PMID: 34329646 DOI: 10.1016/j.pbiomolbio.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023]
Abstract
The present study scrutinized some of the crucial advancements in the synthesis and functionalisation of self-assembling biomaterials for application in biomedicine. The basic concept of self-organization was discussed along with the mechanisms and methods involved in its implementation with biomaterials. Further, several recent applications of this technology in the biological and medical domain, and the avenues for future research and development were presented. This study brought to focus the vast potential of basic and applied research involved, especially in the context of hybrids and composites, as well as the difference in pace of new developments for different types of biomolecular materials. As nanobiotechnology matures, the tools and techniques available for developing and controlling self-assembled biomaterials as well as studying their interaction with biological tissue, will grow exponentially. Presently, self-assembly remains a potent tool for the synthesis of functional biomaterials.
Collapse
|
50
|
Liu N, Zhu L, Li Z, Liu W, Sun M, Zhou Z. In situ self-assembled peptide nanofibers for cancer theranostics. Biomater Sci 2021; 9:5427-5436. [PMID: 34319316 DOI: 10.1039/d1bm00782c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembled nanofibers hold tremendous promise for cancer theranostics owing to their in situ assembly, spatiotemporal responsiveness, and diverse bioactivity. Herein, this review summarizes the recent advances of self-assembled peptide nanofibers and their applications in biological systems, focusing on the dynamic process of capturing cancer cells from the outside-in. (1) In situ self-assembly in response to pathological or physiological changes. (2) Diverse functions at different locations of tumors, such as forming thrombus in tumor vasculature, constructing a barrier on the cancer cell membrane, and disrupting the cancer organelles. Of note, with the assembly/aggregation induced residence (AIR) effect, the nanofibers could form a drug depot in situ for sustained release of chemotherapeutic drugs to increase their local concentration and prolong the residence time. Finally, perspectives toward future directions and challenges are presented to further understand and expand this exciting field.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Lianghan Zhu
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Zhaoting Li
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Wenlong Liu
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Minjie Sun
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Zhanwei Zhou
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|