1
|
Nguyen N, Hoang TM, Huang TY, Nguyen LDH, Chang HH, Chang Y, Thi Nguyen MT, Lin KJ, Chen CC, Sung HW. Macrophage-hitchhiked, effervescence-induced nanoemulsions for enhanced oral chemotherapy and immunotherapy: Impact on absorption route. Biomaterials 2025; 316:123019. [PMID: 39700534 DOI: 10.1016/j.biomaterials.2024.123019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/08/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer. Paclitaxel (PTX), typically administered intravenously (IV) as chemotherapy, shows promise for triggering immunogenic cell death (ICD) and may serve as a potential immunotherapy. This study introduces an oral PTX delivery method using an enteric-coated gelatin capsule containing capric acid oil and an effervescent agent, optionally with decylamine-conjugated β-glucans (DA-βGlus). Upon dissolving in the small intestine, the capsule undergoes an effervescence reaction that produces emulsified oil droplets (ODs) by bile salts, forming either Bared/ODs/PTX or DA-βGlus/ODs/PTX, with the latter featuring surface-attached DA-βGlus. The study evaluates the oral absorption, pharmacokinetics, and therapeutic efficacy of these formulations, comparing them to IV administration. IV PTX causes rapid spikes in plasma concentration, quick metabolism, and elimination, which can be unsafe. In contrast, the oral delivery system maintains consistent drug levels in the bloodstream for longer periods, improving overall effectiveness. Bared/ODs/PTX follows conventional fat absorption pathways, limiting tumor targeting. On the other hand, DA-βGlus/ODs/PTX uses DA-βGlus to enhance specificity for tumors through endogenous macrophage-mediated transport, effectively acting as "cellular tumor-seeking vehicles". This method reduces tumor stroma fibrosis, delivers PTX precisely, induces apoptosis, triggers PTX-induced ICD, and enhances cytotoxic T cell responses, augmenting targeted anti-PDAC strategies.
Collapse
Affiliation(s)
- Nhien Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Tuyet-Mai Hoang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Tun-Yu Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Lam-Duc-Huy Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiao-Huan Chang
- Department of Surgery, School of Medicine, Taipei Medical University, and Division of Cardiovascular Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen Chang
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mai Thanh Thi Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh, Viet Nam
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Chieh Chen
- Department of Orthopedic Surgery, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei, Taiwan.
| | - Hsing-Wen Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Zhang J, Wei Q, Piao Y, Shao S, Zhou Z, Tang J, Xiang J, Shen Y. Synergistic Combination of Oral Transcytotic Nanomedicine and Histone Demethylase Inhibitor for Enhanced Cancer Chemoimmunotherapy. ACS NANO 2024; 18:33729-33742. [PMID: 39612220 DOI: 10.1021/acsnano.4c14816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Oral nanomedicines present a preferable avenue for cancer immunotherapy, but their efficacy is limited by gastrointestinal absorption challenges, tumor physiopathologic barriers, and immune evasion mechanisms. Here, we present an approach that combines an oral transcytotic doxorubicin (DOX) nanomedicine with the histone demethylase inhibitor 5-carboxy-8-hydroxyquinoline (IOX1), thereby enabling synergistic chemoimmunotherapy. We demonstrate that IOX1 significantly augments the transcytosis capabilities of DOX-loaded poly(2-(N-oxide-N,N-diethylamino)ethylmethacrylate)-poly(ε-caprolactone) micelles (OPDOX), promoting their transcellular transport across various cellular barriers (villus, endothelial, and tumor cells), thus improving oral adsorption, vascular extravasation, and tumor penetration. Furthermore, IOX1 sensitizes chemotherapy to potentiate DOX-induced immunogenic cell death and downregulates programmed cell death-ligand 1 to disrupt the immune checkpoint mechanism, synergistically boosting robust antitumor immune responses. Consequently, orally administered OPDOX in combination with IOX1 efficiently inhibits CT26 tumor growth, highlighting the significant potential for enhancing the efficacy of oral nanomedicines in cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qiuyu Wei
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Shi R, Zhan A, Li X, Kong B, Liang G. Biomimetic extracellular vesicles for the tumor targeted treatment. ENGINEERED REGENERATION 2023; 4:427-437. [DOI: 10.1016/j.engreg.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
4
|
Wang Y, Zhao L, Dai Y, Xu M, Zhou R, Zhou B, Gou K, Zeng R, Xu L, Li H. Enantioselective Oral Absorption of Molecular Chiral Mesoporous Silica Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307900. [PMID: 37839052 DOI: 10.1002/adma.202307900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Inspired by the unique pharmacological effects of chiral drugs in the asymmetrical body environments, it is assumed that the chirality of nanocarriers is also a key factor to determine their oral adsorption efficiency, apart from their size, shape, etc. Herein, l/d-tartaric acid modified mesoporous silica nanoparticles (l/d-CMSNs) are fabricated via a one-pot cocondensation method, and focused on whether the oral adsorption of nanocarriers will be benefited from their chirality. It is found that l-CMSN performed better in the sequential oral absorption processes, including mucus permeation, mucosa bio-adhesion, cellular uptake, intestinal transport and gastrointestinal tract (GIT) retention, than those of the d-chiral (d-CMSN), racemic (dl-CMSN), and achiral (MSN) counterparts. The multiple chiral recognition mechanisms are experimentally and theoretically demonstrated following simple differential adsorption on biointerfaces, wherein electrostatic interaction is the dominant energy. During the oral delivery task, l-CMSN, which is proven to be stable, nonirritative, biocompatible, and biodegradable, is efficiently absorbed into the blood (1.72-2.05-fold higher than other nanocarriers), and helps the loaded doxorubicin (DOX) to achieve better intestinal transport (2.32-27.03-times higher than other samples), satisfactory bioavailability (449.73%) and stronger antitumor effect (up to 95.43%). These findings validated the dominant role of chirality in determining the biological fate of nanocarriers.
Collapse
Affiliation(s)
- Yuxin Wang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lin Zhao
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yibo Dai
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Miao Xu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ruilin Zhou
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Bingxin Zhou
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Kaijun Gou
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Rui Zeng
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| |
Collapse
|
5
|
Chen KH, Nguyen N, Huang TY, Lin YJ, Yu YT, Song HL, Wang JT, Nguyen VK, Chen HL, Chu LA, Chiang HHK, Sung HW. Macrophage-Hitchhiked Orally Administered β-Glucans-Functionalized Nanoparticles as "Precision-Guided Stealth Missiles" for Targeted Pancreatic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304735. [PMID: 37363886 DOI: 10.1002/adma.202304735] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The prognosis in cases of pancreatic ductal adenocarcinoma (PDAC) with current treatment modalities is poor owing to the highly desmoplastic tumor microenvironment (TME). Herein, a β-glucans-functionalized zinc-doxorubicin nanoparticle system (βGlus-ZnD NPs) that can be orally administered, is developed for targeted PDAC therapy. Following oral administration in PDAC-bearing mice, βGlus-ZnD NPs actively target/transpass microfold cells, overcome the intestinal epithelial barrier, and then undergo subsequent phagocytosis by endogenous macrophages (βGlus-ZnD@Mϕ). As hitchhiking cellular vehicles, βGlus-ZnD@Mϕ transits through the intestinal lymphatic system and enters systemic circulation, ultimately accumulating in the tumor tissue as a result of the tumor-homing and "stealth" properties that are conferred by endogenous Mϕ. Meanwhile, the Mϕ that hitchhikes βGlus-ZnD NPs is activated to produce matrix metalloproteinases, destroying the desmoplastic stromal barrier, and differentiates toward the M1 -like phenotype, modulating the TME and recruiting effector T cells, ultimately inducing apoptosis of the tumor cells. The combination of βGlus-ZnD@Mϕ and immune checkpoint blockade effectively inhibits the growth of the primary tumor and suppresses the development of metastasis. It thus represents an appealing approach to targeted PDAC therapy.
Collapse
Affiliation(s)
- Kuan-Hung Chen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Nhien Nguyen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Tun-Yu Huang
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Yu-Jung Lin
- Research Center for Applied Sciences, 11529, Academia Sinica, Taipei, Taiwan
| | - Yu-Tzu Yu
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Hsiang-Lin Song
- Department of Pathology, National Taiwan University Hospital, 300, Hsinchu Branch, Hsinchu, Taiwan
| | - Jui-To Wang
- Neurological Institute, Department of Neurosurgery, Taipei Veterans General Hospital, 11217, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming Chiao Tung University, 11221, Taipei, Taiwan
| | - Van Khanh Nguyen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Hui-Hua Kenny Chiang
- Institute of Biomedical Engineering, National Yang-Ming Chiao Tung University, 11221, Taipei, Taiwan
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 30013, Hsinchu, Taiwan
| |
Collapse
|
6
|
Yin J, Zhang Y, Qi X, Tian L, Gong D, Ma M. Numerical investigation of the cavitation bubble near the solid wall with a gas-entrapping hole based on a fully compressible three-phase model. ULTRASONICS SONOCHEMISTRY 2023; 98:106531. [PMID: 37499409 PMCID: PMC10413280 DOI: 10.1016/j.ultsonch.2023.106531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
The solid surface with several cavities containing gas strongly influences the bubble's dynamical behaviors. To reveal the underlying physical mechanism of the cavitation bubble near a rigid boundary with a gas-entrapping hole, a fully compressible three-phase model, accounting for the three-phase volume transport equation, was implemented in OpenFOAM. The predicted bubble shape was validated with the corresponding experimental photos, and good agreement was achieved. The bubble's primary physical features (e.g., the expanding shock wave, upward and downward liquid jet, and high-pressure region) are well reproduced, which helps understand the underlying mechanisms. The numerical results show that the solid wall with a gas-entrapping hole could affect the morphology of both the bubble and liquid jet, as well as shortens the bubble's first oscillation period in comparison to an intact rigid wall. The relationship among the prolongation factor, the standoff distance, and the relative size ratio is analyzed. It is found the prolongation factor increases as the relative size ratio decrease. As the standoff distance decreases, the gas entrapping hole plays a significant role in the oscillation period of the bubble. The current model can be further extended to reveal the microscopic mechanism of aeration avoiding cavitation damage and investigate the interaction between air bubbles and cavitation bubbles, which is of great interest to practical applications.
Collapse
Affiliation(s)
- Jianyong Yin
- Electrical Engineering College, Guizhou University, Guiyang 550025, China
| | - Yongxue Zhang
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China; Beijing Key Laboratory of Process Fluid Filtration and Separation, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Xueyu Qi
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
| | - Lei Tian
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China; Beijing Key Laboratory of Process Fluid Filtration and Separation, China University of Petroleum-Beijing, Beijing 102249, China
| | - Dehong Gong
- Electrical Engineering College, Guizhou University, Guiyang 550025, China
| | - Mingkai Ma
- Electrical Engineering College, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Han ZY, Chen QW, Fu ZJ, Cheng SX, Zhang XZ. Probiotic Spore-Based Oral Drug Delivery System for Enhancing Pancreatic Cancer Chemotherapy by Gut-Pancreas-Axis-Guided Delivery. NANO LETTERS 2022; 22:8608-8617. [PMID: 36259687 DOI: 10.1021/acs.nanolett.2c03131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The chemotherapeutic effectiveness of pancreatic ductal adenocarcinoma (PDAC) is severely hampered by insufficient intratumoral delivery of antitumor drugs. Here, we demonstrate that enhanced pancreatic cancer chemotherapy can be achieved by probiotic spore-based oral drug delivery system via gut-pancreas axis translocation. Clostridium butyricum spores resistant to harsh external stress are extracted as drug carriers, which are further covalently conjugated with gemcitabine-loaded mesoporous silicon nanoparticles (MGEM). The spore-based oral drug delivery system (SPORE-MGEM) migrates upstream into pancreatic tumors from the gut, which increases intratumoral drug accumulation by ∼3-fold compared with MGEM. In two orthotopic PDAC mice models, tumor growth is markedly suppressed by SPORE-MGEM without obvious side effects. Leveraging the biological contact of the gut-pancreas axis, this probiotic spore-based oral drug delivery system reveals a new avenue for enhancing PDAC chemotherapy.
Collapse
Affiliation(s)
- Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhuang-Jiong Fu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, People's Republic of China
| |
Collapse
|
8
|
Wang CY, Sun M, Fan Z, Du JZ. Intestine Enzyme-responsive Polysaccharide-based Hydrogel to Open Epithelial Tight Junctions for Oral Delivery of Imatinib against Colon Cancer. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Tan B, Qi Z, Yang G, Zhong H. Poly (Thioether-Polyesters) Micelles Encapsulation Induces ROS-Triggered Targeted Release of Tangeretin. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221080335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tangeretin (Tan) possesses great anti-oxidation and anti-inflammation bioactivities; however, it is accompanied by poor water solubility, which leads to inefficient cellular internalization. To address this issue, a reactive oxygen species (ROS)-triggered poly (thioether-polyesters) micelle (PDHP, PEG-DTT) was designed and prepared via self-assembly, which consisted of poly (thioether-polyesters) as the hydrophilic shell, and the drug Tan as the hydrophobic inner core. The micelles (Tan@ PDHP), with a 63.15% loading efficiency of Tan, showed negligible cytotoxicity, high stability in phosphate-buffered saline buffer (pH = 7.4), and continuous release of Tan with the stimulation of H2O2. In addition, this Tan loading micelle was more efficient in responding to the formation of ROS in the lipopolysaccharide-stimulated RAW264.7 cells compared to that of the free Tan. In short, the strategy of encapsulating the low solubility Tan in ROS-triggered poly (thioether-polyesters) micelles provides an effective assay of enhancing Tan's antioxidative activity.
Collapse
Affiliation(s)
- Bozhan Tan
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Changkang Industrial Co., LTD., Yueyang, Hunan, China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, China
| | - Guliang Yang
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Haiyan Zhong
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
10
|
Surov A, Pech M, Gessner D, Mikusko M, Fischer T, Alter M, Wienke A. Low skeletal muscle mass is a predictor of treatment related toxicity in oncologic patients. A meta-analysis. Clin Nutr 2021; 40:5298-5310. [PMID: 34536638 DOI: 10.1016/j.clnu.2021.08.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS The purpose of this meta-analysis was to summarize the published data regarding associations between occurrence of severe treatment related toxicity and low skeletal muscle mass (LSMM) in oncologic patients and to perform a meta-analysis based on a large sample. METHODS MEDLINE, Cochrane, and SCOPUS databases were screened for associations between LSMM and treatment related toxicity in oncologic patients up to June 2021. Overall, 48 studies met the inclusion criteria. The following data were extracted: authors, year of publication, study design, number of patients, influence of LSMM on treatment toxicity (odds ratios and confidence intervals). The methodological quality of the involved studies was checked according to the QUADAS instrument. The meta-analysis was undertaken by using RevMan 5.4 software. DerSimonian and Laird random-effects models with inverse-variance weights were used to account for the heterogeneity between the studies. RESULTS The included 48 studies comprised 4803 patients with different malignant diseases. LSMM occurred in 1966 patients (40.9%). LSMM was associated with therapy toxicity (simple logistic regression) with an odds ratio OR = 2.19, CI95%= (1.78-2.68). LSMM was associated with DLT in patients underwent curative treatment (16 studies, 2381 patients) with OR = 2.48, CI95%= (1.77-3.48). LSMM predicted DLT in patients underwent palliative chemotherapy (30 studies, 2337 patients)with OR = 2.06, CI95%= (1.56-2.74). In the subgroups received different palliative therapies, relationships between LSMM and DLT were as follows: conventional chemotherapies (7 studies, 600 patients) OR = 2.14, CI95%= (1.38-3.31); different kinases inhibitors (13 studies, 906 patients) OR = 3.08, CI95%= (1.87-5.09); checkpoint inhibitors (7 studies, 557 patients) OR = 1.30, CI95%= (0.79-2.11). CONCLUSIONS LSMM is an essential factor of treatment toxicity in oncologic patients. Association between LSMM and DLT is strongest in patients received therapy with kinases inhibitors. The influence of LSMM on DLT is lowest in patients underwent treatment with checkpoint inhibitors. The presence of LSMM should be included into radiological reports and provided to oncologists to optimize chemotherapy. LSMM should be included into dose calculation for chemotherapy.
Collapse
Affiliation(s)
- Alexey Surov
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, Germany.
| | - Maciej Pech
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, Germany
| | - Daniel Gessner
- Department of Haematology and Oncology, Otto-von-Guericke University Magdeburg, Germany
| | - Martin Mikusko
- Department of Haematology and Oncology, Otto-von-Guericke University Magdeburg, Germany
| | - Thomas Fischer
- Department of Haematology and Oncology, Otto-von-Guericke University Magdeburg, Germany
| | - Mareike Alter
- Department of Dermatology, University Medical Center, Otto-von-Guericke University Magdeburg, Germany
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
11
|
Miao YB, Chen KH, Chen CT, Mi FL, Lin YJ, Chang Y, Chiang CS, Wang JT, Lin KJ, Sung HW. A Noninvasive Gut-to-Brain Oral Drug Delivery System for Treating Brain Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100701. [PMID: 34270814 DOI: 10.1002/adma.202100701] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Most orally administered drugs fail to reach the intracerebral regions because of the intestinal epithelial barrier (IEB) and the blood-brain barrier (BBB), which are located between the gut and the brain. Herein, an oral prodrug delivery system that can overcome both the IEB and the BBB noninvasively is developed for treating gliomas. The prodrug is prepared by conjugating an anticancer drug on β-glucans using a disulfide-containing linker. Following oral administration in glioma-bearing mice, the as-prepared prodrug can specifically target intestinal M cells, transpass the IEB, and be phagocytosed/hitchhiked by local macrophages (Mϕ). The Mϕ-hitchhiked prodrug is transported to the circulatory system via the lymphatic system, crossing the BBB. The tumor-overexpressed glutathione then cleaves the disulfide bond within the prodrug, releasing the active drug, improving its therapeutic efficacy. These findings reveal that the developed prodrug may serve as a gut-to-brain oral drug delivery platform for the well-targeted treatment of gliomas.
Collapse
Affiliation(s)
- Yang-Bao Miao
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuan-Hung Chen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Fwu-Long Mi
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 23142, Taiwan
| | - Yu-Jung Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yen Chang
- Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jui-To Wang
- Neurological Institute, Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, and Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
12
|
Huang D, Zhang X, Zhao C, Fu X, Zhang W, Kong W, Zhang B, Zhao Y. Ultrasound‐Responsive Microfluidic Microbubbles for Combination Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Danqing Huang
- Department of Ultrasound, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
| | - Xiaoxuan Zhang
- Department of Ultrasound, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Cheng Zhao
- Department of Ultrasound, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Xiao Fu
- Department of Ultrasound, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
| | - Weijing Zhang
- Department of Ultrasound, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
| | - Wentao Kong
- Department of Ultrasound, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
| | - Bing Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
- Institute of Brain Science Nanjing University Nanjing 210002 China
| | - Yuanjin Zhao
- Department of Ultrasound, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| |
Collapse
|
13
|
Hsieh MH, Wei HJ, Chen KH, Wang HC, Yu CH, Lu TH, Chang Y, Sung HW. A fast and facile platform for fabricating phase-change materials-based drug carriers powered by chemical Marangoni effect. Biomaterials 2021; 271:120748. [PMID: 33711566 DOI: 10.1016/j.biomaterials.2021.120748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/27/2021] [Indexed: 12/27/2022]
Abstract
Emulsions of oil droplets as drug carriers are typically formulated by emulsification, which is complex and time-consuming and requires high energy input. To address these concerns, a fast and facile method for fabricating lipid-based oil droplets, using propulsive forces that arise from the chemical Marangoni effect, is developed for the oral delivery of lipophilic drugs, such as vitamin D. The oil droplets are prepared by solubilizing vitamin D in a phase-changeable fatty acid with the addition of ethanol as an oil phase, which is then deposited on a water bath. As a result of the differing surface tensions of water and ethanol (chemical energy), propulsive Marangoni forces are generated (kinetic energy), rapidly spreading the oil phase into many tiny oil droplets. To prevent their coalescence, the generated oil droplets are solidified by reducing their environmental temperature. Following oral administration, the fluidity of the solidified droplets increases at body temperature; they can be further emulsified into the vitamin D-containing micelles by intestinal bile salts. The micelles are then taken up by the intestinal epithelial cells, enabling their contained vitamin D to be absorbed into systemic circulation, improving its oral bioavailability.
Collapse
Affiliation(s)
- Meng-Hsuan Hsieh
- Department of Chemical Engineering, Institute of Biomedical Engineering, And Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Hao-Ji Wei
- Division of Cardiovascular Surgery, Taichung Veterans General Hospital, And College of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Kuan-Hung Chen
- Department of Chemical Engineering, Institute of Biomedical Engineering, And Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Hung-Chen Wang
- Department of Chemical Engineering, Institute of Biomedical Engineering, And Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chia-Hsiang Yu
- Department of Chemical Engineering, Institute of Biomedical Engineering, And Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ting-Hsuan Lu
- Department of Chemical Engineering, Institute of Biomedical Engineering, And Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yen Chang
- Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC.
| | - Hsing-Wen Sung
- Department of Chemical Engineering, Institute of Biomedical Engineering, And Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC.
| |
Collapse
|
14
|
Liang X, Liu S, Wang X, Xia D, Li Q. Alteration of nanomechanical properties of pancreatic cancer cells through anticancer drug treatment revealed by atomic force microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1372-1379. [PMID: 34987950 PMCID: PMC8685561 DOI: 10.3762/bjnano.12.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/26/2021] [Indexed: 05/09/2023]
Abstract
The mechanical properties of cells are key to the regulation of cell activity, and hence to the health level of organisms. Here, the morphology and mechanical properties of normal pancreatic cells (HDPE6-C7) and pancreatic cancer cells (AsPC-1, MIA PaCa-2, BxPC-3) were studied by atomic force microscopy. In addition, the mechanical properties of MIA PaCa-2 after treatment with different concentrations of doxorubicin hydrochloride (DOX) were also investigated. The results show the Young's modulus of normal cells is greater than that of three kinds of cancer cells. The Young's modulus of more aggressive cancer cell AsPC-1 is smaller than that of less aggressive cancer cell BxPC-3. In addition, the Young's modulus of MIA PaCa-2 rises with the increasing of DOX concentration. This study may provide a new strategy of detecting cancer, and evaluate the possible interaction of drugs on cells.
Collapse
Affiliation(s)
- Xiaoteng Liang
- School of Materials Science and Engineering, Hebei University of Technology and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Tianjin, 300130, China
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, And School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| | - Shuai Liu
- School of Materials Science and Engineering, Hebei University of Technology and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Tianjin, 300130, China
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, And School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| | - Xiuchao Wang
- Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
| | - Dan Xia
- School of Materials Science and Engineering, Hebei University of Technology and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Tianjin, 300130, China
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, And School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| |
Collapse
|
15
|
Yu Z, Sun Y, Sun T, Wang T. Combined Application of Nanotechnology and Multiple Therapies with Tumor Immune Checkpoints. ChemistrySelect 2020. [DOI: 10.1002/slct.202004070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhenghao Yu
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University Harbin 150040 P. R. China
| | - Yuan Sun
- Research Center of Pharmaceutical Engineering and Technology Harbin University of Commerce Harbin 150076 China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University Harbin 150040 P. R. China
| | - Ting Wang
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University Harbin 150040 P. R. China
| |
Collapse
|
16
|
Redox responsive paclitaxel dimer for programmed drug release and selectively killing cancer cells. J Colloid Interface Sci 2020; 580:785-793. [DOI: 10.1016/j.jcis.2020.07.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022]
|
17
|
Airan R. Bursting bubbles for better bioavailability. Sci Transl Med 2020. [DOI: 10.1126/scitranslmed.abc8945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
An effervescent formulation increases the oral bioavailability of hard-to-solubilize hydrophobic and hydrophilic chemotherapeutics.
Collapse
Affiliation(s)
- Raag Airan
- Departments of Radiology and (by courtesy) Materials Science & Engineering and Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|