1
|
Zheng M, Song W, Huang P, Huang Y, Lin H, Zhang M, He H, Wu J. Drug conjugates crosslinked bioresponsive hydrogel for combination therapy of diabetic wound. J Control Release 2024; 376:701-716. [PMID: 39447843 DOI: 10.1016/j.jconrel.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Basic fibroblast growth factor (bFGF) has proved to be effective for wound healing, yet its effectiveness is extremely retarded in diabetic wounds due to the severe oxidative stress in wound beds. To solve this issue, herein a novel combination therapy of bFGF and N-acetylcysteine (NAC, antioxidant) was devised for improved diabetic wound repair. To avoid rapid loss of both drugs in the wound beds, a bioresponsive hydrogel (bFGF-HSPP-NAC) was engineered by incorporating bFGF and NAC into polymer-drug conjugates (HSPP) via thiol-disulfide exchange reactions. In response to oxidative stress (e.g., reactive oxygen species), the disulfide bonds (SS) within the hydrogel are broken into thiol groups (-S-H), thereby promoting hydrogel degradation and enabling controlled drug release. Initially, NAC is released to scavenge free radicals and ameliorate oxidative damage. Subsequently, bFGF is released to expedite tissue regeneration. This combinatorial strategy is tailored to the specific characteristics of the wound microenvironment at various stages of diabetic wound healing, thereby achieving therapeutic efficacy. The results indicate that the bFGF-HSPP-NAC hydrogel markedly enhances re-epithelialization, collagen deposition, hair follicle regeneration, and neovascularization. In conclusion, the bioresponsive bFGF-HSPP-NAC hydrogel demonstrates significant potential for application in combinatorial therapeutic approaches for diabetic wound healing.
Collapse
Affiliation(s)
- Manhui Zheng
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China
| | - Wenxiang Song
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Peipei Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Yueping Huang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Hanxuan Lin
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Miao Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Huacheng He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China; College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China.
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China.
| |
Collapse
|
2
|
Quizon MJ, Deppen JN, Barber GF, Kalelkar PP, Coronel MM, Levit RD, García AJ. VEGF-delivering PEG hydrogels promote vascularization in the porcine subcutaneous space. J Biomed Mater Res A 2024; 112:866-880. [PMID: 38189109 PMCID: PMC10984793 DOI: 10.1002/jbm.a.37666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
For cell therapies, the subcutaneous space is an attractive transplant site due to its large surface area and accessibility for implantation, monitoring, biopsy, and retrieval. However, its poor vascularization has catalyzed research to induce blood vessel formation within the site to enhance cell revascularization and survival. Most studies focus on the subcutaneous space of rodents, which does not recapitulate important anatomical features and vascularization responses of humans. Herein, we evaluate biomaterial-driven vascularization in the porcine subcutaneous space. Additionally, we report the first use of cost-effective fluorescent microspheres to quantify perfusion in the porcine subcutaneous space. We investigate the vascularization-inducing efficacy of vascular endothelial growth factor (VEGF)-delivering synthetic hydrogels based on 4-arm poly(ethylene) glycol macromers with terminal maleimides (PEG-4MAL). We compare three groups: a non-degradable hydrogel with a VEGF-releasing PEG-4MAL gel coating (Core+VEGF gel); an uncoated, non-degradable hydrogel (Core-only); and naïve tissue. After 2 weeks, Core+VEGF gel has significantly higher tissue perfusion, blood vessel area, blood vessel density, and number of vessels compared to both Core-only and naïve tissue. Furthermore, healthy vital signs during surgery and post-procedure metrics demonstrate the safety of hydrogel delivery. We demonstrate that VEGF-delivering synthetic hydrogels induce robust vascularization and perfusion in the porcine subcutaneous space.
Collapse
Affiliation(s)
- Michelle J. Quizon
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Juline N. Deppen
- Division of Cardiology, Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322, USA
| | - Graham F. Barber
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Pranav P. Kalelkar
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - María M. Coronel
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Rebecca D. Levit
- Division of Cardiology, Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322, USA
| | - Andrés J. García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Qi B, Ding Y, Zhang Y, Kou L, Zhao YZ, Yao Q. Biomaterial-assisted strategies to improve islet graft revascularization and transplant outcomes. Biomater Sci 2024; 12:821-836. [PMID: 38168805 DOI: 10.1039/d3bm01295f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Islet transplantation holds significant promise as a curative approach for type 1 diabetes (T1D). However, the transition of islet transplantation from the experimental phase to widespread clinical implementation has not occurred yet. One major hurdle in this field is the challenge of insufficient vascularization and subsequent early loss of transplanted islets, especially in non-intraportal transplantation sites. The establishment of a fully functional vascular system following transplantation is crucial for the survival and secretion function of islet grafts. This vascular network not only ensures the delivery of oxygen and nutrients, but also plays a critical role in insulin release and the timely removal of metabolic waste from the grafts. This review summarizes recent advances in effective strategies to improve graft revascularization and enhance islet survival. These advancements include the local release and regulation of angiogenic factors (e.g., vascular endothelial growth factor, VEGF), co-transplantation of vascular fragments, and pre-vascularization of the graft site. These innovative approaches pave the way for the development of effective islet transplantation therapies for individuals with T1D.
Collapse
Affiliation(s)
- Boyang Qi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yang Ding
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
4
|
Kinney SM, Ortaleza K, Won SY, Licht BJM, Sefton MV. Immunomodulation by subcutaneously injected methacrylic acid-based hydrogels and tolerogenic dendritic cells in a mouse model of autoimmune diabetes. Biomaterials 2023; 301:122265. [PMID: 37586232 DOI: 10.1016/j.biomaterials.2023.122265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023]
Abstract
Type 1 diabetes is an autoimmune disease associated with the destruction of insulin-producing β cells. Immunotherapies are being developed to mitigate autoimmune diabetes. One promising option is the delivery of tolerogenic dendritic cells (DCs) primed with specific β-cell-associated autoantigens. These DCs can combat autoreactive cells and promote expansion of β-cell-specific regulatory immune cells, including Tregs. Tolerogenic DCs are typically injected systemically (or near target lymph nodes) in suspension, precluding control over the microenvironment surrounding tolerogenic DC interactions with the host. In this study we show that degradable, synthetic methacrylic acid (MAA)-based hydrogels are an inherently immunomodulating delivery vehicle that enhances tolerogenic DC therapy in the context of autoimmune diabetes. MAA hydrogels were found to affect the local recruitment and activation state of macrophages, DCs, T cells and other cells. Delivering tolerogenic DCs in the MAA hydrogel improved the local host response (e.g., fewer cytotoxic T cells) and enhanced peripheral Treg expansion. Non obese diabetic (NOD) mice treated with tolerogenic DCs subcutaneously injected in MAA hydrogels showed a delay in onset of autoimmune diabetes compared to control vehicles. Our findings further demonstrate the usefulness of MAA-based hydrogels as platforms for regenerative medicine in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Sean M Kinney
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Krystal Ortaleza
- Institute of Biomedical Engineering, University of Toronto, Canada
| | - So-Yoon Won
- Institute of Biomedical Engineering, University of Toronto, Canada
| | | | - Michael V Sefton
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
5
|
Parkhideh S, Calderon GA, Janson KD, Mukherjee S, Mai AK, Doerfert MD, Yao Z, Sazer DW, Veiseh O. Perfusable cell-laden matrices to guide patterning of vascularization in vivo. Biomater Sci 2023; 11:461-471. [PMID: 36477015 DOI: 10.1039/d2bm01200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The survival and function of transplanted tissue engineered constructs and organs require a functional vascular network. In the body, blood vessels are organized into distinct patterns that enable optimal nutrient delivery and oxygen exchange. Mimicking these same patterns in engineered tissue matrices is a critical challenge for cell and tissue transplantation. Here, we leverage bioprinting to assemble endothelial cells in to organized networks of large (>100 μm) diameter blood vessel grafts to enable spatial control of vessel formation in vivo. Acellular PEG/GelMA matrices with perfusable channels were bioprinted and laminar flow was confirmed within patterned channels, beneficial for channel endothelialization and consistent wall shear stress for endothelial maturation. Next, human umbilical vein endothelial cells (HUVECs) were seeded within the patterned channel and maintained under perfusion culture for multiple days, leading to cell-cell coordination within the construct in vitro. HUVEC and human mesenchymal stromal cells (hMSCs) were additionally added to bulk matrix to further stimulate anastomosis of our bioprinted vascular grafts in vivo. Among multiple candidate matrix designs, the greatest degree of biomaterial vascularization in vivo was seen within matrices fabricated with HUVECs and hMSCs encapsulated within the bulk matrix and HUVECs lining the walls of the patterned channels, dubbed design M-C_E. For this lead design, vasculature was detected within the endothelialized, perfusable matrix channels as early as two weeks and αSMA+ CD31+ vessels greater than 100 μm in diameter had formed by eight weeks, resulting in durable and mature vasculature. Notably, vascularization occurred within the endothelialized, bioprinted channels of the matrix, demonstrating the ability of bioprinted perfusable structures to guide vascularization patterns in vivo. The ability to influence vascular patterning in vivo can contribute to the future development of vascularized tissues and organs.
Collapse
Affiliation(s)
- Siavash Parkhideh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Gisele A Calderon
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Kevin D Janson
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - A Kristen Mai
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | | | - Zhuoran Yao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Daniel W Sazer
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Chen CL, Wei SY, Chen WL, Hsu TL, Chen YC. Reconstructing vascular networks promotes the repair of skeletal muscle following volumetric muscle loss by pre-vascularized tissue constructs. J Tissue Eng 2023; 14:20417314231201231. [PMID: 37744322 PMCID: PMC10517612 DOI: 10.1177/20417314231201231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Current treatment for complex and large-scale volumetric muscle loss (VML) injuries remains a limited success and have substantial disadvantages, due to the irreversible loss of muscle mass, slow muscle regeneration, and rapid formation of non-functional fibrosis scars. These VML injuries are accompanied by denervation and the destruction of native vasculature which increases difficulties in the functional restoration of muscle. Here, reconstruction of the vascular network at the injury site was offered as a possible solution for improving the repair of muscle defects through the timely supply of nutrients and oxygen to surrounding cells. A hydrogel-based tissue construct containing various densities of the vascular network was successfully created in the subcutaneous space of mice by manipulating hydrogel properties, and then implanted into the VML injury site. One month after implantation, the mouse treated with the highly vascularized tissue had extensive muscle repair at the injury site and only spent a shorter time completing the inclined plane tests. These findings suggest that the reconstruction of the functional vascular network at the VML injury site accelerated muscle fiber repair through a timely supply of sufficient blood and avoided invasion by host fibroblasts.
Collapse
Affiliation(s)
- Chih-Long Chen
- Department of Dentistry, Shin Kong Wu Ho-Su Memorial Hospital, Taipei
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei
| | - Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu
| | - Wei-Lin Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu
| | - Ting-Lun Hsu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu
| |
Collapse
|
7
|
Wang Y, Liu W, Zhang J, Shan Q. Synthesis of Novel Ionic Porous Organic Polymers and Its Application in Hydroxyl Condensation Reaction. Catal Letters 2022. [DOI: 10.1007/s10562-022-04110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Methacrylic Acid-Based Regenerative Biomaterials: Explorations into the MAAgic. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Bamane PB, Jagtap RN. Development of the hydrophilic additive by suspension copolymerisation of methacrylic acid with isodecyl methacrylate for easy-to-clean coatings. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04193-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Kuppan P, Kelly S, Seeberger K, Castro C, Rosko M, Pepper AR, Korbutt GS. Bioabsorption of Subcutaneous Nanofibrous Scaffolds Influences the Engraftment and Function of Neonatal Porcine Islets. Polymers (Basel) 2022; 14:polym14061120. [PMID: 35335450 PMCID: PMC8954444 DOI: 10.3390/polym14061120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The subcutaneous space is currently being pursued as an alternative transplant site for ß-cell replacement therapies due to its retrievability, minimally invasive procedure and potential for graft imaging. However, implantation of ß-cells into an unmodified subcutaneous niche fails to reverse diabetes due to a lack of adequate blood supply. Herein, poly (ε-caprolactone) (PCL) and poly (lactic-co-glycolic acid) (PLGA) polymers were used to make scaffolds and were functionalized with peptides (RGD (Arginine-glycine-aspartate), VEGF (Vascular endothelial growth factor), laminin) or gelatin to augment engraftment. PCL, PCL + RGD + VEGF (PCL + R + V), PCL + RGD + Laminin (PCL + R + L), PLGA and PLGA + Gelatin (PLGA + G) scaffolds were implanted into the subcutaneous space of immunodeficient Rag mice. After four weeks, neonatal porcine islets (NPIs) were transplanted within the lumen of the scaffolds or under the kidney capsule (KC). Graft function was evaluated by blood glucose, serum porcine insulin, glucose tolerance tests, graft cellular insulin content and histologically. PLGA and PLGA + G scaffold recipients achieved significantly superior euglycemia rates (86% and 100%, respectively) compared to PCL scaffold recipients (0% euglycemic) (* p < 0.05, ** p < 0.01, respectively). PLGA scaffolds exhibited superior glucose tolerance (* p < 0.05) and serum porcine insulin secretion (* p < 0.05) compared to PCL scaffolds. Functionalized PLGA + G scaffold recipients exhibited higher total cellular insulin contents compared to PLGA-only recipients (* p < 0.05). This study demonstrates that the bioabsorption of PLGA-based fibrous scaffolds is a key factor that facilitates the function of NPIs transplanted subcutaneously in diabetic mice.
Collapse
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Karen Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Chelsea Castro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Mandy Rosko
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (A.R.P.); (G.S.K.)
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (A.R.P.); (G.S.K.)
| |
Collapse
|
11
|
Hsu YJ, Wei SY, Lin TY, Fang L, Hsieh YT, Chen YC. A strategy to engineer vascularized tissue constructs by optimizing and maintaining the geometry. Acta Biomater 2022; 138:254-272. [PMID: 34774782 DOI: 10.1016/j.actbio.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/01/2022]
Abstract
The success of engineered tissues is limited by the need for rapid perfusion of a functional vascular network that can control tissue engraftment and promote survival after implantation. Diabetic conditions pose an additional challenge, because high glucose and lipid concentrations cause an aggressive oxidative environment that impairs vessel remodeling and stabilization and impedes integration of engineered constructs into surrounding tissues. Thus, to achieve rapid vasculogenesis, angiogenesis, and anastomosis, hydrogels incorporating cells in their structure have been developed to facilitate formation of functional vascular networks within implants. However, their transport diffusivity decreases with increasing thickness, preventing the formation of a thick vascularized tissue. To address this, we used diffusion-based computational simulations to optimize the geometry of hydrogel structures. The results show that the micro-patterned constructs improved diffusion, thus supporting cell viability, and spreading while retaining their mechanical properties. Thick cell-laden bulk, linear, or hexagonal infill patterned hydrogels were implanted; and structural stability due to skin mobility was improved by the protective spacer. Larger and thicker perfused vascular networks formed in the hexagonal structures (∼17 mm diameter, ∼1.5 mm thickness) in both normal and diabetic mice on day 3, and they became functional and uniformly distributed on day 7. Moreover, transplanted islets were rapidly integrated subcutaneously in this engineered functional vascular bed, which significantly enhanced islet viability and insulin secretion. In summary, we developed a promising strategy for generating large, thick vascularized tissue constructs, which may support transplanted islet cells. These constructs showed potential for engineering other vascularized tissues in regenerative therapy. STATEMENT OF SIGNIFICANCE: Diffusion-based computational simulations were used to optimize the geometry of hydrogel structures, i.e., hexagonal cell-laden hydrogels. To maintain the hydrogel's structural integrity, a spacer was designed and co-implanted subcutaneously to increase the permeability of explants. The spacer provides the structural integrity to improve the permeability of the implanted hydrogel. Otherwise, the implanted hydrogel may be easily squeezed and deformed by compression from the skin mobility of mice. Here, we successfully developed a cell-based strategy for rapidly generating large, functional vasculature (diameter ∼17 mm and thickness ∼1.5 mm) in both normal and diabetic mice and demonstrated its advantages over currently available methods in a clinically-relevant animal model. This concept could serve as a basis for engineering and repairing other tissues in animals.
Collapse
|
12
|
Degradable methacrylic acid-based synthetic hydrogel for subcutaneous islet transplantation. Biomaterials 2021; 281:121342. [PMID: 34995903 DOI: 10.1016/j.biomaterials.2021.121342] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022]
Abstract
Islet transplantation is a promising regenerative therapy that would reduce the dependence of type 1 diabetic patients on insulin injections. However, islet transplantation is not yet widely available, in part because there is no ideal transplant site. The subcutaneous space has been highlighted as a promising transplant site, but it does not have the vasculature required to support an islet graft. In this study we demonstrate that islets engraft in the subcutaneous space when injected in an inherently vascularizing, degradable methacrylic acid-polyethylene glycol (MAA-PEG) hydrogel; no vascularizing cells or growth factors were required. In streptozotocin-induced diabetic mice, injection of 600 rodent islet equivalents in MAA-PEG hydrogels was sufficient to reverse diabetes for 70 days; a PEG gel without MAA had no benefit. MAA-PEG hydrogel scaffolds degraded over the course of a week and were replaced by a host-derived, vascularized, innervated matrix that supported subcutaneous islets. The survival of islet grafts through the inflammatory events of subcutaneous transplantation, hydrogel degradation, and islet revascularization underscore the benefits of the MAA biomaterial. Our findings establish the MAA-PEG hydrogel as a platform for subcutaneous islet transplantation.
Collapse
|
13
|
Samojlik MM, Stabler CL. Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes. Acta Biomater 2021; 133:87-101. [PMID: 34102338 PMCID: PMC9148663 DOI: 10.1016/j.actbio.2021.05.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
The effective suppression of adaptive immune responses is essential for the success of allogeneic cell therapies. In islet transplantation for Type 1 Diabetes, pre-existing autoimmunity provides an additional hurdle, as memory autoimmune T cells mediate both an autoantigen-specific attack on the donor beta cells and an alloantigen-specific attack on the donor graft cells. Immunosuppressive agents used for islet transplantation are generally successful in suppressing alloimmune responses, but dramatically hinder the widespread adoption of this therapeutic approach and fail to control memory T cell populations, which leaves the graft vulnerable to destruction. In this review, we highlight the capacity of biomaterials to provide local and nuanced instruction to suppress or alter immune pathways activated in response to an allogeneic islet transplant. Biomaterial immunoisolation is a common approach employed to block direct antigen recognition and downstream cell-mediated graft destruction; however, immunoisolation alone still permits shed donor antigens to escape into the host environment, resulting in indirect antigen recognition, immune cell activation, and the creation of a toxic graft site. Designing materials to decrease antigen escape, improve cell viability, and increase material compatibility are all approaches that can decrease the local release of antigen and danger signals into the implant microenvironment. Implant materials can be further enhanced through the local delivery of anti-inflammatory, suppressive, chemotactic, and/or tolerogenic agents, which serve to control both the innate and adaptive immune responses to the implant with a benefit of reduced systemic effects. Lessons learned from understanding how to manipulate allogeneic and autogenic immune responses to pancreatic islets can also be applied to other cell therapies to improve their efficacy and duration. STATEMENT OF SIGNIFICANCE: This review explores key immunologic concepts and critical pathways mediating graft rejection in Type 1 Diabetes, which can instruct the future purposeful design of immunomodulatory biomaterials for cell therapy. A summary of immunological pathways initiated following cellular implantation, as well as current systemic immunomodulatory agents used, is provided. We then outline the potential of biomaterials to modulate these responses. The capacity of polymeric encapsulation to block some powerful rejection pathways is covered. We also highlight the role of cellular health and biocompatibility in mitigating immune responses. Finally, we review the use of bioactive materials to proactively modulate local immune responses, focusing on key concepts of anti-inflammatory, suppressive, and tolerogenic agents.
Collapse
Affiliation(s)
- Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Wang X, Brown NK, Wang B, Shariati K, Wang K, Fuchs S, Melero‐Martin JM, Ma M. Local Immunomodulatory Strategies to Prevent Allo-Rejection in Transplantation of Insulin-Producing Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003708. [PMID: 34258870 PMCID: PMC8425879 DOI: 10.1002/advs.202003708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/12/2021] [Indexed: 05/02/2023]
Abstract
Islet transplantation has shown promise as a curative therapy for type 1 diabetes (T1D). However, the side effects of systemic immunosuppression and limited long-term viability of engrafted islets, together with the scarcity of donor organs, highlight an urgent need for the development of new, improved, and safer cell-replacement strategies. Induction of local immunotolerance to prevent allo-rejection against islets and stem cell derived β cells has the potential to improve graft function and broaden the applicability of cellular therapy while minimizing adverse effects of systemic immunosuppression. In this mini review, recent developments in non-encapsulation, local immunomodulatory approaches for T1D cell replacement therapies, including islet/β cell modification, immunomodulatory biomaterial platforms, and co-transplantation of immunomodulatory cells are discussed. Key advantages and remaining challenges in translating such technologies to clinical settings are identified. Although many of the studies discussed are preliminary, the growing interest in the field has led to the exploration of new combinatorial strategies involving cellular engineering, immunotherapy, and novel biomaterials. Such interdisciplinary research will undoubtedly accelerate the development of therapies that can benefit the whole T1D population.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Natalie K. Brown
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Bo Wang
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Kaavian Shariati
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Kai Wang
- Department of Cardiac SurgeryBoston Children's HospitalBostonMA02115USA
- Department of SurgeryHarvard Medical SchoolBostonMA02115USA
| | - Stephanie Fuchs
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Juan M. Melero‐Martin
- Department of Cardiac SurgeryBoston Children's HospitalBostonMA02115USA
- Department of SurgeryHarvard Medical SchoolBostonMA02115USA
- Harvard Stem Cell InstituteCambridgeMA02138USA
| | - Minglin Ma
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| |
Collapse
|
15
|
Abstract
Selective oxidation of isobutane to methacrolein (MAC) and methacrylic acid (MAA) has received great interest both in the chemical industry and in academic research. The advantages of this reaction originate not only from the low cost of the starting material and reduced process complexity, but also from limiting the use of toxic reactants and the production of wastes. Successive studies and reports have shown that heteropolycompounds (HPCs) with Keggin structure (under the form of partially neutralized acids with increased stability) can selectively convert isobutane to MAA and MAC due to their strong and tunable acidity and redox properties. This review hence aims to discuss the Keggin-type HPCs that have been used in recent years to catalyze the oxidation of isobutane to MAA and MAC, and to review alternative metal oxides with proper redox properties for the same reaction. In addition, the influence of the main reaction conditions will be discussed.
Collapse
|
16
|
Crawford L, Wyatt M, Bryers J, Ratner B. Biocompatibility Evolves: Phenomenology to Toxicology to Regeneration. Adv Healthc Mater 2021; 10:e2002153. [PMID: 33829678 PMCID: PMC8221530 DOI: 10.1002/adhm.202002153] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Indexed: 12/20/2022]
Abstract
The word "biocompatibility," is inconsistent with the observations of healing for so-called biocompatible biomaterials. The vast majority of the millions of medical implants in humans today, presumably "biocompatible," are walled off by a dense, avascular, crosslinked collagen capsule, hardly suggestive of life or compatibility. In contrast, one is now seeing examples of implant biomaterials that lead to a vascularized reconstruction of localized tissue, a biological reaction different from traditional biocompatible materials that generate a foreign body capsule. Both the encapsulated biomaterials and the reconstructive biomaterials qualify as "biocompatible" by present day measurements of biocompatibility. Yet, this new generation of materials would seem to heal "compatibly" with the living organism, where older biomaterials are isolated from the living organism by the dense capsule. This review/perspective article will explore this biocompatibility etymological conundrum by reviewing the history of the concepts around biocompatibility, today's standard methods for assessing biocompatibility, a contemporary view of the foreign body reaction and finally, a compendium of new biomaterials that heal without the foreign body capsule. A new definition of biocompatibility is offered here to address advances in biomaterials design leading to biomaterials that heal into the body in a facile manner.
Collapse
Affiliation(s)
- Lars Crawford
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Meghan Wyatt
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - James Bryers
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Buddy Ratner
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
17
|
Caserto JS, Bowers DT, Shariati K, Ma M. Biomaterial Applications in Islet Encapsulation and Transplantation. ACS APPLIED BIO MATERIALS 2020; 3:8127-8135. [DOI: 10.1021/acsabm.0c01235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Julia S. Caserto
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Daniel T. Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
18
|
A scalable device-less biomaterial approach for subcutaneous islet transplantation. Biomaterials 2020; 269:120499. [PMID: 33168223 DOI: 10.1016/j.biomaterials.2020.120499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
The subcutaneous space has been shown to be a suitable site for islet transplantation, however an abundance of islets is required to achieve normoglycemia, often requiring multiple donors. The loss of islets is due to the hypoxic conditions islets experience during revascularization, resulting in apoptosis. Therefore, to reduce the therapeutic dosage required to achieve normoglycemia, pre-vascularization of the subcutaneous space has been pursued. In this study, we highlight a biomaterial-based approach using a methacrylic acid copolymer coating to generate a robust pre-vascularized subcutaneous cavity for islet transplantation. We also devised a simple, but not-trivial, procedure for filling the cavity with an islet suspension in collagen. We show that the pre-vascularized site can support a marginal mass of islets to rapidly return streptozotocin-induced diabetic SCID/bg mice to normoglycemia. Furthermore, immunocompetent Sprague Daley rats remained normoglycemia for up to 70 days until they experienced graft destabilization as they outgrew their implants. This work highlights methacrylic acid-based biomaterials as a suitable pre-vascularization strategy for the subcutaneous space that is scalable and doesn't require exogenous cells or growth factors.
Collapse
|