1
|
Lv Y, Song B, Yang G, Wang Y, Wu Z, Si M, Yang Z, Chen H, Liu C, Li M, Zhang Y, Qiao Z, Wang L, Xu W. In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy Flux. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409425. [PMID: 39651805 PMCID: PMC11791963 DOI: 10.1002/advs.202409425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/26/2024] [Indexed: 12/11/2024]
Abstract
Tumor therapeutic strategies based on mitochondrial damage have become an emerging trend. However, the low drug delivery efficiency caused by lysosomal sequestration and the activation of protective mitochondrial autophagy severely restricts the therapeutic efficacy. Herein, an in situ transformable nanoparticle named KCKT is developed to promote lysosomal escape and directly damage mitochondria while blocking mitochondrial autophagy. KCKT exhibits acid responsiveness for precise self-assembly into nanofibers within the lysosomes of cancer cells. The massive accumulation of nanofibers and excessive production of reactive oxygen species (ROS) under sonodynamic therapy synergistically induce lysosomal damage. This facilitates the escape of nanofibers from lysosomal sequestration, thereby enhancing drug delivery. Subsequently, the escaped nanofibers specifically aggregate around the mitochondria for long-term retention and generate ROS under ultrasound irradiation to induce mitochondrial damage. Notably, due to lysosomal dysfunction, damaged mitochondria cannot be cleared by autophagy, further aggravating oxidative damage. These results reveal that KCKT effectively improves drug delivery and mitochondria-targeted therapy efficiency by blocking protective autophagy. These findings hold significant potential for advancing the field of mitochondria-targeted therapy.
Collapse
Affiliation(s)
- Yulin Lv
- NHC Key Laboratoryof Molecular Probes and Targeted TheranosticsHarbin Medical UniversityHarbin150001China
- Department of UrologyHarbin Medical University Cancer HospitalHarbin150001China
| | - Benli Song
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 BeiyitiaoZhongguancunBeijing100190China
| | - Guang Yang
- Department of NeurosurgerThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Yuting Wang
- NHC Key Laboratoryof Molecular Probes and Targeted TheranosticsHarbin Medical UniversityHarbin150001China
- Key Laboratory of the Fourth Hospital of Harbin Medical UniversityHarbin150001China
| | - Zeyu Wu
- NHC Key Laboratoryof Molecular Probes and Targeted TheranosticsHarbin Medical UniversityHarbin150001China
- Key Laboratory of the Fourth Hospital of Harbin Medical UniversityHarbin150001China
| | - Minggui Si
- NHC Key Laboratoryof Molecular Probes and Targeted TheranosticsHarbin Medical UniversityHarbin150001China
- Key Laboratory of the Fourth Hospital of Harbin Medical UniversityHarbin150001China
| | - Zongzheng Yang
- NHC Key Laboratoryof Molecular Probes and Targeted TheranosticsHarbin Medical UniversityHarbin150001China
- Department of UrologyHarbin Medical University Cancer HospitalHarbin150001China
| | - Huilin Chen
- NHC Key Laboratoryof Molecular Probes and Targeted TheranosticsHarbin Medical UniversityHarbin150001China
- Department of UrologyHarbin Medical University Cancer HospitalHarbin150001China
| | - Chen Liu
- NHC Key Laboratoryof Molecular Probes and Targeted TheranosticsHarbin Medical UniversityHarbin150001China
- Department of UrologyHarbin Medical University Cancer HospitalHarbin150001China
| | - Min Li
- NHC Key Laboratoryof Molecular Probes and Targeted TheranosticsHarbin Medical UniversityHarbin150001China
- Key Laboratory of the Fourth Hospital of Harbin Medical UniversityHarbin150001China
| | - Yinshi Zhang
- NHC Key Laboratoryof Molecular Probes and Targeted TheranosticsHarbin Medical UniversityHarbin150001China
- Department of UrologyHarbin Medical University Cancer HospitalHarbin150001China
| | - Zengying Qiao
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 BeiyitiaoZhongguancunBeijing100190China
| | - Lu Wang
- NHC Key Laboratoryof Molecular Probes and Targeted TheranosticsHarbin Medical UniversityHarbin150001China
- Key Laboratory of the Fourth Hospital of Harbin Medical UniversityHarbin150001China
| | - Wanhai Xu
- NHC Key Laboratoryof Molecular Probes and Targeted TheranosticsHarbin Medical UniversityHarbin150001China
- Department of UrologyThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| |
Collapse
|
2
|
Xu J, Liu Z, Zhang S, Xiang J, Lan H, Bao Y. Anti-hepatoma immunotherapy of Pholiota adiposa polysaccharide-coated selenium nanoparticles by reversing M2-like tumor-associated macrophage polarization. Int J Biol Macromol 2024; 277:133667. [PMID: 38969038 DOI: 10.1016/j.ijbiomac.2024.133667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Targeting macrophages to regulate the tumor microenvironment is a promising strategy for treating cancer. This study developed a stable nano drug (PAP-SeNPs) using Se nanoparticles (SeNPs) and the Pholiota adiposa polysaccharide component (PAP-1a) and reported their physical stability, M2-like macrophages targeting efficacy and anti-hepatoma immunotherapy potential, as well as their molecular mechanisms. Furthermore, the zero-valent and well-dispersed spherical PAP-SeNPs were also successfully synthesized with an average size of 55.84 nm and a negative ζ-potential of -51.45 mV. Moreover, it was observed that the prepared PAP-SeNPs were stable for 28 days at 4 °C. Intravital imaging highlighted that PAP-SeNPs had the dual effect of targeting desirable immune organs and tumors. In vitro analyses showed that the PAP-SeNPs polarized M2-like macrophages towards the M1 phenotype to induce hepatoma cell death, triggered by the time-dependent lysosomal endocytosis in macrophages. Mechanistically, PAP-SeNPs significantly activated the Tlr4/Myd88/NF-κB axis to transform tumor-promoting macrophages into tumor-inhibiting macrophages and successfully initiated antitumor immunotherapy. Furthermore, PAP-SeNPs also enhanced CD3+CD4+ T cells and CD3+CD8+ T cells, thereby further stimulating anti-hepatoma immune responses. These results suggest that the developed PAP-SeNPs is a promising immunostimulant that can assist hepatoma therapy.
Collapse
Affiliation(s)
- Jie Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400060, China
| | - Zijing Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Sitong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400060, China
| | - Junqi Xiang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Haiyan Lan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400060, China
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400060, China.
| |
Collapse
|
3
|
Zhao X, Zhang Y, Wang P, Guan J, Zhang D. Construction of multileveled and oriented micro/nano channels in Mg doped hydroxyapitite bioceramics and their effect on mimicking mechanical property of cortical bone and biological performance of cancellous bone. BIOMATERIALS ADVANCES 2024; 161:213871. [PMID: 38692181 DOI: 10.1016/j.bioadv.2024.213871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Drawing on the structure and components of natural bone, this study developed Mg-doped hydroxyapatite (Mg-HA) bioceramics, characterized by multileveled and oriented micro/nano channels. These channels play a critical role in ensuring both mechanical and biological properties, making bioceramics suitable for various bone defects, particularly those bearing loads. Bioceramics feature uniformly distributed nanogrooves along the microchannels. The compressive strength or fracture toughness of the Mg-HA bioceramics with micro/nano channels formed by single carbon nanotube/carbon fiber (CNT/CF) (Mg-HA(05-CNT/CF)) are comparable to those of cortical bone, attributed to a combination of strengthened compact walls and microchannels, along with a toughening mechanism involving crack pinning and deflection at nanogroove intersections. The introduction of uniform nanogrooves also enhanced the porosity by 35.4 %, while maintaining high permeability owing to the capillary action in the oriented channels. This leads to superior degradation properties, protein adsorption, and in vivo osteogenesis compared with bioceramics with only microchannels. Mg-HA(05-CNT/CF) exhibited not only high strength and toughness comparable to cortical bone, but also permeability similar to cancellous bone, enhanced cell activity, and excellent osteogenic properties. This study presents a novel approach to address the global challenge of applying HA-based bioceramics to load-bearing bone defects, potentially revolutionizing their application in tissue engineering.
Collapse
Affiliation(s)
- Xueni Zhao
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Yu Zhang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Pengfei Wang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Jinxin Guan
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Dexin Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
4
|
Lu Y, Zhu D, Hu B, Chen R, Wang X, Xu X, Wang W, Wu H, Wang Y. pH-Responsive, Self-Assembled Ruthenium Nanodrug: Dual Impact on Lysosomes and DNA for Synergistic Chemotherapy and Immunogenic Cell Death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310636. [PMID: 38412413 DOI: 10.1002/smll.202310636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Several DNA-damaging antitumor agents, including ruthenium complexes, induce immunogenic cell death (ICD). In this study, an arginyl-glycyl-aspartic acid (RGD) peptide-modified carboline ruthenium complex (KS-Ru) is synthesized as a chemotherapeutic nanodrug and an ICD inducer. The RGD peptide, an integrin ligand, provides tumor-specific targeting and promotes self-assembly of the KS-Ru complex. The pH-responsive self-assembly is assessed through transmission and scanning electron microscopy. Additionally, in vitro cytotoxic activity and anti-metastasis ability are evaluated using MTT and Transwell assays, respectively, along with cellular immunofluorescence staining and imaging flow cytometry. The ability of the complex to inhibit primary tumor formation and lung metastasis in vivo is evaluated using Lewis lung cancer and A549 xenograft models. Furthermore, the tumor immune microenvironment is evaluated using single-cell flow mass cytometry. KS-Ru translocates to the nucleus, causing DNA damage and inducing ICD. Within the lysosomes, KS-Ru self-assembled into nanoflowers, leading to lysosomal swelling and apoptosis. Notably, the as-synthesized pH-dependent ruthenium nanomedicine achieves dual functionality-chemotherapy and immunotherapy. Moreover, the pH-responsive self-assembly of KS-Ru enables simultaneous mechanisms in the lysosome and nucleus, thereby lowering the likelihood of drug resistance. This study provides valuable insight for the design of novel ruthenium-based nanoantitumor drugs.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Bo Hu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Rong Chen
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Xin Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Xiaoxue Xu
- Department of Core Facility Center, Capital Medical University, Beijing, 100069, P. R. China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, P. R. China
| | - Hao Wu
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, P. R. China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| |
Collapse
|
5
|
Yang H, Chen D, Zhang Y, Yuan P, Xie N, Dai Z. MiRNA and mRNA-Controlled Double-Cascaded Amplifying Circuit Nanosensor for Accurate Discrimination of Breast Cancers in Living Cells, Animals, and Organoids. Anal Chem 2024; 96:4154-4162. [PMID: 38426698 DOI: 10.1021/acs.analchem.3c05085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Metastasis is the leading cause of death in patients with breast cancer. Detecting high-risk breast cancer, including micrometastasis, at an early stage is vital for customizing the right and efficient therapies. In this study, we propose an enzyme-free isothermal cascade amplification-based DNA logic circuit in situ biomineralization nanosensor, HDNAzyme@ZIF-8, for simultaneous imaging of multidimensional biomarkers in live cells. Taking miR-21 and Ki-67 mRNA as the dual detection targets achieved sensitive logic operations and molecular recognition through the cascade hybridization chain reaction and DNAzyme. The HDNAzyme@ZIF-8 nanosensor has the ability to accurately differentiate breast cancer cells and their subtypes by comparing their relative fluorescence intensities. Of note, our nanosensor can also achieve visualization within breast cancer organoids, faithfully recapitulating the functional characteristics of parental tumor. Overall, the combination of these techniques offers a universal strategy for detecting cancers with high sensitivity and holds vast potential in clinical cancer diagnosis.
Collapse
Affiliation(s)
- Huihui Yang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Dong Chen
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yanfei Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Peixiu Yuan
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Fan L, Jiang Z, Xiong Y, Xu Z, Yang X, Gu D, Ainiwaer M, Li L, Liu J, Chen F. Recent Advances in the HPPH-Based Third-Generation Photodynamic Agents in Biomedical Applications. Int J Mol Sci 2023; 24:17404. [PMID: 38139233 PMCID: PMC10743769 DOI: 10.3390/ijms242417404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Photodynamic therapy has emerged as a recognized anti-tumor treatment involving three fundamental elements: photosensitizers, light, and reactive oxygen species. Enhancing the effectiveness of photosensitizers remains the primary avenue for improving the biological therapeutic outcomes of PDT. Through three generations of development, HPPH is a 2-(1-hexyloxyethyl)-2-devinyl derivative of pyropheophorbide-α, representing a second-generation photosensitizer already undergoing clinical trials for various tumors. The evolution toward third-generation photosensitizers based on HPPH involves structural modifications for multimodal applications and the combination of multifunctional compounds, leading to improved imaging localization and superior anti-tumor effects. While research into third-generation HPPH is beneficial for advancing PDT treatment, equal attention should also be directed toward the other two essential elements and personalized diagnosis and treatment methodologies.
Collapse
Affiliation(s)
- Lixiao Fan
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zheng Jiang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yu Xiong
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zepeng Xu
- West China Clinical Medical College, Sichuan University, Chengdu 610064, China;
| | - Xin Yang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Deying Gu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Mailudan Ainiwaer
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Leyu Li
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jun Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Fei Chen
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Zhan M, Wang D, Zhao L, Chen L, Ouyang Z, Mignani S, Majoral JP, Zhao J, Zhang G, Shi X, Shen M. Phosphorus core-shell tecto dendrimers for enhanced tumor imaging: the rigidity of the backbone matters. Biomater Sci 2023; 11:7387-7396. [PMID: 37791576 DOI: 10.1039/d3bm01198d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Nanoplatforms with amplified passive tumor targeting and enhanced protein resistance can evade unnecessary uptake by the reticuloendothelial system and achieve high tumor retention for accurate tumor theranostics. To achieve this goal, we here constructed phosphorus core-shell tecto dendrimers (CSTDs) with a rigid aromatic backbone core as a nanoplatform for enhanced fluorescence and single-photon emission computed tomography (SPECT) dual-mode imaging of tumors. In this study, the phosphorus P-G2.5/G3 CSTDs (G denotes generation) were partially conjugated with tetraazacyclododecane tetraacetic acid (DOTA), cyanine5.5 (Cy5.5) and 1,3-propane sulfonate (1,3-PS) and then labeled with 99mTc. The formed P-G2.5/G3-DOTA-Cy5.5-PS CSTDs possess good monodispersity with a particle size of 10.1 nm and desired protein resistance and cytocompatibility. Strikingly, compared to the counterpart material G3/G3-DOTA-Cy5.5-PS with both the core and shell components being soft poly(amidoamine) dendrimers, the developed P-G2.5/G3-DOTA-Cy5.5-PS complexes allow for more efficient cellular uptake and more significant penetration in 3-dimensional tumor spheroids in vitro, as well as more significant tumor retention and accumulation for enhanced dual-mode fluorescence and SPECT (after labelling with 99mTc) tumor imaging in vivo. Our studies suggest that the rigidity of the core for the constructed CSTDs matters in the amplification of the tumor enhanced permeability retention (EPR) effect for improved cancer nanomedicine development.
Collapse
Affiliation(s)
- Mengsi Zhan
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Dayuan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Serge Mignani
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Guixiang Zhang
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
RGD peptide modified platinum nanozyme Co-loaded glutathione-responsive prodrug nanoparticles for enhanced chemo-photodynamic bladder cancer therapy. Biomaterials 2023; 293:121975. [PMID: 36580720 DOI: 10.1016/j.biomaterials.2022.121975] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/21/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Bladder cancer is one of the most common malignant tumors in the urinary system worldwide. The poor permeability and uncontrollable release of drug and hypoxia of tumor tissues were the main reasons leading to poor therapeutic effect of chemo-photodynamic therapy for bladder cancer. To solve the above problems, a tumor-targeting peptide Arg-Gly-Asp (RGD) modified platinum nanozyme (PtNP) co-loaded glutathione (GSH)-responsive prodrug nanoparticles (PTX-SS-HPPH/Pt@RGD-NP) was constructed. Firstly, a GSH-responsive prodrug (PTX-SS-HPPH) was prepared by introducing a disulfide bond between paclitaxel (PTX) and photosensitizer 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH), which could realize the GSH-responsive release of the drug at the tumor sites. Also, the distearoylphosphoethanolamine-poly (ethylene glycol)-RGD peptide (DSPE-PEG-RGD) modified the prodrug to enhance the targeting and permeability ability to bladder cancer cells. Besides, to alleviate the hypoxia of tumor tissues, PtNP was introduced to produce oxygen (O2) and improve photodynamic therapy efficiency. The results showed that the PTX-SS-HPPH/Pt@RGD-NP could achieve GSH-responsive drug release in tumor microenvironment, enhance the drug accumulation time and permeability at tumor sites in T24 subcutaneous tumor model and T24 orthotopic bladder tumor model, and alleviate hypoxia in tumor tissues, thus realizing enhanced chemo-photodynamic therapy for bladder cancer, and providing new strategies and methods for clinical treatment of bladder cancer.
Collapse
|
9
|
Li G, Wu S, Chen W, Duan X, Sun X, Li S, Mai Z, Wu W, Zeng G, Liu H, Chen T. Designing Intelligent Nanomaterials to Achieve Highly Sensitive Diagnoses and Multimodality Therapy of Bladder Cancer. SMALL METHODS 2023; 7:e2201313. [PMID: 36599700 DOI: 10.1002/smtd.202201313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BC) is among the most common malignant tumors of the genitourinary system worldwide. In recent years, the rate of BC incidence has increased, and the recurrence rate is high, resulting in poor quality of life for patients. Therefore, how to develop an effective method to achieve synchronous precise diagnoses and BC therapies is a difficult problem to solve clinically. Previous reports usually focus on the role of nanomaterials as drug delivery carriers, while a summary of the functional design and application of nanomaterials is lacking. Summarizing the application of functional nanomaterials in high-sensitivity diagnosis and multimodality therapy of BC is urgently needed. This review summarizes the application of nanotechnology in BC diagnosis, including the application of nanotechnology in the sensoring of BC biomarkers and their role in monitoring BC. In addition, conventional and combination therapies strategy in potential BC therapy are analyzed. Moreover, different kinds of nanomaterials in BC multimodal therapy according to pathological features of BC are also outlined. The goal of this review is to present an overview of the application of nanomaterials in the theranostics of BC to provide guidance for the application of functional nanomaterials to precisely diagnose and treat BC.
Collapse
Affiliation(s)
- Guanlin Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Sicheng Wu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzhe Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xiaolu Duan
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xinyuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Shujue Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Zanlin Mai
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Guohua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| | - Tianfeng Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| |
Collapse
|
10
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
11
|
Song FX, Xu X, Ding H, Yu L, Huang H, Hao J, Wu C, Liang R, Zhang S. Recent Progress in Nanomaterial-Based Biosensors and Theranostic Nanomedicine for Bladder Cancer. BIOSENSORS 2023; 13:106. [PMID: 36671940 PMCID: PMC9855444 DOI: 10.3390/bios13010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BCa) is one of the most expensive and common malignancies in the urinary system due to its high progression and recurrence rate. Although there are various methods, including cystoscopy, biopsy, and cytology, that have become the standard diagnosis methods for BCa, their intrinsic invasive and inaccurate properties need to be overcome. The novel urine cancer biomarkers are assisted by nanomaterials-based biosensors, such as field-effect transistors (FETs) with high sensitivity and specificity, which may provide solutions to these problems. In addition, nanomaterials can be applied for the advancement of next-generation optical imaging techniques and the contrast agents of conventional techniques; for example, magnetic resonance imaging (MRI) for the diagnosis of BCa. Regarding BCa therapy, nanocarriers, including mucoadhesive nanoparticles and other polymeric nanoparticles, successfully overcome the disadvantages of conventional intravesical instillation and improve the efficacy and safety of intravesical chemotherapy for BCa. Aside from chemotherapy, nanomedicine-based novel therapies, including photodynamic therapy (PDT), photothermal therapy (PTT), chemodynamic therapy (CDT), sonodynamic therapy (SDT), and combination therapy, have afforded us new ways to provide BC therapy and hope, which can be translated into the clinic. In addition, nanomotors and the nanomaterials-based solid tumor disassociation strategy provide new ideas for future research. Here, the advances in BCa diagnosis and therapy mentioned above are reviewed in this paper.
Collapse
Affiliation(s)
- Fan-Xin Song
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Xiaojian Xu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hengze Ding
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Le Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Haochen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Jinting Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Chenghao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Rui Liang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
12
|
Zheng S, Huang W, Li N, Shen Y, Wang X, Chen T. Highly specific selenium nanosystems for fluorescent image-guided rapid diagnosis and pathological grading of ovarian malignant tumors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Wu T, Chen K, Lai W, Zhou H, Wen X, Chan HF, Li M, Wang H, Tao Y. Bovine serum albumin-gold nanoclusters protein corona stabilized polystyrene nanoparticles as dual-color fluorescent nanoprobes for breast cancer detection. Biosens Bioelectron 2022; 215:114575. [PMID: 35868122 DOI: 10.1016/j.bios.2022.114575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Breast cancer is the most prevalent malignancy and the first leading cause of cancer-related mortality among the female population worldwide. Approaches for precise and reliable detection of breast cancer cells, particularly in the nascent state, are desperately needed for elevating the survival rate of patients bearing the breast tumor. In this work, we successfully performed the sensitive, precise, and reliable breast cancer cell detection using facilely fabricated bovine serum albumin-gold nanocluster (BSA-AuNCs) protein corona stabilized, epithelial cell adhesion molecule (EpCAM) aptamer linked fluorescent polystyrene nanoparticle (PS NP), termed as PS-BSA-AuNCs-Apt. The rapidly adsorbed BSA-AuNCs hard protein corona without complicated covalent conjugation not only imparted excellent colloidal stability to the PS nanoparticles, but also offered numerous active anchors for the targeted EpCAM aptamers to locate. With the remarkable aid of the aptamers specifically targeting the EpCAM-positive breast cancer cells, the PS-BSA-AuNCs-Apt emitted strong and photostable dual-color fluorescent signals for precise and reliable cancer cell detection by overcoming the false signals. The specific identification potency of the PS-BSA-AuNCs-Apt system was further verified by successfully detecting the xenografted breast tumor tissue. Notably, to the best of our knowledge, the protein corona formed nanoprobes was exploited for direct tumor cell and tissue detection with high efficacy for the first time, demonstrating their promising potential in clinical tumor detection.
Collapse
Affiliation(s)
- Tingting Wu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Keying Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Wenjie Lai
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Huicong Zhou
- College of Science, Changchun Institute of Technology, Changchun, 130012, China
| | - Xingqiao Wen
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, 510630, China.
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
14
|
Rao S, Lin Y, Lin R, Liu J, Wang H, Hu W, Chen B, Chen T. Traditional Chinese medicine active ingredients-based selenium nanoparticles regulate antioxidant selenoproteins for spinal cord injury treatment. J Nanobiotechnology 2022; 20:278. [PMID: 35701758 PMCID: PMC9195429 DOI: 10.1186/s12951-022-01490-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022] Open
Abstract
Background As Traditional Chinese Medicine (TCM) drugs, Huangqi and Danshen are always applied in combination for spinal cord injury (SCI) treatment based on the compatibility theory of TCM. Astragalus Polysaccharidesis (APS) and Tanshinone IIA (TSIIA) are the main active ingredients of Huangqi and Danshen, and they both possess neuroprotective effects through antioxidant activities. However, low solubility and poor bioavailability have greatly limited their application. In recent years, selenium nanoparticles (SeNPs) have drawn enormous attention as potential delivery carrier for antioxidant drugs. Results In this study, TCM active ingredients-based SeNPs surface decorated with APS and loaded with TSIIA (TSIIA@SeNPs-APS) were successfully synthesized under the guidance of the compatibility theory of TCM. Such design improved the bioavailability of APS and TSIIA with the benefits of high stability, efficient delivery and highly therapeutic efficacy for SCI treatment illustrated by an improvement of the antioxidant protective effects of APS and TSIIA. The in vivo experiments indicated that TSIIA@SeNPs-APS displayed high efficiency of cellular uptake and long retention time in PC12 cells. Furthermore, TSIIA@SeNPs-APS had a satisfactory protective effect against oxidative stress-induced cytotoxicity in PC12 cells by inhibiting excessive reactive oxygen species (ROS) production, so as to alleviate mitochondrial dysfunction to reduce cell apoptosis and S phase cell cycle arrest, and finally promote cell survival. The in vivo experiments indicated that TSIIA@SeNPs-APS can protect spinal cord neurons of SCI rats by enhancing GSH-Px activity and decreasing MDA content, which was possibly via the metabolism of TSIIA@SeNPs-APS to SeCys2 and regulating antioxidant selenoproteins to resist oxidative stress-induced damage. Conclusions TSIIA@SeNPs-APS exhibited promising therapeutic effects in the anti-oxidation therapy of SCI, which paved the way for developing the synergistic effect of TCM active ingredients by nanotechnology to improve the efficacy as well as establishing novel treatments for oxidative stress-related diseases associated with Se metabolism and selenoproteins regulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01490-x.
Collapse
Affiliation(s)
- Siyuan Rao
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,Division of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yongpeng Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,Division of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Rui Lin
- Division of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jinggong Liu
- Division of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Hongshen Wang
- Division of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Weixiong Hu
- Division of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Bolai Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. .,Division of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
Zhang D, You Y, Xu Y, Cheng Q, Xiao Z, Chen T, Shi C, Luo L. Facile synthesis of near-infrared responsive on-demand oxygen releasing nanoplatform for precise MRI-guided theranostics of hypoxia-induced tumor chemoresistance and metastasis in triple negative breast cancer. J Nanobiotechnology 2022; 20:104. [PMID: 35246149 PMCID: PMC8896283 DOI: 10.1186/s12951-022-01294-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hypoxia is an important factor that contributes to chemoresistance and metastasis in triple negative breast cancer (TNBC), and alleviating hypoxia microenvironment can enhance the anti-tumor efficacy and also inhibit tumor invasion. METHODS A near-infrared (NIR) responsive on-demand oxygen releasing nanoplatform (O2-PPSiI) was successfully synthesized by a two-stage self-assembly process to overcome the hypoxia-induced tumor chemoresistance and metastasis. We embedded drug-loaded poly (lactic-co-glycolic acid) cores into an ultrathin silica shell attached with paramagnetic Gd-DTPA to develop a Magnetic Resonance Imaging (MRI)-guided NIR-responsive on-demand drug releasing nanosystem, where indocyanine green was used as a photothermal converter to trigger the oxygen and drug release under NIR irradiation. RESULTS The near-infrared responsive on-demand oxygen releasing nanoplatform O2-PPSiI was chemically synthesized in this study by a two-stage self-assembly process, which could deliver oxygen and release it under NIR irradiation to relieve hypoxia, improving the therapeutic effect of chemotherapy and suppressed tumor metastasis. This smart design achieves the following advantages: (i) the O2 in this nanosystem can be precisely released by an NIR-responsive silica shell rupture; (ii) the dynamic biodistribution process of O2-PPSiI was monitored in real-time and quantitatively analyzed via sensitive MR imaging of the tumor; (iii) O2-PPSiI could alleviate tumor hypoxia by releasing O2 within the tumor upon NIR laser excitation; (iv) The migration and invasion abilities of the TNBC tumor were weakened by inhibiting the process of EMT as a result of the synergistic therapy of NIR-triggered O2-PPSiI. CONCLUSIONS Our work proposes a smart tactic guided by MRI and presents a valid approach for the reasonable design of NIR-responsive on-demand drug-releasing nanomedicine systems for precise theranostics in TNBC.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- The Shunde Affiliated Hospital, Jinan University, Foshan, 528300, China
| | - Yuanyuan You
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Yuan Xu
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Qingqing Cheng
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Tianfeng Chen
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China.
| | - Changzheng Shi
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
16
|
Yang H, Liu C, Wu Y, Yuan M, Huang J, Xia Y, Ling Q, Hoffmann PR, Huang Z, Chen T. Atherosclerotic plaque-targeted nanotherapeutics ameliorates atherogenesis by blocking macrophage-driven inflammation. NANO TODAY 2022; 42:101351. [DOI: 10.1016/j.nantod.2021.101351] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Xu J, Zeng S, Li J, Gao L, Le W, Huang X, Wang G, Chen B, Zhang Z, Xu C. Novel Non-Invasive Diagnosis of Bladder Cancer in Urine Based on Multifunctional Nanoparticles. Front Cell Dev Biol 2022; 9:813420. [PMID: 35174172 PMCID: PMC8841412 DOI: 10.3389/fcell.2021.813420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives: Tumor cells were reported to have perpetual negative surface charges due to elevated glycolysis, and multifunctional nanoprobes (Fe3O4@SiO2, mNPs) could attach onto tumor cells via opposite surface charges. We thus evaluated whether mixing mNPs with urine could improve the sensitivity of urine cytology test (UCT). Methods: We developed a novel UCT method by mixing urine with mNPs (Nano-cytology) to harvest more tumor cells during UCT procedures. The same voided urine sample was divided equally for the Nano-cytology and UCT assay, and evaluated by cytopathologists in a blinded way. The accuracy of UCT, Nano-cytology, and the combination of the two approaches (Nano-UCT) for detecting bladder cancer were determined. Results: Urine samples were prospectively collected from 102 bladder cancer patients and 49 non-cancer participants from June 2020 to February 2021 in Changhai Hospital. Overall sensitivity of the Nano-cytology assay was significantly higher than that of the UCT assay (82.4 vs. 59.8%, p < .01). Sensitivity for low- and high-grade tumors was 79.1% and 39.5% (p < .01) and 84.7% and 74.6% (p = .25) for Nano-cytology and UCT, respectively. Specificity of Nano-cytology was slightly lower than that of UCT (89.8% vs. 100%, p = .022), which is mainly caused by severe urinary tract infection. In addition, Nano-UCT showed increased sensitivity with 90.2% for overall patients, and 83.7% and 94.9% for low- and high-grade tumor, respectively. Conclusion: The Nano-cytology assay had a significantly improved sensitivity compared with UCT for detecting bladder cancer patients. It represents a promising tool for diagnosis of bladder cancer in clinical practice.
Collapse
Affiliation(s)
- Jinshan Xu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jun Li
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Li Gao
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Xin Huang
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Guandan Wang
- Department of Nutrition, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Bingdi Chen, ; Zhensheng Zhang, ; Chuanliang Xu,
| | - Zhensheng Zhang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bingdi Chen, ; Zhensheng Zhang, ; Chuanliang Xu,
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bingdi Chen, ; Zhensheng Zhang, ; Chuanliang Xu,
| |
Collapse
|
18
|
Huang G, Zang J, He L, Zhu H, Huang J, Yuan Z, Chen T, Xu A. Bioactive Nanoenzyme Reverses Oxidative Damage and Endoplasmic Reticulum Stress in Neurons under Ischemic Stroke. ACS NANO 2022; 16:431-452. [PMID: 34958560 DOI: 10.1021/acsnano.1c07205] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Designing translational antioxidative agents that could scavenge free radicals produced during reperfusion in brain ischemia stroke and alleviate neurologic damage is the main objective for ischemic stroke treatment. Herein, we explored and simply synthesized a biomimic and translational Mn3O4 nanoenzyme (HSA-Mn3O4) to constrain ischemic stroke reperfusion-induced nervous system injury. This nanosystem exhibits reduced levels of inflammation and prolonged circulation time and potent ROS scavenging activities. As expected, HSA-Mn3O4 effectively inhibits oxygen and glucose deprivation-mediated cell apoptosis and endoplasmic reticulum stress and demonstrates neuroprotective capacity against ischemic stroke and reperfusion injury of brain tissue. Furthermore, HSA-Mn3O4 effectively releases Mn ions and promotes the increase of superoxide dismutase 2 activity. Therefore, HSA-Mn3O4 inhibits brain tissue damage by restraining cell apoptosis and endoplasmic reticulum stress in vivo. Taken together, this study not only sheds light on design of biomimic and translational nanomedicine but also reveals the neuroprotective action mechanisms against ischemic stroke and reperfusion injury.
Collapse
Affiliation(s)
- Guanning Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, P.R. China
| | - Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, P.R. China
| | - Lizhen He
- Department of Neurology and Stroke Center, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, P.R. China
| | - Huili Zhu
- Department of Neurology and Stroke Center, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, P.R. China
| | - Jiarun Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, P.R. China
| | - Zhongwen Yuan
- Department of Neurology and Stroke Center, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, P.R. China
| | - Tianfeng Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, P.R. China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, P.R. China
| |
Collapse
|
19
|
Pan S, Li T, Tan Y, Xu H. Selenium-containing nanoparticles synergistically enhance Pemetrexed&NK cell-based chemoimmunotherapy. Biomaterials 2021; 280:121321. [PMID: 34922271 DOI: 10.1016/j.biomaterials.2021.121321] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022]
Abstract
NK cell-based immunotherapy and pemetrexed (Pem)-based chemotherapy have broad application prospects in cancer treatment. However, the over-expressed NK cell inhibitory receptor on the surface of cancer cells and the low cell internalization efficiency of Pem greatly limit their clinical application. Herein, we construct a series of selenium-containing nanoparticles to synergistically enhance Pem-based chemotherapy and NK cell-based immunotherapy. The nanoparticles could deliver Pem to tumor sites and strengthen the chemotherapy efficiency of Pem by seleninic acid, which is produced by the oxidation of β-seleno ester. Moreover, seleninic acid can block the expression of inhibitory receptors against NK cells, thereby activating the immunocompetence of NK cells. The in vitro and in vivo experiments reveal the potential chemo-enhancing and immune-activating mechanism of seleninic acid, emphasizing the promising prospects of this strategy in effective chemoimmunotherapy.
Collapse
Affiliation(s)
- Shuojiong Pan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Yizheng Tan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
20
|
Liu CP, Chen ZD, Ye ZY, He DY, Dang Y, Li ZW, Wang L, Ren M, Fan ZJ, Liu HX. Therapeutic Applications of Functional Nanomaterials for Prostatitis. Front Pharmacol 2021; 12:685465. [PMID: 34140892 PMCID: PMC8205439 DOI: 10.3389/fphar.2021.685465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
Prostatitis is a common disease in adult males, with characteristics of a poor treatment response and easy recurrence, which seriously affects the patient's quality of life. The prostate is located deep in the pelvic cavity, and thus a traditional infusion or other treatment methods are unable to easily act directly on the prostate, leading to poor therapeutic effects. Therefore, the development of new diagnostic and treatment strategies has become a research hotspot in the field of prostatitis treatment. In recent years, nanomaterials have been widely used in the diagnosis and treatment of various infectious diseases. Nanotechnology is a promising tool for 1) the accurate diagnosis of diseases; 2) improving the targeting of drug delivery systems; 3) intelligent, controlled drug release; and 4) multimode collaborative treatment, which is expected to be applied in the diagnosis and treatment of prostatitis. Nanotechnology is attracting attention in the diagnosis, prevention and treatment of prostatitis. However, as a new research area, systematic reviews on the application of nanomaterials in the diagnosis and treatment of prostatitis are still lacking. In this mini-review, we will highlight the treatment approaches for and challenges associated with prostatitis and describe the advantages of functional nanoparticles in improving treatment effectiveness and overcoming side effects.
Collapse
Affiliation(s)
- Chun-Ping Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi-De Chen
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Zi-Yan Ye
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Dong-Yue He
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Dang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhe-Wei Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lei Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Ren
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Jin Fan
- Guangdong Provincial People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hong-Xing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Liu CP, Chen ZD, Ye ZY, He DY, Dang Y, Li ZW, Wang L, Ren M, Fan ZJ, Liu HX. Therapeutic Applications of Functional Nanomaterials for Prostatitis. Front Pharmacol 2021. [DOI: 10.3389/fphar.2021.685465
expr 881861845 + 830625731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Prostatitis is a common disease in adult males, with characteristics of a poor treatment response and easy recurrence, which seriously affects the patient’s quality of life. The prostate is located deep in the pelvic cavity, and thus a traditional infusion or other treatment methods are unable to easily act directly on the prostate, leading to poor therapeutic effects. Therefore, the development of new diagnostic and treatment strategies has become a research hotspot in the field of prostatitis treatment. In recent years, nanomaterials have been widely used in the diagnosis and treatment of various infectious diseases. Nanotechnology is a promising tool for 1) the accurate diagnosis of diseases; 2) improving the targeting of drug delivery systems; 3) intelligent, controlled drug release; and 4) multimode collaborative treatment, which is expected to be applied in the diagnosis and treatment of prostatitis. Nanotechnology is attracting attention in the diagnosis, prevention and treatment of prostatitis. However, as a new research area, systematic reviews on the application of nanomaterials in the diagnosis and treatment of prostatitis are still lacking. In this mini-review, we will highlight the treatment approaches for and challenges associated with prostatitis and describe the advantages of functional nanoparticles in improving treatment effectiveness and overcoming side effects.
Collapse
|
22
|
Jia C, Zhang M, He XW, Li WY, Zhang YK. Preparation of responsive "dual-lock" nanoparticles and their application in collaborative therapy based on CuS coordination. J Mater Chem B 2021; 9:1049-1058. [PMID: 33399610 DOI: 10.1039/d0tb02490b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is difficult for drug delivery systems to release drugs as expected, often leading to undesired side effects. To solve this problem, a CuS@MSN/DOX@MnO2@membrane (CMDMm) was reasonably designed. It was introduced to release the drug by a double response, similar to using two keys to open two locks at the same time for one door. CuS@MSN was used as a photothermal therapy (PTT) material and carrier, and then the surface of CuS@MSN/DOX was sealed by MnO2 to prevent drug release in advance. MnO2 could be reduced and degraded in a tumor microenvironment. It was applied in MR imaging due to the T1 magnetism of Mn2+ following the reduction of MnO2. Finally, the 4T1 cell membrane was extracted and coated onto the surface of CuS@MSN/DOX@MnO2, which served as a target for 4T1 tumor cells. A noteworthy phenomenon was that the fluorescence of DOX was quenched by the coordination between DOX and CuS, and this greatly improved the interaction between DOX and CuS@MSN. However, the coordination was weakened when DOX was protonated in a tumor microenvironment (∼pH 5.0), leading to the release of DOX and fluorescence recovery. The drug release experiments showed that the release efficiency was higher at pH 5.0 with 10 mmol L-1 GSH. Through in vitro laser confocal imaging, it was successfully observed that DOX was reliably released in specific tumor cells according to the fluorescence recovery, and that there was no leakage in other cells. In short, effective double response drug release was successfully confirmed.
Collapse
Affiliation(s)
- Chao Jia
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | | | | | | | | |
Collapse
|