1
|
De Menech Q, Osorio Salazar A, Bourgogne Q, Civet Y, Baldit A, Perriard Y. Mechanical characterization and constitutive law of porcine urethral tissues: a hyperelastic fiber model based on a physical approach. Biomech Model Mechanobiol 2025:10.1007/s10237-025-01951-w. [PMID: 40208522 DOI: 10.1007/s10237-025-01951-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
Lower urinary tract symptoms (LUTS), particularly urinary incontinence (UI), represent a significant global health challenge, affecting millions of patients worldwide. The artificial urinary sphincter (AUS) remains one of the most effective intervention for severe UI, with its design relying on a detailed understanding of the urethral biomechanics. Given the ethical and logistical constraints of using human tissue, porcine urethras, which share anatomical and mechanical similarities with human urethras, are widely employed in preclinical studies. This study investigates the uniaxial mechanical characterization of porcine urethral tissue under controlled conditions. Fresh porcine urethral samples were subjected to uniaxial tensile testing along both the longitudinal and circumferential directions to characterize their anisotropic mechanical properties. Experimental results were compared with existing datasets to validate findings. Additionally, conventional hyperelastic models were assessed to fit experimental results, and a novel anisotropic constitutive model with physical parameters was developed. This fiber model, which incorporates fiber modulus, volume, and orientation, uses a single set of parameters to predict behavior in both directions. It demonstrated improved accuracy, reaching the performance of the Gasser-Ogden-Holzapfel (GOH) model, with root mean square errors (RMSEs) of 9.24% and 12.98% in the circumferential and longitudinal directions, respectively. In contrast, the Yeoh and Ogden models were unable to fit both directions using a single set of parameters, yielding RMSEs values exceeding 30%. With its enhanced physical relevance, the fiber model having a more physical meaning holds promise for applications in the biomechanical analysis of fiber-composed soft tissues.
Collapse
Affiliation(s)
- Quentin De Menech
- Integrated Actuators Laboratory (LAI), Ecole polytechnique fédérale de Lausanne (EPFL), Neuchâtel, 2002, Switzerland.
| | - Andres Osorio Salazar
- Integrated Actuators Laboratory (LAI), Ecole polytechnique fédérale de Lausanne (EPFL), Neuchâtel, 2002, Switzerland
| | - Quentin Bourgogne
- ENIM, Université de Lorraine, Metz, 57000, France
- Université de Lorraine, CNRS, LEM3, Metz, 57000, France
| | - Yoan Civet
- Integrated Actuators Laboratory (LAI), Ecole polytechnique fédérale de Lausanne (EPFL), Neuchâtel, 2002, Switzerland
| | - Adrien Baldit
- ENIM, Université de Lorraine, Metz, 57000, France
- Université de Lorraine, CNRS, LEM3, Metz, 57000, France
| | - Yves Perriard
- Integrated Actuators Laboratory (LAI), Ecole polytechnique fédérale de Lausanne (EPFL), Neuchâtel, 2002, Switzerland
| |
Collapse
|
2
|
Wang D, Zhu X, Siqin B, Ren C, Chang M, Bai L. Experimental study of extracellular vesicle-small intestine submucosa novel biological composite for urethral stricture repair and reconstruction. Biomed Mater Eng 2025:9592989241308802. [PMID: 39973222 DOI: 10.1177/09592989241308802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Urethral stricture (US) is a common condition that considerably affects patients' quality of life. OBJECTIVES This study aimed to explore the adoption value of the extracellular vesicle (EV)- small intestinal submucosa (SIS) complex in the repair of USs. METHODS EVs were extracted from healthy male New Zealand white rabbits, and SIS was prepared using peracetic acid (PAA) oxidation and decellularization. The morphology and particle size of the prepared EV-SIS complex were evaluated using electron microscopy and qNano nanoparticle analyzer, and the labeled proteins of EVs were detected using Western blot method. EV-SIS the complex was implanted in a rabbit model of US, and urodynamic parameters were assessed. RESULTS The EV-SIS complex displayed a full morphology, intact membrane structure, and uniform particle size. The protein concentration of EVs in the complex was approximately 0.351 µg/µL, with a yield of approximately 1.86 µg/106 cells. The complex exhibited remarkable repair effects in the rabbit model of US, with bladder capacity, maximal urethral pressure, and minimal urethral pressure all markedly superior to those in the US group (P < 0.05). CONCLUSION The EV-SIS complex demonstrates potential clinical value in the repair of USs, improving urodynamic parameters, and offering a promising therapeutic option for patients with US.
Collapse
Affiliation(s)
- Dan Wang
- Department of Urology Surgery, The Affiliated Hospital of Inner Mongolia Medical, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Xiaojun Zhu
- Department of Urology Surgery, The Affiliated Hospital of Inner Mongolia Medical, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Buhe Siqin
- Department of Urology Surgery, The Affiliated Hospital of Inner Mongolia Medical, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Chao Ren
- Department of Urology Surgery, The Affiliated Hospital of Inner Mongolia Medical, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Ming Chang
- Department of Urology Surgery, The Affiliated Hospital of Inner Mongolia Medical, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Ligang Bai
- Department of Urology Surgery, The Affiliated Hospital of Inner Mongolia Medical, Hohhot 010050, Inner Mongolia Autonomous Region, China
| |
Collapse
|
3
|
Barasa P, Simoliunas E, Grybas A, Zilinskaite-Tamasauske R, Dasevicius D, Alksne M, Rinkunaite I, Buivydas A, Baltrukonyte E, Tamulyte R, Megur A, Verkauskas G, Baltriukiene D, Bukelskiene V. Development of multilayered artificial urethra graft for urethroplasty. J Biomed Mater Res A 2025; 113:e37796. [PMID: 39268589 DOI: 10.1002/jbm.a.37796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/11/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
To enhance the treatment of patients' urethral defects, such as strictures and hypospadias, we investigated the potential of using artificial urethral tissue. Our study aimed to generate this tissue and assess its effectiveness in a rabbit model. Two types of bioprinted grafts, based on methacrylated gelatin-silk fibroin (GelMA-SF) hydrogels, were produced: acellular, as well as loaded with autologous rabbit stem cells. Rabbit adipose stem cells (RASC) were differentiated toward smooth muscle in the GelMA-SF hydrogel, while rabbit buccal mucosa stem cells (RBMC), differentiated toward the epithelium, were seeded on its surface, forming two layers of the cell-laden tissue. The constructs were then reinforced with polycaprolactone-polylactic acid meshes to create implantable multilayered artificial urethral grafts. In vivo experiments showed that the cell-laden tissue integrated into the urethra with less fibrosis and inflammation compared to its acellular counterpart. Staining to trace the implanted cells confirmed integration into the host organism 3 months postsurgery.
Collapse
Affiliation(s)
- Povilas Barasa
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egidijus Simoliunas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aivaras Grybas
- Urology Center, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Ramune Zilinskaite-Tamasauske
- Children's Surgery, Orthopaedic and Traumatology Centre, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Darius Dasevicius
- Centre of Pathology, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Milda Alksne
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ieva Rinkunaite
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Andrius Buivydas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Emilija Baltrukonyte
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rimgaile Tamulyte
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Gilvydas Verkauskas
- Children's Surgery, Orthopaedic and Traumatology Centre, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Daiva Baltriukiene
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Virginija Bukelskiene
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
4
|
Jin Y, Wang Y, Yang R, Fang W, Zhang K, Liu M, Wang Y, Yang M, Fu Q. Multilayered hydrogel scaffold construct with native tissue matched elastic modulus: A regenerative microenvironment for urethral scar-free healing. Biomaterials 2025; 312:122711. [PMID: 39088911 DOI: 10.1016/j.biomaterials.2024.122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
The unsuitable deformation stimulus, harsh urine environment, and lack of a regenerative microenvironment (RME) prevent scaffold-based urethral repair and ultimately lead to irreversible urethral scarring. The researchers clarify the optimal elastic modulus of the urethral scaffolds for urethral repair and design a multilayered PVA hydrogel scaffold for urethral scar-free healing. The inner layer of the scaffold has self-healing properties, which ensures that the wound effectively resists harsh urine erosion, even when subjected to sutures. In addition, the scaffold's outer layer has an extracellular matrix-like structure that synergizes with adipose-derived stem cells to create a favorable RME. In vivo experiments confirm successful urethral scar-free healing using the PVA multilayered hydrogel scaffold. Further mechanistic study shows that the PVA multilayer hydrogel effectively resists the urine-induced inflammatory response and accelerates the transition of urethral wound healing to the proliferative phase by regulating macrophage polarization, thus providing favorable conditions for urethral scar-free healing. This study provides mechanical criteria for the fabrication of urethral tissue-engineered scaffolds, as well as important insights into their design.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Ranxing Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Kaile Zhang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Meng Liu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Yuhui Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Ming Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
5
|
O'Meara S, Cunnane EM, McCarthy CM, Croghan SM, Mulvhill JJE, Walsh MT, O'Brien FJ, Davis NF. Comparison of the mechanical properties of porcine buccal mucosa and ureter and the clinical implications. World J Urol 2024; 43:31. [PMID: 39673569 DOI: 10.1007/s00345-024-05397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024] Open
Abstract
PURPOSE Buccal mucosal grafts have a well-established role in urology regarding the management of ureteric stricture disease. Despite its established use as a graft material there is a lack of data on the mechanical properties of buccal mucosa. We aim to compare the passive mechanical properties of porcine buccal mucosa with the ureter. MATERIALS AND METHODS Buccal mucosa (n = 20) and ureteric specimens (n = 21) were harvested from 19 domestic pigs at the time of euthanasia. Mechanical testing was performed using a uniaxial tensometer to generate stress-strain curves. From these curves, ultimate tensile strength and elastic modulus were calculated. Data was analysed, and one-way ANOVA testing was used to assess for significance variation in mechanical response due to direction of testing, and between tissue types. RESULTS AND CONCLUSIONS Porcine ureteric specimens displayed mechanical anisotropy, with a significant difference in the elastic modulus depending on the direction of testing (p = 0.005), and a higher mean ultimate tensile strength in the longitudinal (498.09 kPa) compared to the transverse (263.99 kPa) direction (p = 0.0005). Buccal mucosa was isotropic with no significant difference in elastic modulus or ultimate tensile strength according to direction of testing. Comparison of tissue types showed a significantly greater mean ultimate tensile strength in the longitudinal direction (p = 0.002) in ureter compared to buccal mucosa. We present the first comparison of the mechanical properties of buccal mucosa with ureter, and demonstrate significant variation in elastic modulus and ultimate tensile strength between the tissue types. These findings have important clinical implications for physiological function and in the design of alternative approaches for reconstruction in buccal mucosa grafted ureters.
Collapse
Affiliation(s)
- S O'Meara
- Strategic Academic Recruitment (StAR) Programme, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Department of Urology, Blackrock Health, Blackrock, Dublin, Ireland.
| | - E M Cunnane
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland
- School of Engineering, University of Limerick, Limerick, Ireland
| | - C M McCarthy
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland
- School of Engineering, University of Limerick, Limerick, Ireland
| | - S M Croghan
- Strategic Academic Recruitment (StAR) Programme, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Urology, Blackrock Health, Blackrock, Dublin, Ireland
| | - J J E Mulvhill
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland
- School of Engineering, University of Limerick, Limerick, Ireland
| | - M T Walsh
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland
- School of Engineering, University of Limerick, Limerick, Ireland
| | - F J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - N F Davis
- Department of Urology, Blackrock Health, Blackrock, Dublin, Ireland
- Department of Urology, Beaumont Hospital, Dublin, Ireland
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
6
|
Peng T, Chai M, Chen Z, Wu M, Li X, Han F, Chen S, Liao C, Yue M, Song YQ, Wu H, Tian L, An G. Exosomes from Hypoxia Preconditioned Muscle-Derived Stem Cells Enhance Cell-Free Corpus Cavernosa Angiogenesis and Reproductive Function Recovery. Adv Healthc Mater 2024; 13:e2401406. [PMID: 39007245 DOI: 10.1002/adhm.202401406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Tissue engineering for penile corpora cavernosa defects requires microvascular system reconstruction.GelMA hydrogels show promise for tissue regeneration. However, using stem cells faces challenges such as immune rejection, limited proliferation and differentiation, and biosafety concerns. Therefore, acellular tissue regeneration may avoid these issues. Exosomes are used from muscle-derived stem cells (MDSCs) to modify 3D-printed hydrogel scaffolds for acellular tissue regeneration. Hypoxia-preconditioned MDSC-derived exosomes are obtained to enhance the therapeutic effect. In contrast to normoxic exosomes (N-Exos), hypoxic exosomes (H-Exos) are found to markedly enhance the proliferation, migration, and capillary-like tube formation of human umbilical vein endothelial cells (HUVECs). High-throughput sequencing analysis of miRNAs isolated from both N-Exos and H-Exos revealed a significant upregulation of miR-21-5p in H-Exos following hypoxic preconditioning. Further validation demonstrated that the miR-21-5p/PDCD4 pathway promoted the proliferation of HUVECs. Epigallocatechin gallate (EGCG) is introduced to improve the mechanical properties and biocompatibility of GelMA hydrogels. EGCG-GelMA scaffolds loaded with different types of Exos are transplanted to repair rabbit penile corpora cavernosa defects, observed the blood flow and repair status of the defect site through color Doppler ultrasound and magnetic resonance imaging, and ultimately restored the rabbit penile erection function and successfully bred offspring. Thus, acellular hydrogel scaffolds offer an effective treatment for penile corpora cavernosa defects.
Collapse
Affiliation(s)
- Tianwen Peng
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Muyuan Chai
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhicong Chen
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Man Wu
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Xiaomin Li
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Feixue Han
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Shuyan Chen
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Chen Liao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Ming Yue
- School of Biomedical Sciences, AIDS Institute and Department of Microbiology, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - You-Qiang Song
- School of Biomedical Sciences, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
| | - Long Tian
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, P. R. China
| | - Geng An
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| |
Collapse
|
7
|
Jin Y, Yang M, Zhao W, Liu M, Fang W, Wang Y, Gao G, Wang Y, Fu Q. Scaffold-based tissue engineering strategies for urethral repair and reconstruction. Biofabrication 2024; 17:012003. [PMID: 39433068 DOI: 10.1088/1758-5090/ad8965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Urethral strictures are common in urology; however, the reconstruction of long urethral strictures remains challenging. There are still unavoidable limitations in the clinical application of grafts for urethral injuries, which has facilitated the advancement of urethral tissue engineering. Tissue-engineered urethral scaffolds that combine cells or bioactive factors with a biomaterial to mimic the native microenvironment of the urethra, offer a promising approach to urethral reconstruction. Despite the recent rapid development of tissue engineering materials and techniques, a consensus on the optimal strategy for urethral repair and reconstruction is still lacking. This review aims to collect the achievements of urethral tissue engineering in recent years and to categorize and summarize them to shed new light on their design. Finally, we visualize several important future directions for urethral repair and reconstruction.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Ming Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States of America
| | - Meng Liu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Yuhui Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| |
Collapse
|
8
|
De Menech Q, Andre L, Konstantinidi S, Benouhiba A, Martinez T, Civet Y, Baldit A, Perriard Y. Characterisation of Polymer Materials for the Development of an Artificial Urethra. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039035 DOI: 10.1109/embc53108.2024.10781661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Low Urinary Tract Dysfunctions (LUTD) and in particular Urinary Incontinence (UI) is a medical condition affecting millions of people worldwide. In this context researchers and engineers performed tests on porcine and human urethras. However, ethical concerns and limited human tissue availability make direct testing on human urethras complicated. Consequently, animal testing, particularly on porcine urethras, has been explored due to their analogous dimensions, anatomical features, and tissue properties. Even though the use of porcine urethras is a good replacement of human urethras, it does not have exactly the same dimensions, mechanical properties and brings ethical concerns. In this paper we propose a replacement for porcine and human urethra testing by investigating several materials that could be used to develop an artificial urethra. Promising materials such as polymers from the silicone and hydrogel families are identified from our literature review. Then, experimental tests performed on an universal tensile test machine is detailed, including the manufacturing of several polymers for which the stress strain response were not well defined in existing literature. From our results, silicone Ecoflex 0010 and our custom made hydrogel polyacrylamide (PAAm) exhibit a stress strain relationship close to human urethra. Even though human urethra and the tested polymers demonstrate a non-linear behaviour, our results shows that our PAAm and Ecoflex 0010 have a maximum stress ranging from 2.2 to 20 kPa for a strain varying from 0 to 1. These materials are deemed suitable as an artificial urethra and a viable substitute for the human urethra.
Collapse
|
9
|
Booth D, Afshari R, Ghovvati M, Shariati K, Sturm R, Annabi N. Advances in 3D bioprinting for urethral tissue reconstruction. Trends Biotechnol 2024; 42:544-559. [PMID: 38057169 PMCID: PMC11669461 DOI: 10.1016/j.tibtech.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Urethral conditions affect children and adults, increasing the risk of urinary tract infections, voiding and sexual dysfunction, and renal failure. Current tissue replacements differ from healthy urethral tissues in structural and mechanical characteristics, causing high risk of postoperative complications. 3D bioprinting can overcome these limitations through the creation of complex, layered architectures using materials with location-specific biomechanical properties. This review highlights prior research and describes the potential for these emerging technologies to address ongoing challenges in urethral tissue engineering, including biomechanical and structural mismatch, lack of individualized repair solutions, and inadequate wound healing and vascularization. In the future, the integration of 3D bioprinting technology with advanced biomaterials, computational modeling, and 3D imaging could transform personalized urethral surgical procedures.
Collapse
Affiliation(s)
- Daniel Booth
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kaavian Shariati
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Renea Sturm
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
O'Meara S, Cunnane EM, Croghan SM, Cunnane CV, Walsh MT, O'Brien FJ, Davis NF. Mechanical characteristics of the ureter and clinical implications. Nat Rev Urol 2024; 21:197-213. [PMID: 38102385 DOI: 10.1038/s41585-023-00831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 12/17/2023]
Abstract
The ureteric wall is a complex multi-layered structure. The ureter shows variation in passive mechanical properties, histological morphology and insertion forces along the anatomical length. Ureter mechanical properties also vary depending on the direction of tensile testing and the anatomical region tested. Compliance is greatest in the proximal ureter and lower in the distal ureter, which contributes to the role of the ureter as a high-resistance sphincter. Similar to other human tissues, the ureteric wall remodels with age, resulting in changes to the mechanical properties. The passive mechanical properties of the ureter vary between species, and variation in tissue storage and testing methods limits comparison across some studies. Knowledge of the morphological and mechanical properties of the ureteric wall can aid in understanding urine transport and safety thresholds in surgical techniques. Indeed, various factors alter the forces required to insert access sheaths or scopes into the ureter, including sheath diameter, safety wires and medications. Future studies on human ureteric tissue both in vivo and ex vivo are required to understand the mechanical properties of the ureter and how forces influence these properties. Testing of instrument insertion forces in humans with a focus on defining safe upper limits and techniques to reduce trauma are also needed. Last, evaluation of dilatation limits in the mid and proximal ureter and clarification of tensile strength anisotropy in human specimens are necessary.
Collapse
Affiliation(s)
- Sorcha O'Meara
- Department of Surgery, Royal College of Surgeons of Ireland (RCSI), Dublin, Ireland.
- Department of Urology, Blackrock Clinic, Blackrock, Co., Dublin, Ireland.
| | - Eoghan M Cunnane
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland
- School of Engineering, University of Limerick, Limerick, Ireland
| | - Stefanie M Croghan
- Department of Surgery, Royal College of Surgeons of Ireland (RCSI), Dublin, Ireland
- Department of Urology, Blackrock Clinic, Blackrock, Co., Dublin, Ireland
| | - Connor V Cunnane
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland
- School of Engineering, University of Limerick, Limerick, Ireland
| | - Michael T Walsh
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland
- School of Engineering, University of Limerick, Limerick, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Niall F Davis
- Department of Surgery, Royal College of Surgeons of Ireland (RCSI), Dublin, Ireland
- Department of Urology, Blackrock Clinic, Blackrock, Co., Dublin, Ireland
- Department of Urology and Transplant Surgery, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
11
|
Antoshin A, Gostev M, Khristidis Y, Giliazova A, Voloshin S, Blagushina N, Smirnova O, Diachkova E, Istranova E, Usanova A, Solodov N, Fayzullin A, Ivanova E, Sadchikova E, Vergara Bashkatova MN, Drakina O, Tarasenko S, Timashev P. Electrophoretically Co-Deposited Collagen-Lactoferrin Membranes with Enhanced Pro-Regenerative Properties for Oral Soft Tissue Regeneration. Int J Mol Sci 2023; 24:17330. [PMID: 38139159 PMCID: PMC10743871 DOI: 10.3390/ijms242417330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The quality of soft tissue defect regeneration after dental surgeries largely determines their final success. Collagen membranes have been proposed for the healing of such defects, but in some cases, they do not guarantee a sufficient volume of the regenerated tissue and vascularization. For this purpose, lactoferrin, a protein with natural pro-regenerative, anti-inflammatory, and pro-angiogenic activity, can be added to collagen. In this article, we used a semipermeable barrier-assisted electrophoretic deposition (SBA-EPD) method for the production of collagen-lactoferrin membranes. The membrane structure was studied by SEM, and its mechanical properties were shown. The lactoferrin release kinetics were shown by ELISA within 75 h. When tested in vitro, we demonstrated that the collagen-lactoferrin membranes significantly increased the proliferation of keratinocytes (HaCaT) and fibroblasts (977hTERT) compared to blank collagen membranes. In vivo, on the vestibuloplasty and free gingival graft harvesting models, we showed that collagen-lactoferrin membranes decreased the wound inflammation and increased the healing rates and regeneration quality. In some parameters, collagen-lactoferrin membranes outperformed not only blank collagen membranes, but also the commercial membrane Mucograft®. Thus, we proved that collagen-lactoferrin membranes produced by the SBA-EPD method may be a valuable alternative to commercially used membranes for soft tissue regeneration in the oral cavity.
Collapse
Affiliation(s)
- Artem Antoshin
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Mikhail Gostev
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Yana Khristidis
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Aliia Giliazova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Sergei Voloshin
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Nataliia Blagushina
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Ekaterina Diachkova
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Elena Istranova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Anna Usanova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Nikolai Solodov
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Elena Ivanova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Elena Sadchikova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119344 Moscow, Russia
| | | | - Olga Drakina
- Department of Operative Surgery and Topographic Anatomy, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Svetlana Tarasenko
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
12
|
Bhave A, Sittkus B, Urban G, Mescheder U, Möller K. Finite element analysis of the interaction between high-compliant balloon catheters and non-cylindrical vessel structures: towards tactile sensing balloon catheters. Biomech Model Mechanobiol 2023; 22:2033-2061. [PMID: 37573552 PMCID: PMC10613175 DOI: 10.1007/s10237-023-01749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
Aiming for sensing balloon catheters which are able to provide intraoperative information of the vessel stiffness and shape, the present study uses finite element analysis (FEA) to evaluate the interaction between high-compliant elastomer balloon catheters with the inner wall of a non-cylindrical-shaped lumen structure. The contact simulations are based on 3D models with varying balloon thicknesses and varying tissue geometries to analyse the resulting balloon and tissue deformation as well as the inflation pressure dependent contact area. The wrinkled tissue structure is modelled by utilizing a two-layer fibre-based Holzapfel-Gasser-Ogden constitutive model and the model parameters are adapted based on available biomechanical data for human urethral vessel samples. The balloon catheter structure is implemented as a high-compliant hyper-elastic silicone material (based on polydimethylsiloxane (PDMS)) with a varying catheter wall thickness between 0.5 and 2.5 µm. Two control parameters are introduced to describe the balloon shape adaption in reaction to a wrinkled vessel wall during the inflation process. Basic semi-quantitative relations are revealed depending on the evolving balloon deformation and contact surface. Based on these relations some general design guidelines for balloon-based sensor catheters are presented. The results of the conducted in-silico study reveal some general interdependencies with respect to the compliance ratio between balloon and tissue and also in respect of the tissue aspect ratio. Further they support the proposed concept of high-compliant balloon catheters equipped for tactile sensing as diagnosis approach in urology and angioplasty.
Collapse
Affiliation(s)
- Ashish Bhave
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054, Villingen-Schwenningen, Germany
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Benjamin Sittkus
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.
- Institute for Microsystems Technology (iMST), Furtwangen University, 78120, Furtwangen, Germany.
| | - Gerald Urban
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Ulrich Mescheder
- Institute for Microsystems Technology (iMST), Furtwangen University, 78120, Furtwangen, Germany
- Associated to the Faculty of Engineering, University of Freiburg, 79110, Freiburg, Germany
| | - Knut Möller
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054, Villingen-Schwenningen, Germany
- Associated to the Faculty of Engineering, University of Freiburg, 79110, Freiburg, Germany
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
13
|
Cheng Q, Zhang L, Zhang J, Zhou X, Wu B, Wang D, Wei T, Shafiq M, Li S, Zhi D, Guan Y, Wang K, Kong D. Decellularized Scaffolds with Double-Layer Aligned Microchannels Induce the Oriented Growth of Bladder Smooth Muscle Cells: Toward Urethral and Ureteral Reconstruction. Adv Healthc Mater 2023; 12:e2300544. [PMID: 37638600 DOI: 10.1002/adhm.202300544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/27/2023] [Indexed: 08/29/2023]
Abstract
There is a great clinical need for regenerating urinary tissue. Native urethras and ureters have bidirectional aligned smooth muscle cells (SMCs) layers, which plays a pivotal role in micturition and transporting urine and inhibiting reflux. Thus far, urinary scaffolds have not been designed to induce the native-mimicking aligned arrangement of SMCs. In this study, a tubular decellularized extracellular matrix (dECM) with an intact internal layer and bidirectional aligned microchannels in the tubular wall, which is realized by the subcutaneous implantation of a template, followed by the removal of the template, and decellularization, is engineered. The dense and intact internal layer effectively increases the leakage pressure of the tubular dECM scaffolds. Rat-derived dECM scaffolds with three different sizes of microchannels are fabricated by tailoring the fiber diameter of the templates. The rat-derived dECM scaffolds exhibiting microchannels of ≈65 µm show suitable mechanical properties, good ability to induce the bidirectional alignment and growth of human bladder SMCs, and elevated higher functional protein expression in vitro. These data indicate that rat-derived tubular dECM scaffolds manifesting double-layer aligned microchannels may be promising candidates to induce the native-mimicking regeneration of SMCs in urethra and ureter reconstruction.
Collapse
Affiliation(s)
- Quhan Cheng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Linli Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingai Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Boyu Wu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dezheng Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tingting Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Muhammad Shafiq
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shengbin Li
- Department of Urology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, 300134, China
| | - Dengke Zhi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Guan
- Department of Urology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, 300134, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
14
|
Huang LP, Liu Y, Li QJ, Zhang WQ, Wu CY, Zhao LM, Xie HQ. A Modified Small Intestinal Submucosa Patch with Multifunction to Promote Scarless Repair and Reinvigoration of Urethra. Adv Healthc Mater 2023; 12:e2300519. [PMID: 37062917 DOI: 10.1002/adhm.202300519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Indexed: 04/18/2023]
Abstract
To reconstruct and restore the functions of the male urethra is a challenging task for urologists. The acellular matrix graft currently used in the clinics is mono-functional and may cause a series of complications including stricture, fibrosis, and stone formation. As a result, such graft materials cannot meet the increasing demand for multifunctionality in the field of urethral tissue engineering. In this context, a multifunctional urethral patch is designed for the repair of urethral defects by mixing protocatechualdehyde (PCA) with small intestinal submucosa (SIS) under an alkalin condition to allow cross linking. As shown, the PCA/SIS patch possesses excellent biocompatibility, antioxidant activity, and anti-inflammatory property. More importantly, this patch can remarkably promote the adhesion, proliferation, and directional extension of rabbit bladder epithelial mucous cells (R-EMCs) as well as rabbit bladder smooth muscle cells (R-SMCs), and upregulate the expression of cytokeratin in the EMCs and contractile protein in the SMCs in vitro. In vivo experiments also confirm that the PCA/SIS patch can significantly enhance scarless repair of urethral defects in rabbits by facilitating smooth muscle regeneration, reducing excessive collagen deposition, and accelerating re-epithelialization and neovascularization. Taken together, the newly developed multifunctional PCA/SIS patch provides a promising candidate for urethral regeneration.
Collapse
Affiliation(s)
- Li-Ping Huang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuan Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qian-Jin Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wen-Qian Zhang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chen-Yu Wu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Long-Mei Zhao
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui-Qi Xie
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
15
|
Shi J, Teng Y, Li D, He J, Midgley AC, Guo X, Wang X, Yang X, Wang S, Feng Y, Lv Q, Hou S. Biomimetic tri-layered small-diameter vascular grafts with decellularized extracellular matrix promoting vascular regeneration and inhibiting thrombosis with the salidroside. Mater Today Bio 2023; 21:100709. [PMID: 37455822 PMCID: PMC10339197 DOI: 10.1016/j.mtbio.2023.100709] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/20/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Small-diameter vascular grafts (SDVGs) are urgently required for clinical applications. Constructing vascular grafts mimicking the defining features of native arteries is a promising strategy. Here, we constructed a tri-layered vascular graft with a native artery decellularized extracellular matrix (dECM) mimicking the component of arteries. The porcine thoracic aorta was decellularized and milled into dECM powders from the differential layers. The intima and media dECM powders were blended with poly (L-lactide-co-caprolactone) (PLCL) as the inner and middle layers of electrospun vascular grafts, respectively. Pure PLCL was electrospun as a strengthening sheath for the outer layer. Salidroside was loaded into the inner layer of vascular grafts to inhibit thrombus formation. In vitro studies demonstrated that dECM provided a bioactive milieu for human umbilical vein endothelial cell (HUVEC) extension adhesion, proliferation, migration, and tube-forming. The in vivo studies showed that the addition of dECM could promote endothelialization, smooth muscle regeneration, and extracellular matrix deposition. The salidroside could inhibit thrombosis. Our study mimicked the component of the native artery and combined it with the advantages of synthetic polymer and dECM which provided a promising strategy for the design and construction of SDVGs.
Collapse
Affiliation(s)
- Jie Shi
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Yanjiao Teng
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Duo Li
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Ju He
- Vascular Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoqin Guo
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Xiudan Wang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Xinran Yang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, 30072, China
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, 30072, China
| | - Qi Lv
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Shike Hou
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| |
Collapse
|
16
|
Farzamfar S, Richer M, Rahmani M, Naji M, Aleahmad M, Chabaud S, Bolduc S. Biological Macromolecule-Based Scaffolds for Urethra Reconstruction. Biomolecules 2023; 13:1167. [PMID: 37627232 PMCID: PMC10452429 DOI: 10.3390/biom13081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Urethral reconstruction strategies are limited with many associated drawbacks. In this context, the main challenge is the unavailability of a suitable tissue that can endure urine exposure. However, most of the used tissues in clinical practices are non-specialized grafts that finally fail to prevent urine leakage. Tissue engineering has offered novel solutions to address this dilemma. In this technology, scaffolding biomaterials characteristics are of prime importance. Biological macromolecules are naturally derived polymers that have been extensively studied for various tissue engineering applications. This review discusses the recent advances, applications, and challenges of biological macromolecule-based scaffolds in urethral reconstruction.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Megan Richer
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
17
|
Cunnane EM, Cunnane CV, Allardyce JM, Croghan SM, Walsh MT, Davis NF, Flood HD, Mulvihill JJE. Mechanical and morphological characterisation of porcine urethras for the assessment of paediatric urinary catheter safety. J Mech Behav Biomed Mater 2023; 143:105923. [PMID: 37270901 DOI: 10.1016/j.jmbbm.2023.105923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
Paediatric urinary catheters are often necessary in critical care settings or to address congenital anomalies affecting the urogenital system. Iatrogenic injuries can occur during the placement of such catheters, highlighting the need for a safety device that can function in paediatric settings. Despite successful efforts to develop devices that improve the safety of adult urinary catheters, no such devices are available for use with paediatric catheters. This study investigates the potential for utilising a pressure-controlled safety mechanism to limit the trauma experienced by paediatric patients during inadvertent inflation of a urinary catheter anchoring balloon in the urethra. Firstly, we establish a paediatric model of the human urethra using porcine tissue by characterising the mechanical and morphological properties of porcine tissue at increasing postnatal timepoints (8, 12, 16 and 30 weeks). We identified that porcine urethras harvested from pigs at postnatal week 8 and 12 exhibit morphological properties (diameter and thickness) that are statistically distinct from adult porcine urethras (postnatal week 30). We therefore utilise urethra tissue from postnatal week 8 and 12 pigs as a model to evaluate a pressure-controlled approach to paediatric urinary catheter balloon inflation intended to limit tissue trauma during inadvertent inflation in the urethra. Our results show that limiting catheter system pressure to 150 kPa avoided trauma in all tissue samples. Conversely, all of the tissue samples that underwent traditional uncontrolled urinary catheter inflation experienced complete rupture. The findings of this study pave the way for the development of a safety device for use with paediatric catheters, thereby alleviating the burden of catastrophic trauma and life changing injuries in children due to a preventable iatrogenic urogenital event.
Collapse
Affiliation(s)
- Eoghan M Cunnane
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| | - Connor V Cunnane
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Joanna M Allardyce
- School of Allied Health, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | | | - Michael T Walsh
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Niall F Davis
- Department of Urology, Beaumont Hospital, Dublin, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Department of Surgery, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Hugh D Flood
- Class Medical Limited, Unit 1 D, Annacotty Business Park, Co, Limerick, Ireland
| | - John J E Mulvihill
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
18
|
Gueldner PH, Marini AX, Li B, Darvish CJ, Chung TK, Weinbaum JS, Curci JA, Vorp DA. Mechanical and matrix effects of short and long-duration exposure to beta-aminopropionitrile in elastase-induced model abdominal aortic aneurysm in mice. JVS Vasc Sci 2023; 4:100098. [PMID: 37152846 PMCID: PMC10160690 DOI: 10.1016/j.jvssci.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/23/2022] [Indexed: 02/19/2023] Open
Abstract
Objective Evaluate the mechanical and matrix effects on abdominal aortic aneurysms (AAA) during the initial aortic dilation and after prolonged exposure to beta-aminopropionitrile (BAPN) in a topical elastase AAA model. Methods Abdominal aortae of C57/BL6 mice were exposed to topical elastase with or without BAPN in the drinking water starting 4 days before elastase exposure. For the standard AAA model, animals were harvested at 2 weeks after active elastase (STD2) or heat-inactivated elastase (SHAM2). For the enhanced elastase model, BAPN treatment continued for either 4 days (ENH2b) or until harvest (ENH2) at 2 weeks; BAPN was continued until harvest at 8 weeks in one group (ENH8). Each group underwent assessment of aortic diameter, mechanical testing (tangent modulus and ultimate tensile strength [UTS]), and quantification of insoluble elastin and bulk collagen in both the elastase exposed aorta as well as the descending thoracic aorta. Results BAPN treatment did not increase aortic dilation compared with the standard model after 2 weeks (ENH2, 1.65 ± 0.23 mm; ENH2b, 1.49 ± 0.39 mm; STD2, 1.67 ± 0.29 mm; and SHAM2, 0.73 ± 0.10 mm), but did result in increased dilation after 8 weeks (4.3 ± 2.0 mm; P = .005). After 2 weeks, compared with the standard model, continuous therapy with BAPN did not have an effect on UTS (24.84 ± 7.62 N/cm2; 18.05 ± 4.95 N/cm2), tangent modulus (32.60 ± 9.83 N/cm2; 26.13 ± 9.10 N/cm2), elastin (7.41 ± 2.43%; 7.37 ± 4.00%), or collagen (4.25 ± 0.79%; 5.86 ± 1.19%) content. The brief treatment, EHN2b, resulted in increased aortic collagen content compared with STD2 (7.55 ± 2.48%; P = .006) and an increase in UTS compared with ENH2 (35.18 ± 18.60 N/cm2; P = .03). The ENH8 group had the lowest tangent modulus (3.71 ± 3.10 N/cm2; P = .005) compared with all aortas harvested at 2 weeks and a lower UTS (2.18 ± 2.18 N/cm2) compared with both the STD2 (24.84 ± 7.62 N/cm2; P = .008) and ENH2b (35.18 ± 18.60 N/cm2; P = .001) groups. No differences in the mechanical properties or matrix protein concentrations were associated with abdominal elastase exposure or BAPN treatment for the thoracic aorta. The tangent modulus was higher in the STD2 group (32.60 ± 9.83 N/cm2; P = .0456) vs the SHAM2 group (17.99 ± 5.76 N/cm2), and the UTS was lower in the ENH2 group (18.05 ± 4.95 N/cm2; P = .0292) compared with the ENH2b group (35.18 ± 18.60 N/cm2). The ENH8 group had the lowest tangent modulus (3.71 ± 3.10 N/cm2; P = .005) compared with all aortas harvested at 2 weeks and a lower UTS (2.18 ± 2.18 N/cm2) compared with both the STD2 (24.84 ± 7.62 N/cm2; P = .008) and ENH2b (35.18 ± 18.60 N/cm2; P = .001) groups. Abdominal aortic elastin in the STD2 group (7.41 ± 2.43%; P = .035) was lower compared with the SHAM2 group (15.29 ± 7.66%). Aortic collagen was lower in the STD2 group (4.25 ± 0.79%; P = .007) compared with the SHAM2 group (12.44 ± 6.02%) and higher for the ENH2b (7.55 ± 2.48%; P = .006) compared with the STD2 group. Conclusions Enhancing an elastase AAA model with BAPN does not affect the initial (2-week) dilation phase substantially, either mechanically or by altering the matrix content. Late mechanical and matrix effects of prolonged BAPN treatment are limited to the elastase-exposed segment of the aorta. Clinical Relevance This paper explores the use of short- and long-term exposure to beta-aminopropionitrile to create an enhanced topical elastase abdominal aortic aneurysm model in mice. Readouts of aneurysm severity included loss of mechanical stability and vascular extracellular matrix composition reminiscent of what is seen in the course of human disease. Additionally, we show that the thoracic aorta, unlike the findings below the renal arteries, is not damaged in our animal model.
Collapse
Affiliation(s)
- Pete H. Gueldner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Ande X. Marini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Bo Li
- Department of Vascular Surgery, Vanderbilt University, Nashville, TN
| | - Cyrus J. Darvish
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Timothy K. Chung
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Justin S. Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - John A. Curci
- Department of Vascular Surgery, Vanderbilt University, Nashville, TN
| | - David A. Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA
- Clinical & Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA
- Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
19
|
Histological Characterization of Class I HLA Molecules in Whole Umbilical Cord Tissue Towards an Inexhaustible Graft Alternative for Reconstructive Surgery. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010110. [PMID: 36671682 PMCID: PMC9855378 DOI: 10.3390/bioengineering10010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Limited graft availability is a constant clinical concern. Hence, the umbilical cord (UC) is an attractive alternative to autologous grafts. The UC is an inexhaustible tissue source, and its removal is harmless and part of standard of care after the birth of the baby. Minimal information exists regarding the immunological profile of a whole UC when it is considered to be used as a tissue graft. We aimed to characterize the localization and levels of class I human leukocyte antigens (HLAs) to understand the allogenicity of the UC. Additionally, HLA-E and HLA-G are putative immunosuppressive antigens that are abundant in placenta, but their profiles in UC whole tissue are unclear. HYPOTHESIS The UC as a whole expresses a relatively low but ubiquitous level of HLA-ABC and significant levels of HLA-G and HLA-E. METHODS Healthy patients with no known pregnancy-related complications were approached for informed consent. UCs at term and between 12 and 19 weeks were collected to compare HLA profiles by gestational age. Formalin-fixed paraffin-embedded tissues were sectioned to 5 µm and immunohistochemically stained with a pan-HLA-ABC, two HLA-G-specific, or an HLA-E-specific antibody. RESULTS HLA-ABC was consistently found present in UCs. HLA-ABC was most concentrated in the UC vessel walls and amniotic epithelium but more dispersed in the Wharton's Jelly. HLA-E had a similar localization pattern to HLA-ABC in whole UC tissues at both gestational ages, but its protein level was lower. HLA-G localization and intensity were poor in all UC tissues analyzed, but additional analyses by Western immunoblot and mass spectrometry revealed a low level of HLA-G in the UC. CONCLUSION The UC may address limitations of graft availability. Rather than the presence of HLA-G, the immunosuppressive properties of the UC are more likely due to the abundance of HLA-E and the interaction known to occur between HLA-E and HLA-ABC. The co-localization of HLA-E and HLA-ABC suggests that HLA-E is likely presenting HLA-ABC leader peptides to immune cells, which is known to have a primarily inhibitory effect.
Collapse
|
20
|
Gao C, Huang Y, Zhang L, Wei P, Jing W, Wang H, Yuan Z, Zhang D, Yu Y, Yang X, Cai Q. Self-reinforcement hydrogel with sustainable oxygen-supply for enhanced cell ingrowth and potential tissue regeneration. BIOMATERIALS ADVANCES 2022; 141:213105. [PMID: 36088718 DOI: 10.1016/j.bioadv.2022.213105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Hydrogels composed of natural biopolymers are attractive for tissue regeneration applications owing to their advantages such as biocompatibility and ease of administration, etc.. Yet, the low oxygen level and the crosslinked network inside bulk hydrogels, as well as the hypoxic status in defect areas, hamper cell viability, function, and eventual tissue repair. Herein, based on Ca2+-crosslinked alginate hydrogel, oxygen-generating calcium peroxide (CaO2) was introduced, which could provide a dynamic crosslinking alongside the CaO2 decomposition. Compared to the CaCl2-crosslinked alginate hydrogel, bone marrow mesenchymal stromal cells cultured with CaO2-contained system displayed remarkably improved biological behaviors. Furthermore, in vivo evaluations were carried out on a subcutaneous implantation in rats, and the results demonstrated the importance of the local oxygen availability in a series of crucial events for tissue regeneration, such as activating cell viability, migration, angiogenesis, and osteogenesis. In summary, the obtained Ca2+-crosslinked alginate hydrogel achieved a better microenvironment for cell ingrowth and potential tissue regeneration as the CaCl2 crosslinker being replaced by oxygen-generating CaO2 nanoparticles, due to its contribution in remedying the local hypoxic condition, promisingly, the release of Ca2+ makes the hydrogel to be a possible candidate scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Chenyuan Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liwen Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pengfei Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Jing
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haijun Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Daixing Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; Foshan (Southern China) Institute for New Materials, Foshan 528200, Guangdong, China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
21
|
Tan Q, Le H, Tang C, Zhang M, Yang W, Hong Y, Wang X. Tailor-made natural and synthetic grafts for precise urethral reconstruction. J Nanobiotechnology 2022; 20:392. [PMID: 36045428 PMCID: PMC9429763 DOI: 10.1186/s12951-022-01599-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Injuries to the urethra can be caused by malformations, trauma, inflammation, or carcinoma, and reconstruction of the injured urethra is still a significant challenge in clinical urology. Implanting grafts for urethroplasty and end-to-end anastomosis are typical clinical interventions for urethral injury. However, complications and high recurrence rates remain unsatisfactory. To address this, urethral tissue engineering provides a promising modality for urethral repair. Additionally, developing tailor-made biomimetic natural and synthetic grafts is of great significance for urethral reconstruction. In this work, tailor-made biomimetic natural and synthetic grafts are divided into scaffold-free and scaffolded grafts according to their structures, and the influence of different graft structures on urethral reconstruction is discussed. In addition, future development and potential clinical application strategies of future urethral reconstruction grafts are predicted.
Collapse
Affiliation(s)
- Qinyuan Tan
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, People's Republic Of China
| | - Chao Tang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Ming Zhang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Weijie Yang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Yazhao Hong
- Department of Pediatric Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Street, Nanjing, 210029, People's Republic Of China.
| | - Xiaoqing Wang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China.
| |
Collapse
|
22
|
符 舟, 肖 树, 符 伟. [Research advances of three-dimensional bioprinting technology in urinary system tissue engineering]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:639-644. [PMID: 35788535 PMCID: PMC10950772 DOI: 10.7507/1001-5515.202107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/14/2022] [Indexed: 06/15/2023]
Abstract
For the damage and loss of tissues and organs caused by urinary system diseases, the current clinical treatment methods have limitations. Tissue engineering provides a therapeutic method that can replace or regenerate damaged tissues and organs through the research of cells, biological scaffolds and biologically related molecules. As an emerging manufacturing technology, three-dimensional (3D) bioprinting technology can accurately control the biological materials carrying cells, which further promotes the development of tissue engineering. This article reviews the research progress and application of 3D bioprinting technology in tissue engineering of kidney, ureter, bladder, and urethra. Finally, the main current challenges and future prospects are discussed.
Collapse
Affiliation(s)
- 舟洋 符
- 解放军医学院(北京 100853)Chinese PLA Medical School, Beijing 100853, P. R. China
| | - 树伟 肖
- 解放军医学院(北京 100853)Chinese PLA Medical School, Beijing 100853, P. R. China
| | - 伟军 符
- 解放军医学院(北京 100853)Chinese PLA Medical School, Beijing 100853, P. R. China
| |
Collapse
|
23
|
Rowe CK, Jamdee T, Foster C, Burke KA. Do the materials matter? A review of the literature and analysis of the materials properties of urethral stents for hypospadias repair. J Pediatr Urol 2022; 18:160-167. [PMID: 35120811 DOI: 10.1016/j.jpurol.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/06/2021] [Accepted: 01/09/2022] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Despite the prevalence of hypospadias surgery and the common use of postoperative urethral stents, there has been no evaluation of the material properties of common stents. Our study sets out to close this gap with a literature review of recent publications comparing outcomes after hypospadias surgery for different urethral stent types and an evaluation of the material properties of four common urethral stents. STUDY DESIGN A review of the English language literature from 2011 to 2021 was performed. Thermal analysis and mechanical analysis of the Zaontz Urethral Stent, the Firlit-Kluge Urethral Stent, the Koyle Diaper Stent, and the Bard Premature Infant Feeding Tube was also undertaken. RESULTS Out of 165 papers, four met inclusion criteria. There was limited research on this topic, and no significant evidence that different stent materials impacted surgical complication rates. One study found improved comfort with the Zaontz stent, and another found a reduction emergency room visits with the Koyle stent. Using a foley balloon was associated with increased fistula rates, though this was likely due to the balloon design and not the material. Analysis of stents shows that all four are rubbery polymers at body temperature (Summary Table). The Zaontz and Koyle stents are thermoplastic elastomers with strong melting transitions above body temperature, but the Firlit-Kluge stent is amorphous at 37 °C and is likely covalently cross-linked to generate the network. The Bard feeding tube was the stiffest, with a Young's Modulus of 14.0 ± 0.78 (compared to 4.12 ± 0.56 for Zaontz, 4.92 ± 0.63 for Firlit-Kluge, and 4.09 ± 0.49 for Koyle). The Bard Feeding Tube is also the least extensible, fracturing at just over 300% strain compared to the other stents that can be stretched to greater than 2000% strain before fracture. Cyclic deformation studies demonstrate that the Zaontz, Firlit-Kluge, and Koyle stents are able to stretch and recover their shape more completely, a finding determined by the lower amount of plastic deformation those stents display compared to the Bard Feeding Tube. DISCUSSION While there is little information associating urethral stent type with outcomes after hypospadias surgery, material properties may account for findings of prior studies. Stiffer stents may contribute to decreased postoperative comfort, while a stent that is too soft and extensible may have issues with dislodgement, kinking and breaking. CONCLUSION This study provides the foundation for future work optimizing urethral stents, designing support for regenerative medicine applications, and improving hypospadias outcomes.
Collapse
Affiliation(s)
- Courtney K Rowe
- Division of Pediatric Urology, Connecticut Children's, Hartford, CT, USA
| | - Tawan Jamdee
- Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Christopher Foster
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Kelly A Burke
- Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA; Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
24
|
Tri-Layered Vascular Grafts Guide Vascular Cells’ Native-like Arrangement. Polymers (Basel) 2022; 14:polym14071370. [PMID: 35406244 PMCID: PMC9003212 DOI: 10.3390/polym14071370] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Bionic grafts hold great promise for directing tissue regeneration. In vascular tissue engineering, although a large number of synthetic grafts have been constructed, these substitutes only partially recapitulated the tri-layered structure of native arteries. Synthetic polymers such as poly(l-lactide-co-ε-caprolactone) (PLCL) possess good biocompatibility, controllable degradation, remarkable processability, and sufficient mechanical strength. These properties of PLCL show great promise for fabricating synthetic vascular substitutes. Here, tri-layered PLCL vascular grafts (TVGs) composed of a smooth inner layer, circumferentially aligned fibrous middle layer, and randomly distributed fibrous outer layer were prepared by sequentially using ink printing, wet spinning, and electrospinning techniques. TVGs possessed kink resistance and sufficient mechanical properties (tensile strength, elastic modulus, suture retention strength, and burst pressure) equivalent to the gold standard conduits of clinical application, i.e., human saphenous veins and human internal mammary arteries. The stratified structure of TVGs exhibited a visible guiding effect on specific vascular cells including enhancing endothelial cell (EC) monolayer formation, favoring vascular smooth muscle cells’ (VSMCs) arrangement and elongation, and facilitating fibroblasts’ proliferation and junction establishment. Our research provides a new avenue for designing synthetic vascular grafts with polymers.
Collapse
|
25
|
Serpilli M, Zitti G, Dellabella M, Castellani D, Maranesi E, Morettini M, Lenci S, Burattini L. A Preliminary Validation of a New Surgical Procedure for the Treatment of Primary Bladder Neck Obstruction Using a Computational Modeling Approach. Bioengineering (Basel) 2021; 8:87. [PMID: 34206356 PMCID: PMC8301152 DOI: 10.3390/bioengineering8070087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/13/2023] Open
Abstract
A new surgical procedure for the treatment of primary bladder neck obstruction with maintenance of anterograde ejaculation is proposed. In place of monolateral or bilateral bladder neck incision, associated with a loss of ejaculation rate of up to 30%, the new surgical procedure consists of laser drilling the bladder neck with a number of holes and without muscle fiber disruption. The effect of this novel procedure has been studied numerically, with a simplified two-dimensional numerical model of the internal urethral sphincter, varying the position and the number of holes in the fibrotic region of the urethral tissue. Results show an improvement of the urethral sphincter opening by increasing the number of holes, ranging from about 6% to 16% of recovery. Moreover, a non-aligned position of holes positively influences the opening recovery. The concentrations of maximum principal strain and stress have been registered in the proximity of the interface between the physiologic and diseased sphincter, and in those regions where the radial thickness is significantly thinner. The effects on the first five patients have been included in the study, showing improvement in micturition, lower urinary tract symptoms, sustained ejaculatory function, and quality of life.
Collapse
Affiliation(s)
- Michele Serpilli
- Department of Civil and Building Engineering, and Architecture, Università Politecnica delle Marche, Via Brecce Biance, 60131 Ancona, Italy; (M.S.); (G.Z.); (S.L.)
| | - Gianluca Zitti
- Department of Civil and Building Engineering, and Architecture, Università Politecnica delle Marche, Via Brecce Biance, 60131 Ancona, Italy; (M.S.); (G.Z.); (S.L.)
| | - Marco Dellabella
- Department of Urology, IRCCS INRCA, 60124 Ancona, Italy; (M.D.); (D.C.); (E.M.)
| | - Daniele Castellani
- Department of Urology, IRCCS INRCA, 60124 Ancona, Italy; (M.D.); (D.C.); (E.M.)
| | - Elvira Maranesi
- Department of Urology, IRCCS INRCA, 60124 Ancona, Italy; (M.D.); (D.C.); (E.M.)
| | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Stefano Lenci
- Department of Civil and Building Engineering, and Architecture, Università Politecnica delle Marche, Via Brecce Biance, 60131 Ancona, Italy; (M.S.); (G.Z.); (S.L.)
| | - Laura Burattini
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy;
| |
Collapse
|
26
|
Cunnane CV, Croghan SM, Walsh MT, Cunnane EM, Davis NF, Flood HD, Mulvihill JJE. Cryopreservation of porcine urethral tissue: Storage at -20°C preserves the mechanical, failure and geometrical properties. J Mech Behav Biomed Mater 2021; 119:104516. [PMID: 33932753 DOI: 10.1016/j.jmbbm.2021.104516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Cryopreservation is required to preserve the native properties of tissue for prolonged periods of time. In this study, we evaluate the impact that 4 different cryopreservation protocols have on porcine urethral tissue, to identify a protocol that best preserves the native properties of the tissue. The cryopreservation protocols include storage in cryoprotective agents at -20 °C and -80 °C with a slow, gradual, and fast reduction in temperature. To evaluate the effects of cryopreservation, the tissue is mechanically characterised in uniaxial tension and the mechanical properties, failure mechanics, and tissue dimensions are compared fresh and following cryopreservation. The mechanical response of the tissue is altered following cryopreservation, yet the elastic modulus from the high stress, linear region of the Cauchy stress - stretch curves is unaffected by the freezing process. To further investigate the change in mechanical response following cryopreservation, the stretch at different tensile stress values was evaluated, which revealed that storage at -20 °C is the only protocol that does not significantly alter the mechanical properties of the tissue compared to the fresh samples. Conversely, the ultimate tensile strength and the stretch at failure were relatively unaffected by the freezing process, regardless of the cryopreservation protocol. However, there were alterations to the tissue dimensions following cryopreservation that were significantly different from the fresh samples for the tissue stored at -80 °C. Therefore, any study intent on preserving the mechanical, failure, and geometric properties of urethral tissue during cryopreservation should do so by freezing samples at -20 °C, as storage at -80 °C is shown here to significantly alter the tissue properties.
Collapse
Affiliation(s)
- Connor V Cunnane
- BioSciBer, Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | | | - Michael T Walsh
- BioSciBer, Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | | | - Niall F Davis
- Department of Urology, Beaumont Hospital, Dublin, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Hugh D Flood
- Class Medical Limited, Unit 1 D, Annacotty Business Park, Co. Limerick, Ireland
| | - John J E Mulvihill
- BioSciBer, Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|