1
|
Liang JL, Cao Y, Lv K, Xiao B, Sun J. Amplifying Ca 2+ overload by engineered biomaterials for synergistic cancer therapy. Biomaterials 2025; 316:123027. [PMID: 39700532 DOI: 10.1016/j.biomaterials.2024.123027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Ca2+ overload is one of the most widely causes of inducing apoptosis, pyroptosis, immunogenic cell death, autophagy, paraptosis, necroptosis, and calcification of tumor cells, and has become the most valuable therapeutic strategy in the field of cancer treatment. Nevertheless, several challenges remain in translating Ca2+ overload-mediated therapeutic strategies into clinical applications, such as the precise control of Ca2+ dynamics, specificity of Ca2+ homeostasis dysregulation, as well as comprehensive mechanisms of Ca2+ regulation. Given this, we comprehensively reviewed the Ca2+-driven intracellular signaling pathways and the application of Ca2+-based biomaterials (such as CaCO3-, CaP-, CaO2-, CaSi-, CaF2-, and CaH2-) in mediating cancer diagnosis, treatment, and immunotherapy. Meanwhile, the latest researches on Ca2+ overload-mediated therapeutic strategies, as well as those combined with multiple-model therapies in mediating cancer immunotherapy are further highlighted. More importantly, the critical challenges and the future prospects of the Ca2+ overload-mediated therapeutic strategies are also discussed. By consolidating recent findings and identifying future research directions, this review aimed to advance the field of oncology therapy and contribute to the development of more effective and targeted treatment modalities.
Collapse
Affiliation(s)
- Jun-Long Liang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Yangyang Cao
- Hangzhou Ultra-theranostics Biopharmaceuticals Technology Co., Ltd., Hangzhou, 311231, China
| | - Kaiwei Lv
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Bing Xiao
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Yu Y, Li Y, Gong Z, Liao P, Ma Y, Zhou L, Gong J. A Moldable, Tough Mineral-Dominated Nanocomposite as a Recyclable Structural Material. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410266. [PMID: 39757557 DOI: 10.1002/smll.202410266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Flexible hybrid minerals, primarily composed of inorganic ionic crystal nanolines and a small amount of organic molecules, have significant potential for the development of sustainable structural materials. However, the weak interactions and insufficient crosslinking among the inorganic nanolines limit the mechanical enhancement and application of these hybrid minerals in high-strength structural materials. Inspired by tough biominerals and modern reinforced concrete structures, this study proposes introducing an aramid nanofiber (ANF) network as a flexible framework during the polymerization of calcium phosphate oligomers (CPO), crosslinked by polyvinyl alcohol (PVA) and sodium alginate (SA). This approach allows the flexible inorganic nanolines formed through CPO polymerization to be integrated into the organic framework, thereby creating tough mineral-based structural materials (inorganic content: 70.7 wt.%), denoted as PVA/SA/ANF/CPO (PSAC). The multiple intermolecular interactions between the organic and inorganic phases, combined with the integrated nano-reinforced concrete structure, endow PSAC with significantly enhanced tensile strength (86.6 ± 8.6 MPa), comparable to that of high-strength polymer plastics. Moreover, PSAC possesses excellent plasticity and flame retardancy. The noncovalent molecular interactions within PSAC enable efficient recyclability. Consequently, PSAC has the potential to replace high-strength polymer plastics and structural components, providing a promising avenue for developing high-strength and toughness mineral-based structural materials.
Collapse
Affiliation(s)
- Yadong Yu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072, P. R. China
| | - Yexuan Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Zeyu Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Peng Liao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yanyu Ma
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Lina Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Wang F, Jiang Y, Wang Y. Resveratrol-loaded metal-organic framework for mitochondria-targeted amplified CO gas therapy. Front Chem 2025; 13:1545850. [PMID: 39906151 PMCID: PMC11788274 DOI: 10.3389/fchem.2025.1545850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Carbon monoxide (CO) based gas therapy has recently garnered significant attention due to its remarkable therapeutic effects for various major diseases. However, the primary challenge in gas therapy is the effective delivery of gas prodrug to targeted sites, as well as achieving precise spatial-temporal control over their release behavior. In this work, we provide a facile method to design ROS-responsive and mitochondrial targeting CO-delivery nanoplatform, based on the thiol-functionalized metal-organic framework (MOF), abbreviated as UiO-66-SH, incorporating the drug resveratrol (RES) for combined tumor therapy. After endocytosis by tumor cells and localization within the mitochondria, UiO@FeCO@RES was decomposed by ATP to release RES and generate CO gas via a Fenton-like reaction between hydroxyl radicals (·OH) and FeCO. RES acts as an ATPase inhibitor, disrupting the metabolism of the respiratory chain in tumor cell and thereby facilitating ATP-blocked metabolic therapy. In vitro experimental results demonstrate that the combination therapy, involving both RES drug and CO gas therapy, exhibits a synergistic effect against cancer cells. This synergistic strategy has endowed UiO@FeCO@RES as a promising material for biomedical applications.
Collapse
Affiliation(s)
| | | | - Yang Wang
- School of Mechanical Engineering, Nantong Institute of Technology, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Lin Y, Wu J, Zhuang Z, Gong X, Jin Z, Lin X, Zhang C, Zhao K. A pH-responsive microneedle patch for the transdermal delivery of biomineralized insulin nanoparticles to diabetes treatment. Int J Biol Macromol 2025; 284:137955. [PMID: 39592049 DOI: 10.1016/j.ijbiomac.2024.137955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Diabetes mellitus is a chronic metabolic disease, and insulin injection administration remains the most commonly used treatment approach in clinical practice. However, this method faces the risks of insufficient specificity and high toxic side effects on normal tissues. Therefore, developing more effective drug administration methods is crucial for improving the safety and bioavailability of insulin. In this study, a swellable composite microneedle delivery system loaded with biomineralized insulin nanoparticles was constructed for effective diabetes treatment via percutaneous administration. The microneedle arrays were prepared by using N-2-hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) and hyaluronic acid (HA) with the assistance of β-Glycerophosphate Tetrahydrate (β-GP). Glucose oxidase (GOx) and calcium phosphate-biomineralized insulin nanoparticles (BINPs) were co-encapsulated in the microneedle arrays. After insertion into the skin, the interstitial fluid and high glucose concentration facilitated the sustained transdermal delivery of BINPs from the tips of the microneedle patches and the glucose-responsive release of insulin. The constructed composite microneedle patches demonstrated desirable therapeutic effects for diabetes with high biosafety, biodegradation and long-lasting effects. This study proposes a new strategy for developing intelligent drug delivery systems based on polymeric microneedle patches, and it is expected to be used in the broader biomedical field with potential applications.
Collapse
Affiliation(s)
- Yuhong Lin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Jue Wu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Zihao Zhuang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Xiaochen Gong
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China; School of Medical Technology, Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Zheng Jin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Xuezheng Lin
- Taizhou Central Hospital, Taizhou University Hospital, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Chunjing Zhang
- School of Medical Technology, Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China.
| | - Kai Zhao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China; Taizhou Central Hospital, Taizhou University Hospital, Taizhou University, Taizhou, Zhejiang 318000, China; Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
5
|
Dai X, Liu Z, Zhao X, Guo K, Ding X, Xu FJ, Zhao N. NIR-II-Responsive Hybrid System Achieves Cascade-Augmented Antitumor Immunity via Genetic Engineering of Both Bacteria and Tumor Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407927. [PMID: 39185788 DOI: 10.1002/adma.202407927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Indexed: 08/27/2024]
Abstract
The combination of nanoparticles and tumor-targeting bacteria for cancer immunotherapy can overcome the shortcomings of poor nanoparticle accumulation, limited penetration, and restricted distribution. However, it remains a great challenge for the hybrid system to improve therapeutic efficacy through the simultaneous and controllable regulation of immune cells and tumor cells. Herein, a hybrid therapeutic platform is rationally designed to achieve immune cascade-augmented cancer immunotherapy. To construct the hybrids, photothermal nanoparticles responsive to light in the second near-infrared (NIR-II) region are conjugated onto the surface of engineered bacteria through pH-responsive Schiff base bonds. Taking advantage of the hypoxia targeting and deep penetration characteristics of the bacteria, the hybrids can accumulate at tumor sites. Then nanoparticles detach from the bacteria to realize genetic engineering of tumor cells, which induces tumor cell apoptosis and down-regulate the expression of programmed cell death ligand 1 to alleviate immunosuppressive tumor microenvironment. The mild photothermal heating can not only induce tumor-associated antigen release, but also trigger sustainable expression of cytokine interleukin-2. Notably, a synergistic antitumor effect is achieved between the process of p53 transfection and NIR-II light-activated genetic engineering of bacteria. This work proposes a facile strategy for the construction of hybrid system to achieve cascade-augmented cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoguang Dai
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhiwen Liu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyi Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kangli Guo
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Arabuli KV, Kopoleva E, Akenoun A, Mikhailova LV, Petrova E, Muslimov AR, Senichkina DA, Tsymbal S, Shakirova AI, Ignatiev AI, Lepik KV, Zyuzin MV. On-chip fabrication of calcium carbonate nanoparticles loaded with various compounds using microfluidic approach. BIOMATERIALS ADVANCES 2024; 161:213904. [PMID: 38805763 DOI: 10.1016/j.bioadv.2024.213904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Engineered calcium carbonate (CaCO3) particles are extensively used as drug delivery systems due to their availability, biological compatibility, biodegradability, and cost-effective production. The synthesis procedure of CaCO3 particles, however, suffers from poor reproducibility. Furthermore, reducing the size of CaCO3 particles to <100 nm requires the use of additives in the reaction, which increases the total reaction time. Here we propose on-chip synthesis and loading of nanoscaled CaCO3 particles using microfluidics. After the development and fabrication of a microfluidic device, we optimized the synthesis of CaCO3 NPs by varying different parameters such as flow rates in the microfluidic channels, concentration of reagents, and the reaction time. To prove the versatility of the used synthesis route, we performed single and double loading of CaCO3 NPs with various compounds (Doxorubicin, Cy5 or FITC conjugated with BSA, and DNA) using the same microfluidic device. Further, the on-chip loaded CaCO3 NPs were used as carriers to transfer compounds to model cells. We have developed a microfluidic synthesis method that opens up a new pathway for easy on-chip fabrication of functional nanoparticles for clinical use.
Collapse
Affiliation(s)
- Konstantin V Arabuli
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Elena Kopoleva
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Anas Akenoun
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Lidia V Mikhailova
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Elena Petrova
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Albert R Muslimov
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Dina A Senichkina
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Sergey Tsymbal
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg 197101, Russian Federation
| | - Alena I Shakirova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Alexander I Ignatiev
- Research and Educational Centre of Photonics and Optoinformatics, ITMO University, Saint-Petersburg 199034, Russian Federation
| | - Kirill V Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation; Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China.
| |
Collapse
|
7
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Yang X, Sun Y, Zhang H, Liu F, Chen Q, Shen Q, Kong Z, Wei Q, Shen JW, Guo Y. CaCO 3 nanoplatform for cancer treatment: drug delivery and combination therapy. NANOSCALE 2024; 16:6876-6899. [PMID: 38506154 DOI: 10.1039/d3nr05986c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The use of nanocarriers for drug delivery has opened up exciting new possibilities in cancer treatment. Among them, calcium carbonate (CaCO3) nanocarriers have emerged as a promising platform due to their exceptional biocompatibility, biosafety, cost-effectiveness, wide availability, and pH-responsiveness. These nanocarriers can efficiently encapsulate a variety of small-molecule drugs, proteins, and nucleic acids, as well as co-encapsulate multiple drugs, providing targeted and sustained drug release with minimal side effects. However, the effectiveness of single-drug therapy using CaCO3 nanocarriers is limited by factors such as multidrug resistance, tumor metastasis, and recurrence. Combination therapy, which integrates multiple treatment modalities, offers a promising approach for tackling these challenges by enhancing efficacy, leveraging synergistic effects, optimizing therapy utilization, tailoring treatment approaches, reducing drug resistance, and minimizing side effects. CaCO3 nanocarriers can be employed for combination therapy by integrating drug therapy with photodynamic therapy, photothermal therapy, sonodynamic therapy, immunotherapy, radiation therapy, radiofrequency ablation therapy, and imaging. This review provides an overview of recent advancements in CaCO3 nanocarriers for drug delivery and combination therapy in cancer treatment over the past five years. Furthermore, insightful perspectives on future research directions and development of CaCO3 nanoparticles as nanocarriers in cancer treatment are discussed.
Collapse
Affiliation(s)
- Xiaorong Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yue Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Hong Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Fengrui Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhe Kong
- Center for Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
9
|
Lin C, Akhtar M, Li Y, Ji M, Huang R. Recent Developments in CaCO 3 Nano-Drug Delivery Systems: Advancing Biomedicine in Tumor Diagnosis and Treatment. Pharmaceutics 2024; 16:275. [PMID: 38399329 PMCID: PMC10893456 DOI: 10.3390/pharmaceutics16020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Calcium carbonate (CaCO3), a natural common inorganic material with good biocompatibility, low toxicity, pH sensitivity, and low cost, has a widespread use in the pharmaceutical and chemical industries. In recent years, an increasing number of CaCO3-based nano-drug delivery systems have been developed. CaCO3 as a drug carrier and the utilization of CaCO3 as an efficient Ca2+ and CO2 donor have played a critical role in tumor diagnosis and treatment and have been explored in increasing depth and breadth. Starting from the CaCO3-based nano-drug delivery system, this paper systematically reviews the preparation of CaCO3 nanoparticles and the mechanisms of CaCO3-based therapeutic effects in the internal and external tumor environments and summarizes the latest advances in the application of CaCO3-based nano-drug delivery systems in tumor therapy. In view of the good biocompatibility and in vivo therapeutic mechanisms, they are expected to become an advancing biomedicine in the field of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Chenteng Lin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Minhang Hospital, Fudan University, Shanghai 201203, China;
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Yingjie Li
- Shanghai Yangpu District Mental Health Center, Shanghai 200090, China;
| | - Min Ji
- Shanghai Yangpu District Mental Health Center, Shanghai 200090, China;
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Minhang Hospital, Fudan University, Shanghai 201203, China;
| |
Collapse
|
10
|
Feng Y, Wang J, Cao J, Cao F, Chen X. Manipulating calcium homeostasis with nanoplatforms for enhanced cancer therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230019. [PMID: 38854493 PMCID: PMC10867402 DOI: 10.1002/exp.20230019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/28/2023] [Indexed: 06/11/2024]
Abstract
Calcium ions (Ca2+) are indispensable and versatile metal ions that play a pivotal role in regulating cell metabolism, encompassing cell survival, proliferation, migration, and gene expression. Aberrant Ca2+ levels are frequently linked to cell dysfunction and a variety of pathological conditions. Therefore, it is essential to maintain Ca2+ homeostasis to coordinate body function. Disrupting the balance of Ca2+ levels has emerged as a potential therapeutic strategy for various diseases, and there has been extensive research on integrating this approach into nanoplatforms. In this review, the current nanoplatforms that regulate Ca2+ homeostasis for cancer therapy are first discussed, including both direct and indirect approaches to manage Ca2+ overload or inhibit Ca2+ signalling. Then, the applications of these nanoplatforms in targeting different cells to regulate their Ca2+ homeostasis for achieving therapeutic effects in cancer treatment are systematically introduced, including tumour cells and immune cells. Finally, perspectives on the further development of nanoplatforms for regulating Ca2+ homeostasis, identifying scientific limitations and future directions for exploitation are offered.
Collapse
Affiliation(s)
- Yanlin Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Jianlin Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Agency for Science, Technology, and Research (A*STAR)Institute of Molecular and Cell BiologySingaporeSingapore
| |
Collapse
|
11
|
Tang F, Ding A, Xu Y, Ye Y, Li L, Xie R, Huang W. Gene and Photothermal Combination Therapy: Principle, Materials, and Amplified Anticancer Intervention. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307078. [PMID: 37775950 DOI: 10.1002/smll.202307078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Gene therapy (GT) and photothermal therapy (PTT) have emerged as promising alternatives to chemotherapy and radiotherapy for cancer treatment, offering noninvasiveness and reduced side effects. However, their efficacy as standalone treatments is limited. GT exhibits slow response rates, while PTT is confined to local tumor ablation. The convergence of GT and PTT, known as GT-PTT, facilitated by photothermal gene nanocarriers, has attracted considerable attention across various disciplines. In this integrated approach, GT reciprocates PTT by sensitizing cellular response to heat, while PTT benefits GT by improving gene translocation, unpacking, and expression. Consequently, this integration presents a unique opportunity for cancer therapy with rapid response and improved effectiveness. Extensive efforts over the past few years have been dedicated to the development of GT-PTT, resulting in notable achievements and rapid progress from the laboratory to potential clinical applications. This comprehensive review outlines recent advances in GT-PTT, including synergistic mechanisms, material systems, imaging-guided therapy, and anticancer applications. It also explores the challenges and future prospects in this nascent field. By presenting innovative ideas and insights into the implementation of GT-PTT for enhanced cancer therapy, this review aims to inspire further progress in this promising area of research.
Collapse
Affiliation(s)
- Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yao Xu
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yingsong Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rongjun Xie
- Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
12
|
Zhang DG, Pan YJ, Chen BQ, Lu XC, Xu QX, Wang P, Kankala RK, Jiang NN, Wang SB, Chen AZ. Protein-guided biomimetic nanomaterials: a versatile theranostic nanoplatform for biomedical applications. NANOSCALE 2024; 16:1633-1649. [PMID: 38168813 DOI: 10.1039/d3nr05495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Over the years, bioinspired mineralization-based approaches have been applied to synthesize multifunctional organic-inorganic nanocomposites. These nanocomposites can address the growing demands of modern biomedical applications. Proteins, serving as vital biological templates, play a pivotal role in the nucleation and growth processes of various organic-inorganic nanocomposites. Protein-mineralized nanomaterials (PMNMs) have attracted significant interest from researchers due to their facile and convenient preparation, strong physiological activity, stability, impressive biocompatibility, and biodegradability. Nevertheless, few comprehensive reviews have expounded on the progress of these nanomaterials in biomedicine. This article systematically reviews the principles and strategies for constructing nanomaterials using protein-directed biomineralization and biomimetic mineralization techniques. Subsequently, we focus on their recent applications in the biomedical field, encompassing areas such as bioimaging, as well as anti-tumor, anti-bacterial, and anti-inflammatory therapies. Furthermore, we discuss the challenges encountered in practical applications of these materials and explore their potential in future applications. This review aspired to catalyze the continued development of these bioinspired nanomaterials in drug development and clinical diagnosis, ultimately contributing to the fields of precision medicine and translational medicine.
Collapse
Affiliation(s)
- Da-Gui Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Yu-Jing Pan
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Biao-Qi Chen
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Xiao-Chang Lu
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Qin-Xi Xu
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Pei Wang
- Jiangxi Provincial Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Diseases, School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ranjith Kumar Kankala
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ni-Na Jiang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Shi-Bin Wang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ai-Zheng Chen
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
13
|
Lu Y, Chen L, Wu Z, Zhou P, Dai J, Li J, Wen Q, Fan Y, Zeng F, Chen Y, Fu S. Self-driven bioactive hybrids co-deliver doxorubicin and indocyanine green nanoparticles for chemo/photothermal therapy of breast cancer. Biomed Pharmacother 2023; 169:115846. [PMID: 37944443 DOI: 10.1016/j.biopha.2023.115846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Breast cancer is characterized by insidious onset, rapid progression, easy recurrence, and metastasis. Conventional monotherapies are usually ineffective due to insufficient drug delivery. Therefore, the combination of multimodal therapy with tumor microenvironment (TME)-responsive nanoplatforms is increasingly being considered for the targeted treatment of breast cancer. We synthesized bioactive hybrid nanoparticles for synergistic chemotherapy and photothermal therapy. Briefly, doxorubicin (DOX) and indocyanine green (ICG)-loaded nanoparticles (DI) of average particle size 113.58 ± 2.14 nm were synthesized, and their surface were modified with polydopamine (PDA) and attached to the anaerobic probiotic Bifidobacterium infantis (Bif). The bioactive Bif@DIP hybrid showed good photothermal conversion efficiency of about 38.04%. In addition, the self-driving ability of Bif allowed targeted delivery of the PDA-coated DI nanoparticles (DIP) to the hypoxic regions of the tumor. The low pH and high GSH levels in the TME stimulated the controlled release of DOX and ICG from the Bif@DIP hybrid, which then triggered apoptosis of tumor cells and induced immunogenic cell death (ICD), resulting in effective and sustained anti-tumor effect with minimum systemic toxicity. Thus, the self-driven Bif@DIP hybrid is a promising nanodrug for the targeted chemotherapy and photothermal therapy against solid cancers.
Collapse
Affiliation(s)
- Yun Lu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Lan Chen
- Department of Oncology, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Zhouxue Wu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Ping Zhou
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Jie Dai
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Jianmei Li
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Qian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Yu Fan
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Yue Chen
- Department of Nuclear Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China
| | - Shaozhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
14
|
Yu Z, Wang H, Ying B, Mei X, Zeng D, Liu S, Qu W, Pan X, Pu S, Li R, Qin Y. Mild photothermal therapy assist in promoting bone repair: Related mechanism and materials. Mater Today Bio 2023; 23:100834. [PMID: 38024841 PMCID: PMC10643361 DOI: 10.1016/j.mtbio.2023.100834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Achieving precision treatment in bone tissue engineering (BTE) remains a challenge. Photothermal therapy (PTT), as a form of precision therapy, has been extensively investigated for its safety and efficacy. It has demonstrated significant potential in the treatment of orthopedic diseases such as bone tumors, postoperative infections and osteoarthritis. However, the high temperatures associated with PTT can lead to certain limitations and drawbacks. In recent years, researchers have explored the use of biomaterials for mild photothermal therapy (MPT), which offers a promising approach for addressing these limitations. This review provides a comprehensive overview of the mechanisms underlying MPT and presents a compilation of photothermal agents and their utilization strategies for bone tissue repair. Additionally, the paper discusses the future prospects of MPT-assisted bone tissue regeneration, aiming to provide insights and recommendations for optimizing material design in this field.
Collapse
Affiliation(s)
- Zehao Yu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Hao Wang
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Boda Ying
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiaohan Mei
- National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Dapeng Zeng
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Shibo Liu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Wenrui Qu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiangjun Pan
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Si Pu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Ruiyan Li
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Yanguo Qin
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| |
Collapse
|
15
|
Feng C, Chen B, Fan R, Zou B, Han B, Guo G. Polyphenol-Based Nanosystems for Next-Generation Cancer Therapy: Multifunctionality, Design, and Challenges. Macromol Biosci 2023; 23:e2300167. [PMID: 37266916 DOI: 10.1002/mabi.202300167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Indexed: 06/03/2023]
Abstract
With the continuous updating of cancer treatment methods and the rapid development of precision medicine in recent years, there are higher demands for advanced and versatile drug delivery systems. Scientists are committed to create greener and more effective nanomedicines where the carrier is no longer limited to a single function of drug delivery. Polyphenols, which can act as both active ingredients and fundamental building blocks, are being explored as potential multifunctional carriers that are efficient and safe for design purposes. Due to their intrinsic anticancer activity, phenolic compounds have shown surprising expressiveness in ablation of tumor cells, overcoming cancer multidrug resistance (MDR), and enhancing immunotherapeutic efficacy. This review provides an overview of recent advances in the design, synthesis, and application of versatile polyphenol-based nanosystems for cancer therapy in various modes. Moreover, the merits of polyphenols and the challenges for their clinical translation are also discussed, and it is pointed out that the novel polyphenol delivery system requires further optimization and validation.
Collapse
Affiliation(s)
- Chenqian Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
16
|
Wu Q, Hu Y, Yu B, Hu H, Xu FJ. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy. J Control Release 2023; 362:19-43. [PMID: 37579973 DOI: 10.1016/j.jconrel.2023.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The biochemical indicators of tumor microenvironment (TME) that are different from normal tissues provide the possibility for constructing intelligent drug delivery systems (DDSs). Polysaccharides with good biocompatibility, biodegradability, and unique biological properties are ideal materials for constructing DDSs. Nanogels, micelles, organic-inorganic nanocomposites, hydrogels, and microneedles (MNs) are common polysaccharide-based DDSs. Polysaccharide-based DDSs enable precise control of drug delivery and release processes by incorporating TME-specific biochemical indicators. The classification and design strategies of polysaccharide-based TME-responsive DDSs are comprehensively reviewed. The advantages and challenges of current polysaccharide-based DDSs are summarized and the future directions of development are foreseen. The polysaccharide-based TME-responsive DDSs are expected to provide new strategies and solutions for cancer therapy and make important contributions to the realization of precision medicine.
Collapse
Affiliation(s)
- Qimeng Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hao Hu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China.
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
17
|
Li M, Xuan Y, Zhang W, Zhang S, An J. Polydopamine-containing nano-systems for cancer multi-mode diagnoses and therapies: A review. Int J Biol Macromol 2023; 247:125826. [PMID: 37455006 DOI: 10.1016/j.ijbiomac.2023.125826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Polydopamine (PDA) has fascinating properties such as inherent biocompatibility, simple preparation, strong near-infrared absorption, high photothermal conversion efficiency, and strong metal ion chelation, which have catalyzed extensive research in PDA-containing multifunctional nano-systems particularly for biomedical applications. Thus, it is imperative to overview synthetic strategies of various PDA-containing nanoparticles (NPs) for state-of-the-art cancer multi-mode diagnoses and therapies applications, and offer a timely and comprehensive summary. In this review, we will focus on the synthetic approaches of PDA NPs, and summarize the construction strategies of PDA-containing NPs with different structure forms. Additionally, the application of PDA-containing NPs in bioimaging such as photoacoustic imaging, fluorescence imaging, magnetic resonance imaging and other imaging modalities will be reviewed. We will especially offer an overview of their therapeutic applications in tumor chemotherapy, photothermal therapy, photodynamic therapy, photocatalytic therapy, sonodynamic therapy, radionuclide therapy, gene therapy, immunotherapy and combination therapy. At the end, the current trends, limitations and future prospects of PDA-containing nano-systems will be discussed. This review aims to provide guidelines for new scientists in the field of how to design PDA-containing NPs and what has been achieved in this area, while offering comprehensive insights into the potential of PDA-containing nano-systems used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Min Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, PR China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China.
| | - Jie An
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| |
Collapse
|
18
|
Wang Y, Li W, Lin B, Yuan Y, Ning P, Tao X, Lv R. NIR-II imaging-guided photothermal cancer therapy combined with enhanced immunogenic death. Biomater Sci 2023. [PMID: 37334508 DOI: 10.1039/d3bm00700f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Photothermal therapy has a remarkable effect on the destruction of tumors. It kills tumor cells by photothermal ablation and induces immunogenic cell death by activating the immune response in tumor tissues. However, inhibition of the tumor immune microenvironment suppresses PTT-induced body-specific anti-tumor immunity. In this study, we designed the GdOF@PDA-HA-R837-hydrogel complex to achieve NIR-II imaging-guided photothermal ablation and enhanced immune response. Due to the doping of Yb and Er elements and the presence of a polydopamine coating, the synthesized nanoparticles enable NIR-II and photoacoustic imaging of tumor tissues, which will help in the integration of multimodal tumor imaging for diagnosis and treatment. Polydopamine is used as a photothermal agent and drug carrier because of its excellent photothermal ability and high drug loading capacity under 808 nm near infrared light. Hyaluronic acid can bind to specific receptors on the surface of cancer cells, allowing nanoparticles to aggregate around the tumor, thus enhancing the targeting ability of nanoparticles. In addition, imiquimod (R837) has been used as an immune response modulator to enhance the immunotherapeutic effect. The presence of a hydrogel enhanced the retention effect of nanoparticles in the tumor. We demonstrate that the combination of photothermal therapy with immune adjuvants effectively induces ICD, which in turn stimulates the activation of specific anti-tumor immunity and enhances the effect of photothermal therapy in vivo.
Collapse
Affiliation(s)
- Yukun Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Wenjing Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Ying Yuan
- Department of Medical Interdisciplinary Research, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China.
| | - Pengbo Ning
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Xiaofeng Tao
- Department of Medical Interdisciplinary Research, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China.
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
- Interdisciplinary Research Center of Smart Sensor, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| |
Collapse
|
19
|
Mavridi-Printezi A, Menichetti A, Mordini D, Montalti M. Functionalization of and through Melanin: Strategies and Bio-Applications. Int J Mol Sci 2023; 24:9689. [PMID: 37298641 PMCID: PMC10253489 DOI: 10.3390/ijms24119689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A unique feature of nanoparticles for bio-application is the ease of achieving multi-functionality through covalent and non-covalent functionalization. In this way, multiple therapeutic actions, including chemical, photothermal and photodynamic activity, can be combined with different bio-imaging modalities, such as magnetic resonance, photoacoustic, and fluorescence imaging, in a theragnostic approach. In this context, melanin-related nanomaterials possess unique features since they are intrinsically biocompatible and, due to their optical and electronic properties, are themselves very efficient photothermal agents, efficient antioxidants, and photoacoustic contrast agents. Moreover, these materials present a unique versatility of functionalization, which makes them ideal for the design of multifunctional platforms for nanomedicine integrating new functions such as drug delivery and controlled release, gene therapy, or contrast ability in magnetic resonance and fluorescence imaging. In this review, the most relevant and recent examples of melanin-based multi-functionalized nanosystems are discussed, highlighting the different methods of functionalization and, in particular, distinguishing pre-functionalization and post-functionalization. In the meantime, the properties of melanin coatings employable for the functionalization of a variety of material substrates are also briefly introduced, especially in order to explain the origin of the versatility of melanin functionalization. In the final part, the most relevant critical issues related to melanin functionalization that may arise during the design of multifunctional melanin-like nanoplatforms for nanomedicine and bio-application are listed and discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (A.M.); (D.M.)
| |
Collapse
|
20
|
Lin M, Qi X. Advances and Challenges of Stimuli-Responsive Nucleic Acids Delivery System in Gene Therapy. Pharmaceutics 2023; 15:pharmaceutics15051450. [PMID: 37242692 DOI: 10.3390/pharmaceutics15051450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Gene therapy has emerged as a powerful tool to treat various diseases, such as cardiovascular diseases, neurological diseases, ocular diseases and cancer diseases. In 2018, the FDA approved Patisiran (the siRNA therapeutic) for treating amyloidosis. Compared with traditional drugs, gene therapy can directly correct the disease-related genes at the genetic level, which guarantees a sustained effect. However, nucleic acids are unstable in circulation and have short half-lives. They cannot pass through biological membranes due to their high molecular weight and massive negative charges. To facilitate the delivery of nucleic acids, it is crucial to develop a suitable delivery strategy. The rapid development of delivery systems has brought light to the gene delivery field, which can overcome multiple extracellular and intracellular barriers that prevent the efficient delivery of nucleic acids. Moreover, the emergence of stimuli-responsive delivery systems has made it possible to control the release of nucleic acids in an intelligent manner and to precisely guide the therapeutic nucleic acids to the target site. Considering the unique properties of stimuli-responsive delivery systems, various stimuli-responsive nanocarriers have been developed. For example, taking advantage of the physiological variations of a tumor (pH, redox and enzymes), various biostimuli- or endogenous stimuli-responsive delivery systems have been fabricated to control the gene delivery processes in an intelligent manner. In addition, other external stimuli, such as light, magnetic fields and ultrasound, have also been employed to construct stimuli-responsive nanocarriers. Nevertheless, most stimuli-responsive delivery systems are in the preclinical stage, and some critical issues remain to be solved for advancing the clinical translation of these nanocarriers, such as the unsatisfactory transfection efficiency, safety issues, complexity of manufacturing and off-target effects. The purpose of this review is to elaborate the principles of stimuli-responsive nanocarriers and to emphasize the most influential advances of stimuli-responsive gene delivery systems. Current challenges of their clinical translation and corresponding solutions will also be highlighted, which will accelerate the translation of stimuli-responsive nanocarriers and advance the development of gene therapy.
Collapse
Affiliation(s)
- Meng Lin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
21
|
Oxygen vacancy-enhanced catalytic activity of hyaluronic acid covered-biomineralization nanozyme for reactive oxygen species-augmented antitumor therapy. Int J Biol Macromol 2023; 236:124003. [PMID: 36907306 DOI: 10.1016/j.ijbiomac.2023.124003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Insufficient hydrogen peroxide content in tumor cells, unsuitable pH and low efficiency of commonly used metal catalysts severely affect the efficiency of chemodynamic therapy, resulting in unsatisfactory efficacy of chemodynamic therapy alone. For this purpose, we designed a composite nanoplatform capable of targeting tumors and selectively degrading in the tumor microenvironment (TME) to address these issues. In this work, we synthesized Au@Co3O4 nanozyme inspired by crystal defect engineering. The addition of Au determines the formation of oxygen vacancies, accelerates electron transfer, and enhances redox activity, thus significantly enhancing the superoxide dismutase (SOD)-like and catalase (CAT)-like catalytic activities of the nanozyme. Subsequently, we camouflaged the nanozyme using a biomineralized CaCO3 shell to avoid damage to normal tissues by the nanozyme while effectively encapsulating the photosensitizer IR820, and finally the tumor targeting ability of the nanoplatform was enhanced by the modification of hyaluronic acid. Under near-infrared (NIR) light irradiation, the Au@Co3O4@CaCO3/IR820@HA nanoplatform not only visualizes the treatment with multimodal imaging, but also plays a photothermal sensitizing role through various strategies, while enhancing the enzyme catalytic activity, cobalt ion-mediated chemodynamic therapy (CDT) and IR820-mediated photodynamic therapy (PDT), and achieving the synergistic enhancement of reactive oxygen species (ROS) generation.
Collapse
|
22
|
Geng S, Xiang T, Zhang Y, Guo P, Zhang H, Zhang Z, Gu M, Zhang K, Song H, Shi J, Liu J. Safe engineering of cancer-associated fibroblasts enhances checkpoint blockade immunotherapy. J Control Release 2023; 356:272-287. [PMID: 36870541 DOI: 10.1016/j.jconrel.2023.02.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Abundant cancer-associated fibroblasts (CAFs) in highly fibrotic breast cancer constitute an immunosuppressive barrier for T cell activity and are closely related to the failure of immune checkpoint blockade therapy (ICB). Inspired by the similar antigen-processing capacity of CAFs to professional antigen-presenting cells (APCs), a "turning foes to friends" strategy is proposed by in situ engineering immune-suppressed CAFs into immune-activated APCs for improving response rates of ICB. To achieve safe and specific CAFs engineering in vivo, a thermochromic spatiotemporal photo-controlled gene expression nanosystem was developed by self-assembly of molten eutectic mixture, chitosan andfusion plasmid. After photoactivatable gene expression, CAFs could be engineered as APCs via co-stimulatory molecule (CD86) expression, which effectively induced activation and proliferation of antigen-specific CD8 + T cells. Meanwhile, engineered CAFs could also secrete PD-L1 trap protein in situ for ICB, avoiding potential autoimmune-like disorders caused by "off-target" effects of clinically applied PD-L1 antibody. The study demonstrated that the designed nanosystem could efficiently engineer CAFs, significantly enhance the percentages of CD8+ T cells (4-folds), result in about 85% tumor inhibition rate and 83.3% survival rate at 60 days in highly fibrotic breast cancer, further inducing long-term immune memory effects and effectively inhibiting lung metastasis.
Collapse
Affiliation(s)
- Shizhen Geng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tingting Xiang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yunya Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pengke Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Mengchao Gu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Haiwei Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Singapore.
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
23
|
Li M, Yang J, Yao X, Li X, Xu Z, Tang S, Sun B, Lin S, Yang C, Liu J. Multifunctional Mesoporous Silica-Coated Gold Nanorods Mediate Mild Photothermal Heating-Enhanced Gene/Immunotherapy for Colorectal Cancer. Pharmaceutics 2023; 15:pharmaceutics15030854. [PMID: 36986715 PMCID: PMC10057058 DOI: 10.3390/pharmaceutics15030854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related deaths in the world. It is urgent to search for safe and effective therapies to address the CRC crisis. The siRNA-based RNA interference targeted silencing of PD-L1 has extensive potential in CRC treatment but is limited by the lack of efficient delivery vectors. In this work, the novel cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs)/siPD-L1 co-delivery vectors AuNRs@MS/CpG ODN@PEG-bPEI (ASCP) were successfully prepared by two-step surface modification of CpG ODNs-loading and polyethylene glycol-branched polyethyleneimine-coating around mesoporous silica-coated gold nanorods. ASCP promoted dendritic cells (DCs) maturation by delivering CpG ODNs, exhibiting excellent biosafety. Next, mild photothermal therapy (MPTT) mediated by ASCP killed tumor cells and released tumor-associated antigens, further promoting DC maturation. Furthermore, ASCP exhibited mild photothermal heating-enhanced performance as gene vectors, resulting in an increased PD-L1 gene silencing effect. Enhanced DCs maturity and enhanced PD-L1 gene silencing significantly promoted the anti-tumor immune response. Finally, the combination of MPTT and mild photothermal heating-enhanced gene/immunotherapy effectively killed MC38 cells, leading to strong inhibition of CRC. Overall, this work provided new insights into the design of mild photothermal/gene/immune synergies for tumor therapy and may contribute to translational nanomedicine for CRC treatment.
Collapse
Affiliation(s)
- Meirong Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| | - Jingyu Yang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xinhuang Yao
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| | - Xiang Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shiqi Tang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Bangxu Sun
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| | - Suxia Lin
- Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518048, China
| | - Chengbin Yang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Correspondence: (C.Y.); (J.L.)
| | - Jia Liu
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
- Correspondence: (C.Y.); (J.L.)
| |
Collapse
|
24
|
Tang S, Sun S, Liu T, Li M, Jiang Y, Wang D, Guo N, Guo Z, Chang X. Bionic engineering-induced formation of hierarchical structured minerals with superwetting surfaces for oil-water separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Zhang T, Zheng Q, Xie C, Fan G, Wang Y, Wu Y, Fu Y, Huang J, Craig DQM, Cai X, Li X. Integration of Silica Nanorattles with Manganese-Doped In 2S 3/InOOH to Enable Ultrasound-Mediated Tumor Theranostics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4883-4894. [PMID: 36662514 DOI: 10.1021/acsami.2c18095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a result of their radiation-free nature and deep-penetration ability, tumor theranostics mediated by ultrasound have become increasingly recognized as a modality with high potential for translation into clinical cancer treatment. The effective integration of ultrasound imaging and sonodynamic therapy (SDT) into one nanoplatform remains an enormous challenge yet to be fully resolved. Here, a novel theranostic system, consisting of rattle-type SiO2 (r-SiO2) loaded with Mn-doped In2S3/InOOH (SMISO), was designed and synthesized to enable an improved ultrasound imaging-guided therapy. With Mn-doped In2S3/InOOH (MISO) and a heterojunction structure, this novel sonosensitizer facilitates the generation of reactive oxygen species (ROS) for SDT. By coupling interfaces between the shell and core in rattle-type SiO2, multiple reflections/scattering are generated, while MISO has high acoustic impedance. By integrating r-SiO2 and MISO, the SMISO composite nanoparticles (NPs) increase the acoustic reflection and provide enhanced contrast for ultrasound imaging. Through the effective accumulation in tumors, which was monitored by B-mode ultrasound imaging in vivo, SMISO composite NPs effectively inhibited tumor growth without adverse side effects under ultrasound irradiation treatment. This work therefore provides a new approach to integrate a novel gas-free ultrasound contrast agent and a semiconductor sonosensitizer for cancer theranostics.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Qiang Zheng
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 215123, P. R. China
| | - Congkun Xie
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Gonglin Fan
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 215123, P. R. China
| | - Yifan Wang
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 215123, P. R. China
| | - Yongjun Wu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, P. R. China
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Duncan Q M Craig
- University College London School of Pharmacy, London WC1N 1AX, U.K
| | - Xiujun Cai
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 215123, P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, P. R. China
| |
Collapse
|
26
|
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022; 190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Malignant brain tumors, a heterogeneous group of primary and metastatic neoplasms in the central nervous system (CNS), are notorious for their highly invasive and devastating characteristics, dismal prognosis and low survival rate. Recently, near-infrared (NIR) optical imaging modalities including fluorescence imaging (FLI) and photoacoustic imaging (PAI) have displayed bright prospect in innovation of brain tumor diagnoses, due to their merits, like noninvasiveness, high spatiotemporal resolution, good sensitivity and large penetration depth. Importantly, these imaging techniques have been widely used to vividly guide diverse brain tumor therapies in a real-time manner with high accuracy and efficiency. Herein, we provide a systematic summary of the state-of-the-art NIR contrast agents (CAs) for brain tumors single-modal imaging (e.g., FLI and PAI), dual-modal imaging (e.g., FLI/PAI, FLI/magnetic resonance imaging (MRI) and PAI/MRI) and triple-modal imaging (e.g., MRI/FLI/PAI and MRI/PAI/computed tomography (CT) imaging). In addition, we update the most recent progress on the NIR optical imaging-guided therapies, like single-modal (e.g., photothermal therapy (PTT), chemotherapy, surgery, photodynamic therapy (PDT), gene therapy and gas therapy), dual-modal (e.g., PTT/chemotherapy, PTT/surgery, PTT/PDT, PDT/chemotherapy, PTT/chemodynamic therapy (CDT) and PTT/gene therapy) and triple-modal (e.g., PTT/PDT/chemotherapy, PTT/PDT/surgery, PTT/PDT/gene therapy and PTT/gene/chemotherapy). Finally, we discuss the opportunities and challenges of the CAs and nanotheranostics for future clinic translation.
Collapse
Affiliation(s)
- Li Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yue Liu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, China
| | - Wujiong Xia
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
27
|
Feng Y, Guo Z, Chen J, Zhang S, Wu J, Tian H, Chen X. Cationic polymer synergizing with a disulfide-containing enhancer achieved efficient nucleic acid and protein delivery. Biomater Sci 2022; 10:6230-6243. [PMID: 36107141 DOI: 10.1039/d2bm01211a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To improve the efficiency of nucleic acid and protein delivery by cationic polymers, there is a trade-off between increasing the positive charge density of cationic polymers and decreasing cytotoxicity. In this work, a strategy to introduce multiple interactions between the cell membrane and a delivery system based on cationic polymers was proposed. A novel delivery system consisting of PEI1.8k and an enhancer (LA-RT) was fabricated. The introduction of LA-RT contributed to multiple interactions between the delivery system and the cell membrane including electrostatic interactions, hydrogen bonding, hydrophobic interaction, and dynamic sulfur exchange reactions, which enabled efficient intracellular delivery of nucleic acids and proteins. For nucleic acid delivery, plasmid DNA and mRNA were loaded to realize CRISPR/Cas 9 gene editing in vivo and protein expression in vivo, respectively. For protein delivery, the delivery system carrying OVA protein and CpG formed a nano-vaccine, which induced enhanced humoral and cellular immunity in vivo. In addition, the delivery system based on PEI1.8k revealed negligible cytotoxicity. This work provided a novel strategy to prepare efficient delivery systems based on cationic polymers via the introduction of a multifunctional enhancer.
Collapse
Affiliation(s)
- Yuanji Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Sijia Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China
| | - Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China.,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
28
|
Li X, Gao Y, Liu X, Hu X, Li Y, Sun J, Wang P, Wu H, Kim H, Ramalingam M, Xie S, Wang R. Ultrasound and laser-promoted dual-gas nano-generator for combined photothermal and immune tumor therapy. Front Bioeng Biotechnol 2022; 10:1005520. [PMID: 36177188 PMCID: PMC9513372 DOI: 10.3389/fbioe.2022.1005520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022] Open
Abstract
The combination of photothermal therapy (PTT) and immune tumor therapy has emerged as a promising avenue for cancer treatment. However, the insufficient immune response caused by inefficient immunogenic cell death (ICD) inducers and thermal resistance, immunosuppression, and immune escape resulting from the hypoxic microenvironment of solid tumors severely limit its efficacy. Herein, we report an ultrasound and laser-promoted dual-gas nano-generator (calcium carbonate-polydopamine-manganese oxide nanoparticles, CPM NPs) for enhanced photothermal/immune tumor therapy through reprogramming tumor hypoxic microenvironment. In this system, CPM NPs undergo reactive decomposition in a moderately acidic tumor, resulting in the generation of calcium, manganese ions, carbon dioxide (CO2), and oxygen (O2). Calcium and manganese ions act as adjuvants that trigger an immune response. The cancer cell membrane rupture caused by sudden burst of bubbles (CO2 and O2) under ultrasound stimulation and the photothermal properties of PDA also contributed to the ICD effect. The generation of O2 alleviates tumor hypoxia and thus reduces hypoxia-induced heat resistance and immunosuppressive effects, thereby improving the therapeutic efficacy of combination PTT and immune therapy. The present study provides a novel approach for the fabrication of a safe and effective tumor treatment platform for future clinical applications.
Collapse
Affiliation(s)
- XinYu Li
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, China
| | - Yong Gao
- Binzhou Medical University Hospital, Binzhou, China
| | - XinZheng Liu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, China
| | - XiaoQian Hu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - YunMeng Li
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - JunXi Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - PingYu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - HaeWon Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Korea
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Korea
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- *Correspondence: Murugan Ramalingam, ; ShuYang Xie, ; RanRan Wang,
| | - ShuYang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, China
- *Correspondence: Murugan Ramalingam, ; ShuYang Xie, ; RanRan Wang,
| | - RanRan Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, China
- *Correspondence: Murugan Ramalingam, ; ShuYang Xie, ; RanRan Wang,
| |
Collapse
|
29
|
Wang L, Zhang T, Xing Y, Wang Z, Xie X, Zhang J, Cai K. Interfacially responsive electron transfer and matter conversion by polydopamine-mediated nanoplatforms for advancing disease theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1805. [PMID: 35474610 DOI: 10.1002/wnan.1805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Polydopamine (PDA) is an artificial melanin polymer that has been spotlighted due to its extraordinary optoelectronic characteristics and advance theranosctic applications in biomaterial fields. Moreover, interactions on the nano-bio interface interplay whereby substances exchange in response to endogenous or exogenous stimuli, and electron transfer driven by light, energy-level transitions, or electric field greatly affect the functional performance of PDA-modified nanoparticles. The full utilization of potential in PDA's interfacial activities, optoelectrical properties and related responsiveness is therefore an attractive means to construct advanced nanostructures for regulating biological processes and metabolic pathways. Herein, we strive to summarize recent advances in the construction of functional PDA-based nanomaterials with state-of-the-art architectures prepared for modulation of photoelectric sensing and redox reversibility, as well as manipulation of photo-activated therapeutics. Meanwhile, contributions of interfacial electron transfer and matter conversion are highlighted by discussing the structure-property-function relationships and the biological effects in their featured applications including disease theranostics, antibacterial activities, tissue repair, and combined therapy. Finally, the current challenges and future perspectives in this emerging research field will also be outlined. Recent advances on polydopamine-based nanotherapeutics with an emphasis on their interfacial activities, optoelectrical properties and related responsiveness are reviewed for providing insightful guidance to the rational design of integrated theranostic nanoplatforms with high performance in the biomedical fields. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Tingting Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
30
|
Xu N, Zhang X, Qi T, Wu Y, Xie X, Chen F, Shao D, Liao J. Biomedical applications and prospects of temperature‐orchestrated photothermal therapy. MEDCOMM – BIOMATERIALS AND APPLICATIONS 2022; 1. [DOI: 10.1002/mba2.25] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/10/2022] [Indexed: 01/06/2025]
Abstract
AbstractPhotothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature change of PTT is vital to cell/tissue response in scientific research and clinical application. On one hand, mild PTT has received substantial attention in the treatment of cancer and soft/hard tissue repair. On the other hand, the high temperature induced by PTT is capable of antibacterial capacity, which is better than conventional antibiotic therapy with drug resistance. Herein, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, mainly covering the temperature ranges of 40–42°C, 43–50°C, and over 50°C. We highlight the biological mechanism of PTT and the latest progress in the treatment of different diseases. Finally, we conclude by discussing the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT. Given a deep understanding of the interaction between temperature and biology, rationally designed biomaterials with sophisticated photothermal responsiveness will benefit the outcomes of personalized PTT toward various diseases.
Collapse
Affiliation(s)
- Nuo Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Tingting Qi
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xi Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau China
| | - Dan Shao
- School of Medicine South China University of Technology Guangzhou Guangdong China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
31
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
32
|
Remy MT, Ding Q, Krongbaramee T, Hu J, Mora Mata AV, Haes AJ, Amendt BA, Sun H, Buchakjian MR, Hong L. Plasmid encoding miRNA-200c delivered by CaCO 3-based nanoparticles enhances rat alveolar bone formation. Nanomedicine (Lond) 2022; 17:1339-1354. [PMID: 36125080 PMCID: PMC9706369 DOI: 10.2217/nnm-2022-0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: miRNAs have been shown to improve the restoration of craniofacial bone defects. This work aimed to enhance transfection efficiency and miR-200c-induced bone formation in alveolar bone defects via plasmid DNA encoding miR-200c delivery from CaCO3 nanoparticles. Materials & methods: The CaCO3/miR-200c delivery system was evaluated in vitro (microscopy, transfection efficiency, biocompatibility) and miR-200c-induced in vivo alveolar bone formation was assessed via micro-computed tomography and histology. Results: CaCO3 nanoparticles significantly enhanced the transfection of plasmid DNA encoding miR-200c without inflammatory effects and sustained miR-200c expression. CaCO3/miR-200c treatment in vivo significantly increased bone formation in rat alveolar bone defects. Conclusion: CaCO3 nanoparticles enhance miR-200c delivery to accelerate alveolar bone formation, thereby demonstrating the application of CaCO3/miR-200c to craniofacial bone defects.
Collapse
Affiliation(s)
- Matthew T Remy
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA,Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Qiong Ding
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | - Tadkamol Krongbaramee
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA,Division of Endodontics, Department of Restorative Dentistry & Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Jue Hu
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | - Andrés V Mora Mata
- Department of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda J Haes
- Department of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Brad A Amendt
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA,Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA,Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Hongli Sun
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | - Marisa R Buchakjian
- Department of Otolaryngology–Head & Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Liu Hong
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA,Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA,Author for correspondence: Tel.: +1 319 384 1756;
| |
Collapse
|
33
|
Li Y, Tang K, Zhang X, Pan W, Li N, Tang B. Tumor microenvironment responsive nanocarriers for gene therapy. Chem Commun (Camb) 2022; 58:8754-8765. [PMID: 35880654 DOI: 10.1039/d2cc02759c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli responsive nanocarriers are important non-viral gene carriers for gene therapy. We discuss the stimulus conditions and then highlight various stimuli responsive nanocarriers in the tumor microenvironment for cancer gene therapy. We hope that this review will inspire readers to develop more effective stimuli responsive nanocarriers for delivering genes.
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Kun Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
34
|
Bai S, Lan Y, Fu S, Cheng H, Lu Z, Liu G. Connecting Calcium-Based Nanomaterials and Cancer: From Diagnosis to Therapy. NANO-MICRO LETTERS 2022; 14:145. [PMID: 35849180 PMCID: PMC9294135 DOI: 10.1007/s40820-022-00894-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 05/07/2023]
Abstract
As the indispensable second cellular messenger, calcium signaling is involved in the regulation of almost all physiological processes by activating specific target proteins. The importance of calcium ions (Ca2+) makes its "Janus nature" strictly regulated by its concentration. Abnormal regulation of calcium signals may cause some diseases; however, artificial regulation of calcium homeostasis in local lesions may also play a therapeutic role. "Calcium overload," for example, is characterized by excessive enrichment of intracellular Ca2+, which irreversibly switches calcium signaling from "positive regulation" to "reverse destruction," leading to cell death. However, this undesirable death could be defined as "calcicoptosis" to offer a novel approach for cancer treatment. Indeed, Ca2+ is involved in various cancer diagnostic and therapeutic events, including calcium overload-induced calcium homeostasis disorder, calcium channels dysregulation, mitochondrial dysfunction, calcium-associated immunoregulation, cell/vascular/tumor calcification, and calcification-mediated CT imaging. In parallel, the development of multifunctional calcium-based nanomaterials (e.g., calcium phosphate, calcium carbonate, calcium peroxide, and hydroxyapatite) is becoming abundantly available. This review will highlight the latest insights of the calcium-based nanomaterials, explain their application, and provide novel perspective. Identifying and characterizing new patterns of calcium-dependent signaling and exploiting the disease element linkage offer additional translational opportunities for cancer theranostics.
Collapse
Affiliation(s)
- Shuang Bai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Yulu Lan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Shiying Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Zhixiang Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
35
|
He Z, Wang Q, Zhang N, Yan J, Li L, Cao J, He B. Gold nanorods/tetrahedral DNA composites for chemo-photothermal therapy. Regen Biomater 2022; 9:rbac032. [PMID: 35668924 PMCID: PMC9163824 DOI: 10.1093/rb/rbac032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Combination therapy is extensively developed for cancer treatment in recent years due to its high efficiency. Herein, we constructed a nanocomposite based on gold nanorods (GNRs) and drug-loaded tetrahedral DNA nanostructures (TDN) for chemo-photothermal combinational therapy. Anti-tumor drug doxorubicin (DOX) was loaded via the insertion within GC base pairs of TDN. The aptamer AS1411 was attached to the apex of TDN (ATDN) to target tumor cells. The DOX-loaded DNA tetrahedron (ATDN-DOX) was compressed by the GNRs coated with PEI (GNRs@ATDN-DOX) to realize the photothermal function and lysosome escape. GNRs under the illumination of 808 nm infrared laser showed high photothermal conversion and stability due to the protection of PEI layer. The drug-loading capacity of ATDN-DOX was as high as 314 DOX molecules in per ATDN. The positive charge of PEI in GNRs@ATDN-DOX nanocomposites was utilized to achieve excellent cell penetration and induce proton sponge effect for lysosomal escape. The nanocomposites presented HeLa and 4T1 cells targeting and resulted in efficient anticancer activity.
Collapse
Affiliation(s)
- Ziyun He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qiusheng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Nan Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Li Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
36
|
Zhong W, Wong KH, Xu F, Zhao N, Chen M. NIR-responsive polydopamine-based calcium carbonate hybrid nanoparticles delivering artesunate for cancer chemo-photothermal therapy. Acta Biomater 2022; 145:135-145. [PMID: 35381398 DOI: 10.1016/j.actbio.2022.03.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
Abstract
Artesunate (AS), the first-line treatment of malaria with a satisfactory safety profile, has been repurposed as a potential anticancer candidate as it mainly generates reactive oxygen species (ROS) through its intrinsic endoperoxide bridge reacting with ferrous-based catalysts to suppress cancer cell growth. However, further clinical translation of AS is hindered by the attenuated anticancer efficacy due to insufficient ROS generation. Herein, we rationally integrated hydrophobic-modified AS (hAS) with biomimetic polydopamine (PDA) and biomineral calcium carbonate to fabricate high AS-loaded nanomedicine (Ca-PDA/hAS@PEG) for cancer chemo-photothermal therapy, which exerted anticancer effects in the following ways: (1) the heat was generated when PDA was irradiated by near-infrared (NIR) light for photothermal therapy. Meanwhile, the increased temperature accelerated the production of ROS from hAS, thus enhancing the anticancer efficacy of hAS-based chemotherapy; (2) hAS-mediated chemotherapy boosted the cancer inhibition effect of photothermal therapy by arousing the intracellular ROS levels in the presence of endogenous ferrous ions and sensitizing cancer cells to thermal ablation; (3) the integration of calcium carbonate into the nanoparticle facilitated the pH-responsive drug release for precise treatment. Such hybrid nanoparticles exhibited a combinational antitumor effect of photothermal therapy and chemotherapy in vivo with no systemic toxicity. Taken together, our work presents a facile strategy to improve the anticancer efficacy of AS by combining chemical modification and photothermal therapy-assisted endoperoxide bridge cleavage, which may offer opportunities to pave the way for clinical translation of AS-based nanomedicines. STATEMENT OF SIGNIFICANCE: The clinical translation of artesunate (AS) is hindered by the attenuated anticancer efficacy due to insufficient ROS generation. Herein, we rationally integrated hydrophobic-modified AS (hAS) with biomimetic polydopamine (PDA) and biomineral calcium carbonate to fabricate high AS-loaded nanomedicine (Ca-PDA/hAS@PEG) for improved cancer chemo-photothermal therapy. The heat generated from PDA in response to near-infrared light irradiation could locally ablate tumor as well as accelerate the production of ROS by hAS, thus enhancing the anticancer efficacy of hAS-based chemotherapy. On the other hand, hAS-based chemotherapy amplified the intracellular oxidative stress, sensitizing cancer cells to thermal ablation. Our work presents a facile strategy to improve the anticancer efficacy of AS by combining chemical modification and photothermal therapy-assisted endoperoxide bridge cleavage.
Collapse
Affiliation(s)
- Wenzhao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Ka Hong Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Fujian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Nana Zhao
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
37
|
Liu Y, Dai X, Yu B, Chen M, Zhao N, Xu FJ. pH-Responsive hyaluronic acid-cloaked polycation/gold nanohybrids for tumor-targeted synergistic photothermal/gene therapy. Biomater Sci 2022; 10:2618-2627. [PMID: 35412539 DOI: 10.1039/d2bm00296e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of photothermal therapy (PTT) and gene therapy (GT) has attracted intense interest in cancer treatment. However, the lack of long circulation and active tumor targeting reduces the therapeutic efficacy of complementary PTT/GT. In this work, hyaluronic acid (HA)-cloaked gold nanorods-PGED (prepared by ring-opening of polyglycidyl methacrylate (PGMA) with ethylenediamine (ED))/pDNA (AP/pDNA-HA) complexes were prepared to achieve long circulation and tumor targeting for photoacoustic imaging (PAI)-guided synergistic PTT/GT. Gold nanorods endow the complexes with photothermal effect and PAI function. Benefiting from the HA cloak, the AP/pDNA-HA complexes exhibit excellent stability, biocompatibility, long circulation behavior and active targeting. In addition, the pH-responsive characteristic of the Schiff base bonds helps the AP/pDNA-HA complexes to effectively escape from the endosome/lysosome. The antioncogene p53 was employed to investigate the gene transfection efficiency of the delivery system both in vitro and in vivo. The superiority of synergistic PTT/GT is established in a mouse 4T1 breast tumor model. The current study provides a facile strategy for constructing multifunctional gene delivery systems with long circulation and tumor targeting features, which can achieve effective imaging-guided synergistic tumor treatment.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. .,Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Xiaoguang Dai
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
38
|
Yao M, Han W, Feng L, Wei Z, Liu Y, Zhang H, Zhang S. pH-programmed responsive nanoplatform for synergistic cancer therapy based on single atom catalysts. Eur J Med Chem 2022; 233:114236. [PMID: 35247753 DOI: 10.1016/j.ejmech.2022.114236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
The development of stimuli-responsive nanoplatform provides powerful tool for simultaneously enhancing the efficiency and accuracy of cancer therapies. Herein, we develop a pH-programmed responsive and synergistically theranostic nanoplatform based on CaCO3 mineralized single atom iron nanoparticles (SAF NPs). Basically, the highly active site on SAF NPs nanoagent can trigger in-situ produce toxic •OH in tumor microenvironment (TME) that kill cancer cells for Fenton-reaction-based chemodynamic therapy (CDT). The porous structure of SAF NPs can serve as delivery platforms to package and programmed release chemotherapeutic drug doxorubicin (DOX) to enhance chemotherapy (CT) efficiency. The nanoplatform was simultaneously in-situ mineralized with CaCO3 and A549 cell membrane (CM) which could avoid DOX leakage during transport in bloodstream and target homologous cancer cells. In addition, overload Ca2+ decomposed from CaCO3 triggers mitochondrial dysfunction, induces cytoskeleton collapse and oxidative stress to formulate calcium ions interference therapy (CIT). With the combination of CDT, CT and CIT, the designed multi-synergetic nanoplatform exhibits excellent biocompatibility, specificity and tunable drug release behavior, which has a broad application prospect in tumor therapy.
Collapse
Affiliation(s)
- Mei Yao
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Wenxiu Han
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Lu Feng
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Zizhen Wei
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Yong Liu
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Huairong Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China.
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China.
| |
Collapse
|
39
|
Hu Z, Wei Q, Zhang H, Tang W, Kou Y, Sun Y, Dai Z, Zheng X. Advances in FePt-involved nano-system design and application for bioeffect and biosafety. J Mater Chem B 2021; 10:339-357. [PMID: 34951441 DOI: 10.1039/d1tb02221k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The rapid development and wide application of nanomaterial-involved theranostic agents have drawn surging attention for improving the living standard of humankind and healthcare conditions. In this review, recent developments in the design, synthesis, biocompatibility evaluation and potential nanomedicine applications of FePt-involved nano-systems are summarized, especially for cancer theranostic and biological molecule detection. The in vivo multi-model imaging capability is discussed in detail, including magnetic resonance imaging and computed tomography. Furthermore, we highlight the significant achievements of various FePt-involved nanotherapeutics for cancer treatment, such as drug delivery, chemodynamic therapy, photodynamic therapy, radiotherapy and immunotherapy. In addition, a series of FePt-involved nanocomposites are also applied for biological molecule detection, such as H2O2, glucose and naked-eye detection of cancer cells. Ultimately, we also summarize the challenges and prospects of FePt-involved nano-systems in nanocatalytic medicine. This review is expected to give a general pattern for the development of FePt-involved nano-systems in the field of nanocatalytic medicine and analytical determination.
Collapse
Affiliation(s)
- Zunfu Hu
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China. .,School of Materials Science and Engineering, Linyi University, Linyi 276000, P. R. China
| | - Qiulian Wei
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China. .,School of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266510, P. R. China
| | - Huimin Zhang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Weina Tang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Yunkai Kou
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Yunqiang Sun
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Zhichao Dai
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| |
Collapse
|
40
|
Hu W, Zhen W, Zhang M, Wang W, Jia X, An S, Wang Y, Guo Z, Jiang X. Development of Nickel Selenide@polydopamine Nanocomposites for Magnetic Resonance Imaging Guided NIR-II Photothermal Therapy. Adv Healthc Mater 2021; 10:e2101542. [PMID: 34643341 DOI: 10.1002/adhm.202101542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Indexed: 12/17/2022]
Abstract
The penetration depth of near-infrared laser has greatly restricted the development of most photothermal agents. Recently, photothermal agents in the second near-infrared (NIR-II) window have drawn great attention as they can overcome above barrier. Herein, a novel "all in one" NIR-II responsive nanoplatform (nickel selenide @polydopamine nanocomposites, NiSe@PDA NCs) based on in situ coating the polydopamine (PDA) on the surface of biomineralized nickel selenide nanoparticles (NiSe NPs) for dual-model imaging-guided photothermal therapy is reported. Under the illumination of NIR-II laser (1064 nm), the photothermal conversion efficiency of NiSe@PDA NCs can reach 48.4%, which is higher than that of single NiSe NPs due to the enhanced molar extinction coefficient. In addition, because of the paramagnetic effect of NiSe NPs, the constructed NiSe@PDA NCs can be acted as T1 contrast agent for magnetic resonance imaging (MRI). Most importantly, the MRI contrast effect is enhanced with the coating of PDA layer due to the loose structure of PDA. Ultimately, both in vitro and in vivo experiments demonstrate that the developed NCs can achieve efficient MRI-guided photothermal therapy for treating malignant tumor. Therefore, the designed NiSe@PDA NCs with excellent features show great potential for clinical MRI-guided cancer therapy.
Collapse
Affiliation(s)
- Wenxue Hu
- Shenyang University of Chemical Technology Shenyang Liaoning 110142 China
| | - Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Mengchao Zhang
- The Department of Radiology China‐Japan Union Hospital of Jilin University Changchun Jilin 130022 China
| | - Wei Wang
- The Department of Radiology China‐Japan Union Hospital of Jilin University Changchun Jilin 130022 China
| | - Xiaodan Jia
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Shangjie An
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Yue Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Zhuo Guo
- Shenyang University of Chemical Technology Shenyang Liaoning 110142 China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
41
|
Fadia P, Tyagi S, Bhagat S, Nair A, Panchal P, Dave H, Dang S, Singh S. Calcium carbonate nano- and microparticles: synthesis methods and biological applications. 3 Biotech 2021; 11:457. [PMID: 34631356 PMCID: PMC8497680 DOI: 10.1007/s13205-021-02995-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Calcium carbonate micro- and nanoparticles are considered as chemically inert materials. Therefore, they are widely considered in the field of biosensing, drug delivery, and as filler material in plastic, paper, paint, sealant, and adhesive industries. The unusual properties of calcium carbonate-based nanomaterials, such as biocompatibility, high surface-to-volume ratio, robust nature, easy synthesis, and surface functionalization, and ability to exist in a variety of morphologies and polymorphs, make them an ideal candidate for both industrial and biomedical applications. Significant research efforts have been devoted for developing novel synthesis methods of calcium carbonate particles in micrometer and nanometer dimensions. This review highlights different approaches of the synthesis of calcium carbonate micro- and nanoparticles, such as precipitation, slow carbonation, emulsion, polymer-mediated method, including in-situ polymerization, mechano-chemical, microwave-assisted method, and biological methods. The applications of these versatile calcium carbonate micro- and nanoparticles in the biomedical field (such as in drug delivery, therapeutics, tissue engineering, antimicrobial activity, biosensing applications), in industries, and environmental sector has also been comprehensively covered.
Collapse
Affiliation(s)
- Preksha Fadia
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Simona Tyagi
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Stuti Bhagat
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032 India
| | - Abhishek Nair
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Pooja Panchal
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Harsh Dave
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Sadev Dang
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Sanjay Singh
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032 India
| |
Collapse
|
42
|
Jiang Z, Li T, Cheng H, Zhang F, Yang X, Wang S, Zhou J, Ding Y. Nanomedicine potentiates mild photothermal therapy for tumor ablation. Asian J Pharm Sci 2021; 16:738-761. [PMID: 35027951 PMCID: PMC8739255 DOI: 10.1016/j.ajps.2021.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
The booming photothermal therapy (PTT) has achieved great progress in non-invasive oncotherapy, and paves a novel way for clinical oncotherapy. Of note, mild temperature PTT (mPTT) of 42–45 °C could avoid treatment bottleneck of the traditional PTT, including nonspecific injury to normal tissues, vasculature and host antitumor immunity. However, cancer cells can resist mPTT via heat shock response and autophagy, thus leading to insufficient mPTT monotherapy to ablate tumor. To overcome the deficient antitumor efficacy caused by thermo-resistance of cancer cells and mono mPTT, synergistic therapies towards cancer cells have been conducted with mPTT. This review summarizes the recent advances in nanomedicine-potentiated mPTT for cancer treatment, including strategies for enhanced single-mode mPTT and mPTT plus synergistic therapies. Moreover, challenges and prospects for clinical translation of nanomedicine-potentiated mPTT are discussed.
Collapse
|
43
|
Qiu W, Liang M, Gao Y, Yang X, Zhang X, Zhang X, Xue P, Kang Y, Xu Z. Polyamino acid calcified nanohybrids induce immunogenic cell death for augmented chemotherapy and chemo-photodynamic synergistic therapy. Theranostics 2021; 11:9652-9666. [PMID: 34646391 PMCID: PMC8490510 DOI: 10.7150/thno.64354] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/28/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Monotherapy for cancer treatment is limited by unstable efficacy and uncontrollable toxic side effects, while the multifunctional nanoplatform with complex preparation process cannot avoid the potential toxicity of each functional component. Methods: We exploited tumor-specific activated polyamino acid calcified nanoparticles (CHC NPs) as new-type oxidative stress amplification of anticancer drugs via building a safe and biodegradable multifunctional nanoplatform. Giving priority to chemotherapy, and synergizing chemodynamic therapy (CDT) with photodynamic therapy (PDT), this strategy was to achieve enhanced chemotherapy, simultaneously inducing immunogenic cell death and inhibiting tumor cell invasion. Results: Based on amorphous calcium carbonate, pH-responsive nanocarrier was prepared with classical chemotherapeutic drug 10-hydroxycamplothecin (HCPT) and photosensitizer Chlorin e6 (Ce6) to realize multifunctional nanotheranostics. Conclusion: Inventive calcified nanohybrids, where topoisomerase inhibited by HCPT to prevent DNA synthesis, the generation of •OH induced via Fenton reaction, along with a large amount of 1O2 produced by Ce6, might be a promising strategy for anti-tumor combination therapy in clinical translation.
Collapse
Affiliation(s)
- Wei Qiu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Mengyun Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Xuelian Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Xingyao Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Xiaoli Zhang
- Pediatric Research Institute, Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|