1
|
Fang Z, Zhang S, Wang W, Xu Y, Lu M, Qian Y, Xiao X, Li Y, Tang BZ, Zhang M. Aggregation-induced emission-based phototheranostics to combat bacterial infection at wound sites: A review. Biomaterials 2025; 315:122950. [PMID: 39522351 DOI: 10.1016/j.biomaterials.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The healing of chronic wounds infected by bacteria has attracted increasing global concerns. In the past decades, antibiotics have certainly brought hope to cure bacteria-infected chronic wounds. However, the misuse of antibiotics leads to the emergence of numerous multidrug-resistant bacteria, which aggravate the health threat to clinical patients. To address these increasing challenges, scientists are committed to creating novel non-antibiotic strategies to kill bacteria and promote bacteria-infected chronic wound healing. Fortunately, with the quick development of nanotechnology, the representatives of phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), exhibit promising possibilities in promoting bacteria-infected wound healing. Well-known, photothermal agents and photosensitizers largely determine the effects of PTT and PDT. A common problem for these molecules is the aggregation-induced quenching effect, which highly limits their further applicability in biomedical and clinical fields. Fortunately, the occurrence of aggregation-induced emission luminogens (AIEgens) efficiently overcomes the photobleaching and exhibit advantages, such as strongly aggregated emission, superior photostability, aggregation-enhanced reactive oxygen species (ROS), and heat generation, which makes great sense to the development of PTT and PDT. This article reviews various studies conducted on novel AIEgen-based materials that can mediate potent PDT, PTT, and a combination of PDT and PTT to promote bacteria-infected chronic wound healing.
Collapse
Affiliation(s)
- Zhurun Fang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Shixuan Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Mengmeng Lu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxin Qian
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Xiyan Xiao
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yuanyuan Li
- Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China.
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Chang X, Han XW, Zhu HT, Zhou NN, Yang N, Shen CP, Qi C, Zhou AX, Feng HT, Tang BZ. Phosphinylation/cyclization of propynolaldehydes to isobenzo-furanylic phosphine oxides displaying AIE properties. Org Biomol Chem 2025; 23:3154-3162. [PMID: 40035296 DOI: 10.1039/d5ob00061k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Investigating organic reactions to synthesize novel molecules that exhibit aggregation-induced emission (AIE) characteristics is becoming a research hotspot. Herein, we develop a one-pot phosphinylation/cyclization reaction between propynolaldehydes and diarylphosphine oxides to generate isobenzofuran-substituted phosphine oxides (IBFPOs) displaying AIE properties. Such a reaction possesses benefits such as metal-free synthesis, simple operation and wide substrate applicability. Further structural modifications of the products have been implemented through the palladium-catalyzed Sonogashira reaction, Ullmann coupling and Diels-Alder addition. Furthermore, these AIE luminogens (AIEgens), which have satisfactory quantum yields and tunable emission covering the entire visible region, can be employed for the cell imaging of lipid droplets in HeLa cells. Notably, quantitative evaluation of the phototherapy effect demonstrates that one of these presented AIEgens, namely IBFPO-3j, displays high type-I reactive oxygen species (ROS) generation efficiency, enabling its effective application in photodynamic therapy in a hypoxic environment.
Collapse
Affiliation(s)
- Xin Chang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Xiao-Wen Han
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Hai-Tao Zhu
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Ni-Ni Zhou
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Nan Yang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Cheng-Ping Shen
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Chunxuan Qi
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - An-Xi Zhou
- Key Laboratory of Applied Organic Chemistry, Higher Institutions of Jiangxi Province, Shangrao Normal University, Shangrao 334000, China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China.
| |
Collapse
|
3
|
Qin J, Kong F, Zhang D, Yuan XH, Bian Y, Shao C. Dual-locked NIR fluorescent probe for detection of GSH and lipid droplets and its bioimaging application in cancer model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125395. [PMID: 39547142 DOI: 10.1016/j.saa.2024.125395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Fluorescence probes with outstanding merits have wide applications in tumor diagnosis. However, most of these probes can only detect single tumor biomarker, potentially generating "false positive" signals within intricate biological systems. In contrast, the dual-locked fluorescent probes triggered by two response factors can effectively address the aforementioned limitations. In this work, we fabricated a novel coumarin-based NIR fluorescent probe (CP-GSH), demonstrating dual-responsiveness to high glutathione (GSH) concentrations and high viscosity. Specifically, the probe showed strong fluorescence enhancement at 675 nm ∼ 725 nm in the simultaneous presence of GSH and high viscosity, whereas the presence of either GSH or high viscosity alone could not induce a noticeable change in fluorescence intensity of CP-GSH. More importantly, the bioimaging experiments further validated CP-GSH triggered by endogenous GSH possessed excellent targeting capability towards lipid droplets (LDs), which could be utilized to effective discriminate between cancer cells and normal cells. This work proposes a promising strategy for the design of dual-locked probe for tumor imaging.
Collapse
Affiliation(s)
- Jingcan Qin
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China
| | - Fei Kong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Dachuan Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xiao Han Yuan
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China.
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China.
| |
Collapse
|
4
|
Jiang M, Kang J, Dong A. Aggregation-induced emission luminogens for intracellular bacteria imaging and elimination. Biosens Bioelectron 2025; 267:116873. [PMID: 39467473 DOI: 10.1016/j.bios.2024.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/11/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Intracellular bacterial infections are a serious threat to human health due to their ability to escape immunity and develop drug resistance. Recent attention has been devoted to identifying and ablating intracellular bacteria with fluorescence probes. Aggregation-induced emission luminogens (AIEgens) photosensitizers as fluorescence probes possess excellent photostability and rapid response, which have emerged as powerful fluorescent tools for intracellular bacterial detection and antibacterial therapy. This review is intended to highlight the current advances in AIEgens on intracellular bacteria imaging and elimination, which covers topics from intracellular AIE mechanism, intracellular bacteria imaging of AIEgens to the elimination of intracellular bacteria with AIEgens. AIEgens utilized different interactions to detect intracellular bacteria, emitting bright light due to restricted intramolecular movement to visualize intracellular bacteria. Photosensitive AIEgens generate reactive oxygen species (ROS) in the aggregate state to elimate intracellular bacteria. Moreover, the prospects and application of AIEgens in intracellular bacteria imaging and elimination are also discussed, which provides insights for the development of AIE-based diagnostic and therapeutic materials and technologies.
Collapse
Affiliation(s)
- Mingji Jiang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot, 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot, 010021, PR China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot, 010021, PR China.
| |
Collapse
|
5
|
Xu W, Jian D, Yang H, Wang W, Ding Y. Aggregation-induced emission: Application in diagnosis and therapy of hepatocellular carcinoma. Biosens Bioelectron 2024; 266:116722. [PMID: 39232431 DOI: 10.1016/j.bios.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Hepatocellular carcinoma (HCC) is a serious health issue due to its low early diagnosis rate, resistance to chemotherapy, and poor five-year survival rate. Therefore, it is crucial to explore novel diagnostic and therapeutic approaches tailored to the characteristics of HCC. Aggregation-induced emission (AIE) is a phenomenon where the luminescence of certain molecules, typically non-luminescent or weakly luminescent in solution, is significantly enhanced upon aggregation. AIE has been extensively applied in bioimaging, biosensors, and therapy. Fluorophore materials based on AIE (AIEgens) have a wide range of application scenarios and potential for clinical translation. This review focuses on recent advances in AIE-based strategies for diagnosing and treating HCC. First, the specific functional mechanism of AIE is described. Next, we summarize recent progress in the application of AIE for multimodal imaging, biosensor detection, and phototherapy. Finally, prospects and challenges for the AIE-based application in the diagnosis and therapy of HCC are discussed.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Danfeng Jian
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Weili Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
6
|
Sun Y, Qu F, Geng R, Xiao W, Bi D, Xiong B, Liu Y, Zhu J, Chen X. Electrostatic Assembly of Gold Nanoclusters in Reverse Emulsion Enabling Nanoassemblies with Tunable Structure and Size for Enhanced NIR-II Fluorescence Imaging. ACS NANO 2024; 18:32126-32144. [PMID: 39495492 DOI: 10.1021/acsnano.4c10973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The precise control of the assembly structure and size of gold nanoclusters (AuNCs) can potentially amplify their near-infrared II (NIR-II) fluorescence imaging and targeting properties. However, the conventional electrostatic assembly of AuNCs and charged molecules faces challenges in balancing the inherent electrostatic repulsions among charged units and regulating the diffusion of assembly units. These difficulties limit precise control over assembly size and structure, along with limited options for coassembled molecules, thereby restricting imaging properties and targeting capability. To circumvent this challenge, we developed a reverse emulsion-confined electrostatic assembly method. This technique efficiently constructs AuNC nanoassemblies with diverse coassembled molecules, allowing for the fine-tuning of assembly size and structure, including both core-satellite and homogeneous AuNC nanoassemblies. The development of two distinct nanoassemblies can be partially attributed to the varying diffusive rates of AuNCs or the AuNCs/polymer complex within the fused emulsion droplets. This variance arises from steric hindrances encountered during the emulsion fusion process. Interestingly, core-satellite nanoassemblies exhibit the strongest NIR-II fluorescence enhancement. Finally, the introduction of a hyaluronic acid coating on the surfaces of nanoassemblies with varying sizes enables the nanoprobes to achieve enhanced lymph node imaging through size modulation and macrophage targeting, which are used for surgical navigation to remove lymph node metastases. We envision that this self-assembly strategy can be extended to a wide range of electrostatic assembly systems for the development of multicomponent functional materials.
Collapse
Affiliation(s)
- Yufeng Sun
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fei Qu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rui Geng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wanyue Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Duohang Bi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bijin Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
| | - Jintao Zhu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
7
|
Khalid A, Anuff H, Woodhead S, Yeung TM. Assessment of the Quality of Patient-Oriented Internet Information on Fluorescence Imaging in Surgery. Surg Innov 2024; 31:394-399. [PMID: 38785116 DOI: 10.1177/15533506241256827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
BACKGROUND In the digital age, patients are increasingly turning to the Internet to seek medical information to aid in their decision-making process before undergoing medical treatments. Fluorescence imaging is an emerging technological tool that holds promise in enhancing intra-operative decision-making during surgical procedures. This study aims to evaluate the quality of patient information available online regarding fluorescence imaging in surgery and assesses whether it adequately supports informed decision-making. METHOD The term "patient information on fluorescence imaging in surgery" was searched on Google. The websites that fulfilled the inclusion criteria were assessed using 2 scoring instruments. DISCERN was used to evaluate the reliability of consumer health information. QUEST was used to assess authorship, tone, conflict of interest and complementarity. RESULTS Out of the 50 websites identified from the initial search, 10 fulfilled the inclusion criteria. Only two of these websites were updated in the last two years. The definition of fluorescence imaging was stated in only 50% of the websites. Although all websites mentioned the benefits of fluorescence imaging, none mentioned potential risks. Assessment by DISCERN showed that 30% of the websites were rated low and 70% were rated moderate. With QUEST, the websites demonstrated an average score of 62.5%. CONCLUSION This study highlights the importance of providing patients with accurate and balanced information about medical technologies and procedures they may undergo. Fluorescence imaging in surgery is a promising technology that can potentially improve surgical outcomes. However, patients need to be well-informed about its benefits and limitations in order to make informed decisions about their healthcare.
Collapse
Affiliation(s)
- Aizaz Khalid
- Department of Colorectal Surgery, St Richard's Hospital, Chichester, Univeristy Hospitals Sussex NHS Foundation Trust, Worthing, UK
| | - Heena Anuff
- Department of Colorectal Surgery, St Richard's Hospital, Chichester, Univeristy Hospitals Sussex NHS Foundation Trust, Worthing, UK
| | - Sophie Woodhead
- Department of Colorectal Surgery, St Richard's Hospital, Chichester, Univeristy Hospitals Sussex NHS Foundation Trust, Worthing, UK
| | - Trevor M Yeung
- Department of Colorectal Surgery, St Richard's Hospital, Chichester, Univeristy Hospitals Sussex NHS Foundation Trust, Worthing, UK
- Department of Colorectal Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
8
|
Xia D, Cheng Y, Zhang M, Ma J, Liang B, Wang P. Regulation of Fluorescence and Self-assembly of a Salicylaldehyde Azine-Containing Amphiphile by Pillararene. Chemistry 2024; 30:e202304200. [PMID: 38340042 DOI: 10.1002/chem.202304200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Regulation of fluorescence and self-assembly of a salicylaldehyde azine-containing amphiphile by a water-soluble pillar[5]arene via host-guest recognition in water was realized. The fluorescence and the self-assembled aggregates of the bola-type amphiphile G can be tailored by adding different amounts of water-soluble pillar[5]arene (WP5). In addition, the emission property and self-assembly behavior of G and WP5 are responsive to pH conditions. Furthermore, the fluorescence emission property of G and the regulation by WP5 or pH conditions was applied as information encryption material, rewritable paper, and erasable ink. We believe that this fluorescence regulation strategy is promising for the construction of advanced fluorescent organic materials.
Collapse
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yujie Cheng
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
| | - Meiru Zhang
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
| | - Jiaxin Ma
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
| | - Bicong Liang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Pi Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
9
|
Wang Q, Chen B, Duan C, Wang T, Lou X, Dai J, Xia F. Unfolded Protein-Based Sandwich AIE Probe Imparts High Fluorescent Contrast for Pan-Cancer Surgical Navigation. Anal Chem 2024; 96:3609-3617. [PMID: 38364862 DOI: 10.1021/acs.analchem.3c05735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Fluorescence imaging-guided navigation for cancer surgery has a promising clinical application. However, pan-cancer encompasses a wide variety of cancer types with significant heterogeneity, resulting in the lack of universal and highly contrasted fluorescent probes for surgical navigation. Here, we developed an aggregation-induced emission (AIE) probe (MI-AIE-TsG, MAT) with dual activation for pan-cancer surgical navigation. MAT weakly activates fluorescence by targeting the SUR1 protein on the endoplasmic reticulum (ER) through the TsG group. Subsequently, the sulfhydryl groups on the unfolded proteins, which are highly enriched in cancer ER, react with the maleimide (MI) of MAT through the thiol-ene click reaction, further enhancing the fluorescence. The formation of a SUR1-MAT-unfolded protein sandwich complex reinforces the restriction of intramolecular motion and eliminates photoinduced electron transfer of MAT, leading to high signal-to-noise (9.2) fluorescence imaging and use for surgical navigation of pan-cancer. The generally high content of unfolded proteins in cancer cells makes MAT imaging generalizable, and it currently has proven feasibility in ovarian, cervical, and breast cancers. Meanwhile, MAT promotes cellular autophagy by hindering protein folding, thereby inhibiting cancer cell proliferation. This generalizable, high-contrast AIE fluorescent probe spans the heterogeneity of pancreatic cancer, enabling precise pancreatic cancer surgery navigation and treatment.
Collapse
Affiliation(s)
- Quan Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tingting Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
10
|
Wang H, Hu L, Yang J, Zhang C, Wang Z, Shen X, Chen X, He J, Pan J, Gu X. Isophorone-based AIEgens fluorescent probe with red emission for targeting lipid droplets and identifying non-alcoholic fatty liver disease. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123588. [PMID: 37922852 DOI: 10.1016/j.saa.2023.123588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Due to the disorder of lipid metabolism, the excessive accumulation of lipid droplets (LDs) in liver cells can result in the occurrence of non-alcoholic fatty liver disease (NAFLD). Therefore, it is great of significance to design and synthesized LDs-specific fluorescent probes for the early diagnosis of NAFLD. Herein, we developed a series of aggregation-induced emission (AIE) probes ISO-LD1, ISO-LD2 and ISO-LD3 based on isophorone group for LDs-specific imaging in living cells. The photophysical properties demonstrated that all the probes with red emission (λem > 600 nm) exhibited a strong fluorescence in high polarity solvents. In particular, probe ISO-LD3 has a highest fluorescence quantum yield (except for 1,4-dioxane) and a larger Stokes shift. Confocal laser scanning microscopy experiments indicated that probe ISO-LD3 could specifically stain LDs via a "washing-free" procedure within 10 s, and monitor the dynamic behaviors of LDs exhibiting a high signal/noise ratio. Importantly, given the satisfactory performance of probe ISO-LD3, it has been successfully used for the detection of the normal liver tissues and fatty liver tissues, respectively. This work illustrated that ISO-LD3 is a promising tool for the detection of LDs and LDs-related diseases.
Collapse
Affiliation(s)
- Hui Wang
- Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern, Wannan Medical College, Wuhu 241002, China; School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Lei Hu
- Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern, Wannan Medical College, Wuhu 241002, China; School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Jing Yang
- Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern, Wannan Medical College, Wuhu 241002, China; School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Cuifeng Zhang
- School of Anesthesiology, Wannan Medical College, Wuhu 241002, China
| | - Zhiyu Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Xuebin Shen
- Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern, Wannan Medical College, Wuhu 241002, China; School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Xi Chen
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Jing He
- Department of Medical Biology, Wannan Medical College, Wuhu 241002, China
| | - Jin Pan
- School of Anesthesiology, Wannan Medical College, Wuhu 241002, China
| | - Xiaoxia Gu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
11
|
Zhang R, Shen P, Xiong Y, Wu T, Wang G, Wang Y, Zhang L, Yang H, He W, Du J, Wei X, Zhang S, Qiu Z, Zhang W, Zhao Z, Tang BZ. Bright, photostable and long-circulating NIR-II nanoparticles for whole-process monitoring and evaluation of renal transplantation. Natl Sci Rev 2024; 11:nwad286. [PMID: 38213521 PMCID: PMC10776353 DOI: 10.1093/nsr/nwad286] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 01/13/2024] Open
Abstract
Kidney transplantation is the gold standard for the treatment of end-stage renal diseases (ESRDs). However, the scarcity of donor kidneys has caused more and more ESRD patients to be stuck on the waiting list for transplant surgery. Improving the survival rate for renal grafts is an alternative solution to the shortage of donor kidneys. Therefore, real-time monitoring of the surgical process is crucial to the success of kidney transplantation, but efficient methods and techniques are lacking. Herein, a fluorescence technology based on bright, photostable and long-circulating aggregation-induced emission (AIE) active NIR-II nano-contrast agent DIPT-ICF nanoparticles for the whole-process monitoring and evaluation of renal transplantation has been reported. In the aggregated state, DIPT-ICF exhibits superior photophysical properties compared with the commercial dyes IR-26 and IR-1061. Besides, the long-circulating characteristic of the AIE nano-contrast agent helps to achieve renal angiography in kidney retrieval surgery, donor kidney quality evaluation, diagnosing vascular and ureteral complications, and assessment of renal graft reperfusion beyond renovascular reconstruction, which considerably outperforms the clinically approved indocyanine green (ICG).
Collapse
Affiliation(s)
- Rongyuan Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
| | - Ping Shen
- School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yu Xiong
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
| | - Tianjing Wu
- School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Gang Wang
- School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yucheng Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Liping Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
| | - Han Yang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Wei He
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian Du
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Siwei Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Weijie Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
12
|
Tanniche I, Behkam B. Engineered live bacteria as disease detection and diagnosis tools. J Biol Eng 2023; 17:65. [PMID: 37875910 PMCID: PMC10598922 DOI: 10.1186/s13036-023-00379-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Sensitive and minimally invasive medical diagnostics are essential to the early detection of diseases, monitoring their progression and response to treatment. Engineered bacteria as live sensors are being developed as a new class of biosensors for sensitive, robust, noninvasive, and in situ detection of disease onset at low cost. Akin to microrobotic systems, a combination of simple genetic rules, basic logic gates, and complex synthetic bioengineering principles are used to program bacterial vectors as living machines for detecting biomarkers of diseases, some of which cannot be detected with other sensing technologies. Bacterial whole-cell biosensors (BWCBs) can have wide-ranging functions from detection only, to detection and recording, to closed-loop detection-regulated treatment. In this review article, we first summarize the unique benefits of bacteria as living sensors. We then describe the different bacteria-based diagnosis approaches and provide examples of diagnosing various diseases and disorders. We also discuss the use of bacteria as imaging vectors for disease detection and image-guided surgery. We conclude by highlighting current challenges and opportunities for further exploration toward clinical translation of these bacteria-based systems.
Collapse
Affiliation(s)
- Imen Tanniche
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- School of Biomedical Engineered and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Engineered Health, Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
13
|
Yang L, Gao Y, Wei J, Cheng Z, Wu S, Zou L, Li S, Li P. Selenium-integrated conjugated oligomer nanoparticles with high photothermal conversion efficiency for NIR-II imaging-guided cancer phototheranostics in vivo. J Nanobiotechnology 2023; 21:314. [PMID: 37667389 PMCID: PMC10476403 DOI: 10.1186/s12951-023-02080-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
Second near-infrared (NIR-II) fluorescence imaging in the range of 1000-1700 nm has great prospects for in vivo imaging and theranostics monitoring. At present, few NIR-II probes with theranostics properties have been developed, especially the high-performance organic theranostics material remains underexploited. Herein, we demonstrate a selenium (Se)-tailoring method to develop high-efficient NIR-II imaging-guided material for in vivo cancer phototheranostics. Via Se-tailoring strategy, conjugated oligomer TPSe-based nanoparticles (TPSe NPs) achieve bright NIR-II emission up to 1400 nm and exhibit a relatively high photothermal conversion efficiency of 60% with good stability. Moreover, the TPSe NPs demonstrate their photothermal ablation of cancer cells in vitro and tumor in vivo with the guidance of NIR-II imaging. It is worth noting that the TPSe NPs have good biocompatibility without obvious side effects. Thus, this work provides new insight into the development of NIR-II theranostics agents.
Collapse
Affiliation(s)
- Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yijian Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215000, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Sijia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Liang Zou
- School of Medicine, Chengdu University, Chengdu, 610106, China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215000, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| |
Collapse
|
14
|
Gao X, Gao H, Yue K, Cao X, Yang E, Zhang Z, Huang Y, Li X, Ding D, Luo P, Jiang X. Observing Extracellular Vesicles Originating from Endothelial Cells in Vivo Demonstrates Improved Astrocyte Function Following Ischemic Stroke via Aggregation-Induced Emission Luminogens. ACS NANO 2023; 17:16174-16191. [PMID: 37535897 PMCID: PMC10448755 DOI: 10.1021/acsnano.3c05309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Extracellular vesicles (EVs) obtained from endothelial cells (ECs) have significant therapeutic potential in the clinical management of individuals with ischemic stroke (IS) because they effectively treat ischemic stroke in animal models. However, because molecular probes with both high labeling efficiency and tracer stability are lacking, monitoring the actions of EC-EVs in the brain remains difficult. The specific intracellular targets in the brain that EC-EVs act on to produce their protective effects are still unknown, greatly impeding their use in clinical settings. For this research, we created a probe that possessed aggregation-induced emission (AIE) traits (namely, TTCP), enabling the effective labeling of EC-EVs while preserving their physiological properties. In vitro, TTCP simultaneously had a higher EC-EV labeling efficiency and better tracer stability than the commercial EV tags PKH-67 and DiI. In vivo, TTCP precisely tracked the actions of EC-EVs in a mouse IS model without influencing their protective effects. Furthermore, through the utilization of TTCP, it was determined that astrocytes were the specific cells affected by EC-EVs and that EC-EVs exhibited a safeguarding impact on astrocytes following cerebral ischemia-reperfusion (I/R) injury. These protective effects encompassed the reduction of the inflammatory reaction and apoptosis as well as the enhancement of cell proliferation. Further analysis showed that miRNA-155-5p carried by EC-EVs is responsible for these protective effects via regulation of the c-Fos/AP-1 pathway; this information provided a strategy for IS therapy. In conclusion, TTCP has a high EC-EV labeling efficiency and favorable in vivo tracer stability during IS therapy. Moreover, EC-EVs are absorbed by astrocytes during cerebral I/R injury and promote the restoration of neurological function through the regulation of the c-Fos/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Xiangyu Gao
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Heqi Gao
- The
Key Laboratory of Bioactive Materials, Ministry of Education, The
College of Life Sciences, Nankai University, Tianjin 300071, China
- Center
for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology,
Guangdong Research Center for Interfacial Engineering of Functional
Materials, College of Materials Science and Engineering, College of
Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| | - Kangyi Yue
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Xiuli Cao
- Department
of Medical Genetics and Developmental Biology, Fourth Military Medical University Xi’an 710032, China
| | - Erwan Yang
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Zhuoyuan Zhang
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
- School
of Life Science, Northwest University, Xi’an 710032, China
| | - Yutao Huang
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Xin Li
- Department
of Anesthesiology, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Dan Ding
- The
Key Laboratory of Bioactive Materials, Ministry of Education, The
College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Peng Luo
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Xiaofan Jiang
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| |
Collapse
|
15
|
Cui Z, Zhang Y, Zhang Z, Abudurexiti A, Yusuf A. Synthesis of an aggregation-induced emission-based fluorescent probe based on rupestonic acid. RSC Adv 2023; 13:25369-25378. [PMID: 37661955 PMCID: PMC10472508 DOI: 10.1039/d3ra03521b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Chinese herbal medicine and Chinese patent medicine have been widely applied for cancer care in China. Rupestonic acid, an active ingredient of Artemisia rupestris L., has recently been confirmed to have certain anti-tumor effects in vitro. In this study, we employed the application of a commonly devoted triphenylamine as a fluorophore and the addition of 2,4-thiazolidinedione as a bridge to integrate rupestonic acid into the AIE system to create an fluorescent probe with anti-tumor properties. The spectral, cytotoxic, and cellular imaging properties of the probe were measured. Its promising responses make possible the application of the probe in antitumor theragnostic systems.
Collapse
Affiliation(s)
- Zhichao Cui
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University Kashi 844000 China +86-18690293325
| | - Yucai Zhang
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University Kashi 844000 China +86-18690293325
| | - Zhonghui Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Adila Abudurexiti
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University Kashi 844000 China +86-18690293325
| | - Abdulla Yusuf
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University Kashi 844000 China +86-18690293325
| |
Collapse
|
16
|
Kang D, Kim HS, Han S, Lee Y, Kim YP, Lee DY, Lee J. A local water molecular-heating strategy for near-infrared long-lifetime imaging-guided photothermal therapy of glioblastoma. Nat Commun 2023; 14:2755. [PMID: 37179387 PMCID: PMC10183012 DOI: 10.1038/s41467-023-38451-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Owing to the strong absorption of water in the near-infrared (NIR) region near 1.0 μm, this wavelength is considered unsuitable as an imaging and analytical signal in biological environments. However, 1.0 μm NIR can be converted into heat and used as a local water-molecular heating strategy for the photothermal therapy of biological tissues. Herein, we describe a Nd-Yb co-doped nanomaterial (water-heating nanoparticles (NPs)) as strong 1.0 μm emissive NPs to target the absorption band of water. Furthermore, introducing Tm ions into the water-heating NPs improve the NIR lifetime, enabling the development of a NIR imaging-guided water-heating probe (water-heating NIR NPs). In the glioblastoma multiforme male mouse model, tumor-targeted water-heating NIR NPs reduce the tumor volume by 78.9% in the presence of high-resolution intracranial NIR long-lifetime imaging. Hence, water-heating NIR NPs can be used as a promising nanomaterial for imaging and photothermal ablation in deep-tissue-bearing tumor therapy.
Collapse
Affiliation(s)
- Dongkyu Kang
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Soohyun Han
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeonju Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Young-Pil Kim
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea.
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, 04763, Republic of Korea.
- Elixir Pharmatech Inc., Seoul, 07463, Republic of Korea.
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
17
|
Gao H, Qi X, Zhang J, Wang N, Xin J, Jiao D, Liu K, Qi J, Guan Y, Ding D. Smart One-for-All Agent with Adaptive Functions for Improving Photoacoustic /Fluorescence Imaging-Guided Photodynamic Immunotherapy. SMALL METHODS 2023; 7:e2201582. [PMID: 36807567 DOI: 10.1002/smtd.202201582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Indexed: 05/17/2023]
Abstract
Multifunctional phototheranostics that integrate several diagnostic and therapeutic strategies into one platform hold great promise for precision medicine. However, it is really difficult for one molecule to possess multimodality optical imaging and therapy properties that all functions are in the optimized mode because the absorbed photoenergy is fixed. Herein, a smart one-for-all nanoagent that the photophysical energy transformation processes can be facilely tuned by external light stimuli is developed for precise multifunctional image-guided therapy. A dithienylethene-based molecule is designed and synthesized because it has two light-switchable forms. In the ring-closed form, most of the absorbed energy dissipates via nonradiative thermal deactivation for photoacoustic (PA) imaging. In the ring-open form, the molecule possesses obvious aggregation-induced emission features with excellent fluorescence and photodynamic therapy properties. In vivo experiments demonstrate that preoperative PA and fluorescence imaging help to delineate tumors in a high-contrast manner, and intraoperative fluorescence imaging is able to sensitively detect tiny residual tumors. Furthermore, the nanoagent can induce immunogenic cell death to elicit antitumor immunity and significantly suppress solid tumors. This work develops a smart one-for-all agent that the photophysical energy transformation and related phototheranostic properties can be optimized by light-driven structure switch, which is promising for multifunctional biomedical applications.
Collapse
Affiliation(s)
- Heqi Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinwen Qi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingtian Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nan Wang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingrui Xin
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Di Jiao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kaining Liu
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ji Qi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Guan
- Department of Urology, Tianjin Children's Hospital /Tianjin University Children's Hospital, Tianjin, 300134, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
18
|
Zhang Z, Deng Z, Zhu L, Zeng J, Cai XM, Qiu Z, Zhao Z, Tang BZ. Aggregation-induced emission biomaterials for anti-pathogen medical applications: detecting, imaging and killing. Regen Biomater 2023; 10:rbad044. [PMID: 37265605 PMCID: PMC10229374 DOI: 10.1093/rb/rbad044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 06/03/2023] Open
Abstract
Microbial pathogens, including bacteria, fungi and viruses, greatly threaten the global public health. For pathogen infections, early diagnosis and precise treatment are essential to cut the mortality rate. The emergence of aggregation-induced emission (AIE) biomaterials provides an effective and promising tool for the theranostics of pathogen infections. In this review, the recent advances about AIE biomaterials for anti-pathogen theranostics are summarized. With the excellent sensitivity and photostability, AIE biomaterials have been widely applied for precise diagnosis of pathogens. Besides, different types of anti-pathogen methods based on AIE biomaterials will be presented in detail, including chemotherapy and phototherapy. Finally, the existing deficiencies and future development of AIE biomaterials for anti-pathogen applications will be discussed.
Collapse
Affiliation(s)
- Zicong Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ziwei Deng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lixun Zhu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Jialin Zeng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xu Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Rescources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zheng Zhao
- Correspondence address. E-mail: (Z.Z.); (B.Z.T.)
| | | |
Collapse
|
19
|
Yamamoto K, Imai W, Kanamori S, Yamamoto K, Nakamura Y. Phenothiazine-, Dihydroacridine-, and Acridone-Based Boron Difluoride Complexes: Synthesis and Structure-Property Relationships. J Org Chem 2023; 88:4003-4007. [PMID: 36827655 DOI: 10.1021/acs.joc.3c00088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Boron difluoride complexes of phenothiazine, 9,10-dihydroacridine, and acridone derivatives with a pyridyl group were synthesized. Their structures, dynamic conformational behaviors, and photophysical properties, including solid-state fluorescence, were disclosed. The effects of the oxidation state of the sulfur atom in the phenothiazine derivatives on their properties were also clarified.
Collapse
Affiliation(s)
- Koji Yamamoto
- Department of Pharmaceutical Sciences, Shujitsu University, 1-6-1 Nishigawara, Okayama 703-8516, Japan
| | - Wakana Imai
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Satoki Kanamori
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Koji Yamamoto
- Department of Applied Chemistry, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| | - Yosuke Nakamura
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|