1
|
Liu Y, Zhang Y, Dong X, Wang J, Li D, Zheng H. Controllable delivery of dual-drugs for combination therapy of chemotherapy and photodynamic therapy based on pH-responsive hyaluronic acid. Int J Biol Macromol 2025; 305:141213. [PMID: 39978519 DOI: 10.1016/j.ijbiomac.2025.141213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/26/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
The non-selectivity and undesirable water solubility are major limitations for the utilization of anti-cancer drugs in traditional therapy, leading to diminished therapeutic efficacy and severe side effects. Besides, the tumor inhibitory effect of photodynamic therapy (PDT) is limited, due to the limited depth of light penetration. However, combination therapies can reverse the dilemma that monotherapies face in clinical use. Here, a stimulus-sensitive drug delivery system was prepared by self-assembly for synchronized delivery and combination therapy. It was constructed by employing pH-responsive imine bonds to attach the chemotherapeutic drug daunorubicin (DNR) and the photosensitizer methyl aminolevulinate (MAL) to oxidized hyaluronic acid (OHA), named NPs(MAL/DNR). The nanoparticles demonstrated excellent inhibitory effect and synergistic effect in tumor suppression, as evidenced by in vitro cytotoxicity results (CI = 0.90, synergism). In summary, the prepared dual-drug nanoparticles can play a synergistic role in selectively killing tumor cells. This provides a new feasible direction for the use of combined chemotherapy and photodynamic therapy in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yiqing Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Xinhao Dong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Jiawei Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Dan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Hua Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China..
| |
Collapse
|
2
|
Hao Z, Zhou Y, Zhang Y, Wang D, Wei Y, Ji X, Sun WR, Wang P, Li Y, Lopez IB, Pedraz JL, Ramalingam M, Xie S, Wang R. Celastrol loaded nanocomplex for painless tumor therapy via YAP inhibition. Sci Rep 2025; 15:13133. [PMID: 40240779 PMCID: PMC12003811 DOI: 10.1038/s41598-025-97055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-related pain is prevalent and severely impairs patients' quality of life. However, conventional cancer therapies primarily target tumor cell destruction, often overlooking the management of cancer pain. Thus, there is an immediate necessity to develop therapeutic agents that can both suppress tumor growth and alleviate cancer pain. In this study, we report a celastrol (CEL)-based nanocomposites (PDA-BSA-MnO2-CEL) for pain-less cancer immunotherapy. Results from in vitro and in vivo experiments demonstrate the efficacy and mechanism of the nanocomposites in pain-less immunotherapy. MnO2 and CEL induce immunogenic cell death (ICD), mediating immunotherapy. Additionally, CEL significantly reduces the secretion of the immunosuppressive factor Yes-associated protein (YAP) within the tumor microenvironment, thereby enhancing the efficacy of immunotherapy. The downregulation of YAP leads to reduced expression of vascular endothelial growth factor (VEGF), inhibiting tumor growth and decreasing activation of the pain-associated VEGF receptor 1 (VEGFR1), thus providing an analgesic effect. Moreover, CEL reduces inflammatory pain by lowering levels of inflammatory factors in tumors. The design of this nanocomposites system integrates immunotherapy with cancer pain inhibition, offering a novel approach to patient-centered tumor therapy.
Collapse
Affiliation(s)
- Zhaokun Hao
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yuming Zhou
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People's Republic of China
| | - Yuqiang Zhang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People's Republic of China
| | - Danyang Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yiying Wei
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Xiaopu Ji
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Wan Ru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - YouJie Li
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Irene Bautista Lopez
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, Centro de investigació n Lascaray Ikergunea, A Joined Venture of TECNALIA, Basque Research & Technology Alliance (BRTA), Avenida Miguel de Unamuno, 01006, Vitoria-Gasteiz, Spain
| | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain.
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, Centro de investigació n Lascaray Ikergunea, A Joined Venture of TECNALIA, Basque Research & Technology Alliance (BRTA), Avenida Miguel de Unamuno, 01006, Vitoria-Gasteiz, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China.
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China.
| |
Collapse
|
3
|
Pan Y, Qu H, Chen H, Cheng W, Duan Z, Yang J, Wang N, Wu J, Wang Y, Wang C, Xue X. A tumor-targeting porphyrin-micelle with enhanced STING agonist delivery and synergistic photo-/immuno- therapy for cancer treatment. Acta Biomater 2025; 193:377-391. [PMID: 39746530 DOI: 10.1016/j.actbio.2024.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
The activation of STING pathway has emerged as a promising strategy in cancer immunotherapy. However, challenges associated with unfavorable physicochemical properties and potential off-target toxicities have limited the application of STING agonists. Here, we develop an amphiphilic and cationic charged porphyrin-polymer to electrostatically load the STING agonist (MSA-2) within a micellar structure, thereby enhancing carrier compatibility and drug-loading content of MSA-2. Additionally, tumor-targeting ligands were functionalized onto the micelle to enhance specificity for tumor cells, aiming to significantly improve tumor accumulation while minimizing undesirable toxicity. The resultant tumor-targeting porphyrin micelle (TPC@M) seamlessly integrates three therapeutic mechanisms: i) tumor ablation via phototherapy; ii) robust activation of the STING pathway by MSA-2; iii) synergistic photo-/immuno- stimulations. TPC@M efficiently ablates primary tumors through phototherapy and further activates adaptive immune responses synergistically with MSA-2-induced innate immunity to suppress metastasis and prevent recurrence. Overall, we transformed a delivery-compromised therapeutic into a precise, stable, and safe nanomedicine that unleashes synergistic immunotherapeutic effects. STATEMENT OF SIGNIFICANCE: This study addresses the urgent need for an efficient delivery system to fully harness the potential of the STING agonist MSA-2 in cancer immunotherapy. The cGAS-STING pathway plays a critical role in modulating anti-tumor immunity; however, the clinical application of MSA-2 has been hindered by its poor physicochemical properties and off-target effects. Our innovative approach introduces a tumor-targeting porphyrin-based polymeric micelle (TPC@M) that efficiently encapsulates MSA-2, overcoming compatibility issues associated with traditional nanocarriers. The TPC@M not only exhibits enhanced tumor targeting and reduced toxicity but also integrates phototherapy with immunotherapy, providing a synergistic strategy for cancer treatment. Our in vivo findings using 4T1 breast cancer mouse models demonstrate significant inhibition of tumor growth and prevention of metastasis, accompanied by a robust and long-lasting immune response.
Collapse
Affiliation(s)
- Yuqing Pan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haijing Qu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Cheng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiran Duan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaojiao Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Wu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanjun Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangdong Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Chiang MR, Hsu CW, Pan WC, Tran NT, Lee YS, Chiang WH, Liu YC, Chen YW, Chiou SH, Hu SH. Reprogramming Dysfunctional Dendritic Cells by a Versatile Catalytic Dual Oxide Antigen-Captured Nanosponge for Remotely Enhancing Lung Metastasis Immunotherapy. ACS NANO 2025; 19:2117-2135. [PMID: 39739571 PMCID: PMC11760334 DOI: 10.1021/acsnano.4c09525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
Dendritic cells (DCs) play a crucial role in initiating antitumor immune responses. However, in the tumor environment, dendritic cells often exhibit impaired antigen presentation and adopt an immunosuppressive phenotype, which hinders their function and reduces their ability to efficiently present antigens. Here, a dual catalytic oxide nanosponge (DON) doubling as a remotely boosted catalyst and an inducer of programming DCs to program immune therapy is reported. Intravenous delivery of DON enhances tumor accumulation via the marginated target. At the tumor site, DON incorporates cerium oxide nanozyme (CeO2)-coated iron oxide nanocubes as a peroxide mimicry in cancer cells, promoting sustained ROS generation and depleting intracellular glutathione, i.e., chemodynamic therapy (CDT). Upon high-frequency magnetic field (HFMF) irradiation, CDT accelerates the decomposition of H2O2 and the subsequent production of more reactive oxygen species, known as Kelvin's force laws, which promote the cycle between Fe3+/Fe2+ and Ce3+/Ce4+ in a sustainable active surface. HFMF-boosted catalytic DON promotes tumors to release tumor-associated antigens, including neoantigens and damage-associated molecular patterns. Then, the porous DON acts as an antigen transporter to deliver autologous tumor-associated antigens to program DCs, resulting in sustained immune stimulation. Catalytic DON combined with the immune checkpoint inhibitor (anti-PD1) in lung metastases suppresses tumors and improves survival over 40 days.
Collapse
Affiliation(s)
- Min-Ren Chiang
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chin-Wei Hsu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wan-Chi Pan
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ngoc-Tri Tran
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Sheng Lee
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wen-Hsuan Chiang
- Department
of Chemical Engineering, National Chung
Hsing University, Taichung 402, Taiwan
| | - Yu-Chen Liu
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology
Frontier Research Center, Center for Infectious Disease Education and Research
(CiDER)Osaka University, Osaka 565-0871, Japan
| | - Ya-Wen Chen
- National
Institute of Cancer Research, National Health
Research Institutes, Miaoli County 35053, Taiwan
| | - Shih-Hwa Chiou
- Institute
of Pharmacology, College of Medicine, National
Yang Ming Chiao Tung University, Hsinchu, Taipei 112304, Taiwan
- Department
of Medical Research, Veterans General Hospital, Taipei, Taipei 112304, Taiwan
| | - Shang-Hsiu Hu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
5
|
Chen H, Qu H, Pan Y, Cheng W, Xue X. Manganese-coordinated nanoparticle with high drug-loading capacity and synergistic photo-/immuno-therapy for cancer treatments. Biomaterials 2025; 312:122745. [PMID: 39098306 DOI: 10.1016/j.biomaterials.2024.122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Stimulator of interferon genes (STING) agonists have shown promise in cancer treatment by stimulating the innate immune response, yet their clinical potential has been limited by inefficient cytosolic entry and unsatisfactory pharmacological activities. Moreover, aggressive tumors with "cold" and immunosuppressive microenvironments may not be effectively suppressed solely through innate immunotherapy. Herein, we propose a multifaceted immunostimulating nanoparticle (Mn-MC NP), which integrates manganese II (Mn2+) coordinated photosensitizers (chlorin e6, Ce6) and STING agonists (MSA-2) within a PEGylated nanostructure. In Mn-MC NPs, Ce6 exerts potent phototherapeutic effects, facilitating tumor ablation and inducing immunogenic cell death to elicit robust adaptive antitumor immunity. MSA-2 activates the STING pathway powered by Mn2+, thereby promoting innate antitumor immunity. The Mn-MC NPs feature a high drug-loading capacity (63.42 %) and directly ablate tumor tissue while synergistically boosting both adaptive and innate immune responses. In subsutaneous tumor mouse models, the Mn-MC NPs exhibit remarkable efficacy in not only eradicating primary tumors but also impeding the progression of distal and metastatic tumors through synergistic immunotherapy. Additionally, they contribute to preventing tumor recurrence by fostering long-term immunological memory. Our multifaceted immunostimulating nanoparticle holds significant potential for overcoming limitations associated with insufficient antitumor immunity and ineffective cancer treatment.
Collapse
Affiliation(s)
- Han Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haijing Qu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuqing Pan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Cheng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangdong Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
6
|
Chen H, Qu H, Lu B, Pan Y, Yang J, Duan Z, Wu J, Wang Y, Wang C, Hu R, Xue X. A metal-coordination stabilized small-molecule nanomedicine with high drug-loading capacity and synergistic photochemotherapy for cancer treatment. NANOSCALE 2024; 16:14734-14747. [PMID: 39046363 DOI: 10.1039/d4nr02101k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Conventional nanomedicines typically employ a significant amount of excipients as carriers for therapeutic delivery, resulting in generally low drug-loading and compromised anti-cancer efficacy. Here, we propose a small-molecule nanomedicine (CMC NP) directly assembled using a chemotherapeutic drug (chlorambucil, CBL) and a phototherapeutic agent (chlorin e6, Ce6), and stabilized by metal coordination. The CMC NP exhibits exceptionally high drug loading (89.21%), robust stability, and smart disassembly in response to glutathione (GSH). Such a straightforward yet multifunctional delivery strategy could be a better alternative to overcome the above shortcomings of conventional nanomedicines while achieving enhanced efficacy. The CMC NP not only directly induces CBL-induced chemotherapy but also elicits synergistic antitumor responses through Ce6-mediated photodynamic and photothermal therapies. Owing to the multifaceted efforts from photodynamic, photothermal and chemo-therapies, the CMC NP exhibits excellent antitumor efficacy with negligible systemic toxicity which is untenable in traditional CBL-induced chemotherapy. Therefore, this study provides a feasible strategy for overcoming existing challenges and presents a potential opportunity to augment the clinical therapeutic effectiveness associated with conventional nanomedicine.
Collapse
Affiliation(s)
- Han Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haijing Qu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beike Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuqing Pan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaojiao Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhiran Duan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Wu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanjun Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Centre for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, China.
| | - Chao Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Rong Hu
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Centre for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, China.
| | - Xiangdong Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Zhang X, Zhang X, Liu S, Zhang W, Dai L, Lan X, Wang D, Tu W, He Y, Gao D. Achieving deep intratumoral penetration and multimodal combined therapy for tumor through algal photosynthesis. J Nanobiotechnology 2024; 22:227. [PMID: 38711078 DOI: 10.1186/s12951-024-02476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/13/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Elevated interstitial fluid pressure within tumors, resulting from impaired lymphatic drainage, constitutes a critical barrier to effective drug penetration and therapeutic outcomes. RESULTS In this study, based on the photosynthetic characteristics of algae, an active drug carrier (CP@ICG) derived from Chlorella pyrenoidosa (CP) was designed and constructed. Leveraging the hypoxia tropism and phototropism exhibited by CP, we achieved targeted transport of the carrier to tumor sites. Additionally, dual near-infrared (NIR) irradiation at the tumor site facilitated photosynthesis in CP, enabling the breakdown of excessive intratumoral interstitial fluid by generating oxygen from water decomposition. This process effectively reduced the interstitial pressure, thereby promoting enhanced perfusion of blood into the tumor, significantly improving deep-seated penetration of chemotherapeutic agents, and alleviating tumor hypoxia. CONCLUSIONS CP@ICG demonstrated a combined effect of photothermal/photodynamic/starvation therapy, exhibiting excellent in vitro/in vivo anti-tumor efficacy and favorable biocompatibility. This work provides a scientific foundation for the application of microbial-enhanced intratumoral drug delivery and tumor therapy.
Collapse
Affiliation(s)
- Xuwu Zhang
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Xinyue Zhang
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Shiqi Liu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Weidong Zhang
- Department of Pharmacy, The First Hospital of Qinhuangdao, Qinhuangdao, 066004, People's Republic of China
| | - Liang Dai
- Department of Pharmacy, The First Hospital of Qinhuangdao, Qinhuangdao, 066004, People's Republic of China
| | - Xifa Lan
- Department of Pharmacy, The First Hospital of Qinhuangdao, Qinhuangdao, 066004, People's Republic of China
| | - Desong Wang
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Wenkang Tu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China.
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China.
| | - Yuchu He
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China.
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China.
| | - Dawei Gao
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China.
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China.
| |
Collapse
|
8
|
Wu TH, Lu YJ, Chiang MR, Chen PH, Lee YS, Shen MY, Chiang WH, Liu YC, Chuang CY, Amy Lin HC, Hu SH. Lung metastasis-Harnessed in-Situ adherent porous organic nanosponge-mediated antigen capture for A self-cascaded detained dendritic cells and T cell infiltration. Biomaterials 2024; 305:122443. [PMID: 38160627 DOI: 10.1016/j.biomaterials.2023.122443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The infiltration of cytotoxic T lymphocytes promises to suppress the most irresistible metastatic tumor for immunotherapy, yet immune privilege and low immunogenic responses in these aggressive clusters often restrict lymphocyte recruitment. Here, an in situ adherent porous organic nanosponge (APON) doubles as organ selection agent and antigen captor to overcome immune privilege is developed. With selective organ targeting, the geometric effect of APON composed of disc catechol-functionalized covalent organic framework (COF) boosts the drug delivery to lung metastases. Along with a self-cascaded immune therapy, the therapeutic agents promote tumor release of damage-associated molecular patterns (DAMPs), and then, in situ deposition of gels to capture these antigens. Furthermore, APON with catechol analogs functions as a reservoir of antigens and delivers autologous DAMPs to detain dendritic cells, resulting in a sustained enhancement of immunity. This disc sponges (APON) at lung metastasis as antigen reservoirs and immune modulators effectively suppress the tumor in 60 days and enhanced the survival rate.
Collapse
Affiliation(s)
- Ting-Hsien Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 33305, Taiwan; The College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Min-Ren Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Pin-Hua Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-Sheng Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ming-Yin Shen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan; Department of Surgery, China Medical University Hsinchu Hospital, Hsinchu County, 30272, Taiwan
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yu-Chen Liu
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hsiao-Chun Amy Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
9
|
Wang Y, Dong H, Qu H, Cheng W, Chen H, Gu Y, Jiang H, Xue X, Hu R. Biomimetic Lung-Targeting Nanoparticles with Antioxidative and Nrf2 Activating Properties for Treating Ischemia/Reperfusion-Induced Acute Lung Injury. NANO LETTERS 2024; 24:2131-2141. [PMID: 38227823 DOI: 10.1021/acs.nanolett.3c03671] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Ischemia/reperfusion (IR)-induced acute lung injury (ALI) has a high mortality rate. Reactive oxygen species (ROS) play a crucial role in causing cellular damage and death in IR-induced ALI. In this work, we developed a biomimetic lung-targeting nanoparticle (PC@MB) as an antioxidative lung protector for treating IR-induced ALI. PC@MBs showed excellent ROS scavenging and Nrf2 activation properties, along with a lung-targeting function through autologous cell membrane coating. The PC@MBs exhibited an impressive antioxidative and pulmonary protective role via redox homeostasis recovery through Nrf2 and heme oxygenase-1 activation. PC@MBs could maintain cell viability by effectively scavenging the intracellular ROS and restoring the redox equilibrium in the lesion. In the IR mouse model, the PC@MBs preferentially accumulated in the lung and distinctly repaired the pneumonic damage. Our strategy has the potential to offer a promising therapeutic paradigm for treating IR-induced ALI through the incorporation of different therapeutic mechanisms.
Collapse
Affiliation(s)
- Yanjun Wang
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Dong
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haijing Qu
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Cheng
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Chen
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunfan Gu
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Hong Jiang
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiangdong Xue
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Hu
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
10
|
Li Y, Wang D, Sun J, Hao Z, Tang L, Sun W, Zhang X, Wang P, Ruiz-Alonso S, Pedraz JL, Kim HW, Ramalingam M, Xie S, Wang R. Calcium Carbonate/Polydopamine Composite Nanoplatform Based on TGF-β Blockade for Comfortable Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3187-3201. [PMID: 38206677 DOI: 10.1021/acsami.3c16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Cancer pain seriously reduces the quality of life of cancer patients. However, most research about cancer focuses solely on inhibiting tumor growth, neglecting the issue of cancer pain. Therefore, the development of therapeutic agents with both tumor suppression and cancer pain relief is crucial to achieve human-centered treatment. Here, the work reports curcumin (CUR) and ropivacaine (Ropi) coincorporating CaCO3/PDA nanoparticles (CaPNMCUR+Ropi) that realized efficient tumor immunotherapy and cancer pain suppression. The therapeutic efficiency and mechanism are revealed in vitro and in vivo. The results indicate that CaPNMCUR+Ropi underwent tumor microenvironment-responsive degradation and realized rapid release of calcium ions, Ropi, and CUR. The excessive intracellular calcium triggered the apoptosis of tumor cells, and the transient pain caused by the tumor injection was relieved by Ropi. Simultaneously, CUR reduced the levels of immunosuppressive factor (TGF-β) and inflammatory factor (IL-6, IL-1β, and TNF-α) in the tumor microenvironment, thereby continuously augmenting the immune response and alleviating inflammatory pain of cancer animals. Meanwhile, the decrease of TGF-β leads to the reduction of transient receptor potential vanilloid 1 (TRPV1) expression, thereby alleviating hyperalgesia and achieving long-lasting analgesic effects. The design of the nanosystem provides a novel idea for human-centered tumor treatment in the future.
Collapse
Affiliation(s)
- Yunmeng Li
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Deqiang Wang
- Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Jian Sun
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Zhaokun Hao
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Letian Tang
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Wanru Sun
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Xuehua Zhang
- Department of Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng 252000, People's Republic of China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Murugan Ramalingam
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joined Venture of TECNALIA, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
- Department of Metallurgical and Materials Engineering, Atilim University, Ankara 06830, Turkey
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
| |
Collapse
|
11
|
He S, Gou X, Zhang S, Zhang X, Huang H, Wang W, Yi L, Zhang R, Duan Z, Zhou P, Qian Z, Gao X. Nanodelivery Systems as a Novel Strategy to Overcome Treatment Failure of Cancer. SMALL METHODS 2024; 8:e2301127. [PMID: 37849248 DOI: 10.1002/smtd.202301127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Despite the tremendous progress in cancer treatment in recent decades, cancers often become resistant due to multiple mechanisms, such as intrinsic or acquired multidrug resistance, which leads to unsatisfactory treatment effects or accompanying metastasis and recurrence, ultimately to treatment failure. With a deeper understanding of the molecular mechanisms of tumors, researchers have realized that treatment designs targeting tumor resistance mechanisms would be a promising strategy to break the therapeutic deadlock. Nanodelivery systems have excellent physicochemical properties, including highly efficient tissue-specific delivery, substantial specific surface area, and controllable surface chemistry, which endow nanodelivery systems with capabilities such as precise targeting, deep penetration, responsive drug release, multidrug codelivery, and multimodal synergy, which are currently widely used in biomedical researches and bring a new dawn for overcoming cancer resistance. Based on the mechanisms of tumor therapeutic resistance, this review summarizes the research progress of nanodelivery systems for overcoming tumor resistance to improve therapeutic efficacy in recent years and offers prospects and challenges of the application of nanodelivery systems for overcoming cancer resistance.
Collapse
Affiliation(s)
- Shi He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xinyu Gou
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Shuheng Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xifeng Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Hongyi Huang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wanyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Linbin Yi
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Rui Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhongxin Duan
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Peizhi Zhou
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| |
Collapse
|
12
|
Zhang H, Hu L, Xiao W, Su Y, Cao D. An injectable, in situ forming and NIR-responsive hydrogel persistently reshaping tumor microenvironment for efficient melanoma therapy. Biomater Res 2023; 27:118. [PMID: 37981704 PMCID: PMC10659094 DOI: 10.1186/s40824-023-00462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Melanoma is a highly aggressive form of skin cancer with increasing incidence and mortality rates. Chemotherapy, the primary treatment for melanoma, is limited by hypoxia-induced drug resistance and suppressed immune response at the tumor site. Modulating the tumor microenvironment (TME) to alleviate hypoxia and enhance immune response has shown promise in improving chemotherapy outcomes. METHODS In this study, a novel injectable and in situ forming hydrogel named MD@SA was developed using manganese dioxide (MnO2) nanosheets pre-loaded with the chemotherapy drug doxorubicin (DOX) and mixed with sodium alginate (SA). The sustainable drug delivery, oxygen generation ability, and photothermal property of MD@SA hydrogel were characterized. The therapeutic efficacy of hydrogel was studied in B16F10 in vitro and B16F10 tumor-bearing mice in vivo. The immune effects on macrophages were analyzed by flow cytometry, real-time quantitative reverse transcription PCR, and immunofluorescence analyses. RESULTS The MD@SA hydrogel catalyzed the tumoral hydrogen peroxide (H2O2) into oxygen, reducing the hypoxic TME, down-regulating hypoxia-inducible factor-1 alpha (HIF-1α) and drug efflux pump P-glycoprotein (P-gp). The improved TME conditions enhanced the uptake of DOX by melanoma cells, enhancing its efficacy and facilitating the release of tumor antigens. Upon NIR irradiation, the photothermal effect of the hydrogel induced tumor apoptosis to expose more tumor antigens, thus re-educating the M2 type macrophage into the M1 phenotype. Consequently, the MD@SA hydrogel proposes an ability to constantly reverse the hypoxic and immune-inhibited TME, which eventually restrains cancer proliferation. CONCLUSION The injectable and in situ forming MD@SA hydrogel represents a promising strategy for reshaping the TME in melanoma treatment. By elevating oxygen levels and activating the immune response, this hydrogel offers a synergistic approach for TME regulation nanomedicine.
Collapse
Affiliation(s)
- Han Zhang
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Liangshan Hu
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yanqiong Su
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
13
|
Qu H, Li L, Chen H, Tang M, Cheng W, Lin TY, Li L, Li B, Xue X. Drug-drug conjugates self-assembled nanomedicines triggered photo-/immuno- therapy for synergistic cancer treatments. J Control Release 2023; 363:361-375. [PMID: 37751826 PMCID: PMC11165424 DOI: 10.1016/j.jconrel.2023.09.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Although immunotherapies have made progress in cancer treatment, their clinical response rates vary widely and are typically low due to sparse immune cell infiltration (immune "cold") and suppressive tumor immune microenvironment (TIME). A simple yet effective approach that integrates a variety of immune-stimulating and TIME-modulating functions could potentially address this clinical challenge. Herein, we conjugate two small molecules, including a photosensitizer (pyropheophorbide-a, PA) and a Toll-like receptor 7/8 agonist (resiquimod, R848), into prodrug (PA-R848) that self-assembles into PA-R848 esterase responsive nanoparticles (PARE NPs) with 100% drug composition and synergistic photo-/immune- therapeutic effects. In PARE NPs, PA exhibits strong phototherapeutic effects which ablate the primary tumor directly and elicits immunogenic cell death (ICD) to promote the immune response. R848 effectively polarizes the M2-type tumor-associated macrophage (TAM) to M1-type TAM, consequently reversing the "cold" and suppressive TIME when working together with phototherapy. The PARE NPs can efficiently pare down the tumor development by two synergisms, including i) synergistic immunotherapy between ICD and TAM polarization; ii) and the antitumor effects between phototherapy and immunotherapy. On a head-neck squamous cell carcinoma mouse model, PARE NPs combined with PD-1 antibody eliminate primary tumors, and significantly inhibit the progress of distant tumors thanks to the robust antitumor immunity enhanced by the PARE NPs.
Collapse
Affiliation(s)
- Haijing Qu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Longmeng Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Han Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Menghuan Tang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Wei Cheng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tzu-Yin Lin
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Lingyan Li
- Alphacait AI Biotech ch., LTD, No.10, Xixi Wetland, Wuchang Ave, Hangzhou, Zhejiang 310023, China
| | - Bin Li
- Alphacait AI Biotech ch., LTD, No.10, Xixi Wetland, Wuchang Ave, Hangzhou, Zhejiang 310023, China.
| | - Xiangdong Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|