1
|
Effect of DHT-Induced Hyperandrogenism on the Pro-Inflammatory Cytokines in a Rat Model of Polycystic Ovary Morphology. ACTA ACUST UNITED AC 2020; 56:medicina56030100. [PMID: 32120970 PMCID: PMC7142739 DOI: 10.3390/medicina56030100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Background and Objectives: Polycystic ovary syndrome (PCOS) is one of the most prevalent disorders among women of reproductive age. It is considered as a pro-inflammatory state with chronic low-grade inflammation, one of the key factors contributing to the pathogenesis of this disorder. Polycystic ovary is a well-established criterion for PCOS. The present investigation aimed at finding the role of hyperandrogenism, the most important feature of PCOS, in the development of this inflammatory state. To address this problem, we adopted a model system that developed polycystic ovary morphology (PCOM), which could be most effectively used in order to study the role of non-aromatizable androgen in inflammation in PCOS. Materials and Methods: Six rats were used to induce PCOM in 21-days-old female Wistar albino rats by using a pre-determined release of dihydrotestosterone (DHT), a potent non-aromatizable androgen, achieved by implanting a DHT osmotic pump, which is designed to release a daily dose of 83 μg. Results: After 90 days, the rats displayed irregular estrous cycles and multiple ovarian cysts similar to human PCOS. Elevated serum inflammatory markers such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and the presence of a necrotic lesion in the liver, osteoclast in the femur, multinucleated giant cells and lymphocytes in the ovary based on histopathological observation of DHT-treated rats clearly indicated the onset of inflammation in the hyperandrogenic state. Our results show no significant alterations in serum hormones such as luteinizing hormone (LH), follicle stimulating hormone (FSH), insulin, and cortisol between control and hyperandrogenised rats. DHT was significantly elevated as compared to control. mRNA studies showed an increased expression level of TNF-α and IL-1β, further, the mRNA expression of urocortin 1 (Ucn-1) was stupendously elevated in the liver of hyperandrogenised rats. Conclusions: Thus, results from this study provide: (1) a good PCOM model system in order to study the inflammatory changes in PCOS aspects, (2) alteration of inflammatory markers in PCOM rats that could be either due to its direct effect or by the regulation of various inflammatory genes and markers in the liver of hyperandrogenic state suggesting the regulatory role of DHT, and (3) alteration in stress-related protein in the liver of PCOM rats.
Collapse
|
2
|
Proteomic analysis of urethral protein expression in an estrogen receptor α-deficient murine model of stress urinary incontinence. World J Urol 2015; 33:1635-43. [PMID: 25577129 DOI: 10.1007/s00345-014-1474-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/22/2014] [Indexed: 01/11/2023] Open
Abstract
PURPOSE The roles of estrogen receptor α (ERα) in stress urinary incontinence (SUI) remain elusive. This study was conducted to understand the molecular mechanism of ERα against SUI. METHODS Wild-type (ERα(+/+)) and ACTB-cre ERα knockout (ERα(-/-)) female mice were generated. Urethral function and protein expression were measured. Leak point pressures (LPP) and maximum urethral closure pressure (MUCP) were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using the two-dimensional differential gel electrophoresis and liquid chromatography-mass spectrometry technology. Interaction between these ERα pathway proteins was further analyzed by using MetaCore. Lastly, Western blot and immunochemistry (IHC) were used to confirm the candidate protein expression levels and locations, respectively. RESULTS Compared with the ERα(+/+) group, the LPP and MUCP values of the ERα(-/-) group were significantly decreased. Additionally, we identified 11 differentially expressed proteins in the urethra of ERα(-/-) female mice; five proteins were down-regulated and six were up-regulated. The majority of the ERα knockout-modified proteins were involved in muscle development, contraction, and regulation, as well as immune response (amphoterin signaling and phagocytosis), proteolysis, and cell adhesion (platelet aggregation and integrin-mediated cell-matrix adhesion). IHC and Western blot confirmed the down-regulation of tropomyosin and up-regulation of myosin in urethra. CONCLUSIONS This is the first study to estimate protein expression changes in urethras from ERα(-/-) female mice. These changes could be related to the molecular mechanism of ERα in SUI.
Collapse
|
3
|
Chen YH, Chen CJ, Yeh S, Lin YN, Wu YC, Hsieh WT, Wu BT, Ma WL, Chen WC, Chang C, Chen HY. Urethral dysfunction in female mice with estrogen receptor β deficiency. PLoS One 2014; 9:e109058. [PMID: 25275480 PMCID: PMC4183540 DOI: 10.1371/journal.pone.0109058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/28/2014] [Indexed: 01/25/2023] Open
Abstract
Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI). Wild-type (ERβ+/+) and knockout (ERβ−/−) female mice were generated (aged 6–8 weeks, n = 6) and urethral function and protein expression were measured. Leak point pressures (LPP) and maximum urethral closure pressure (MUCP) were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography–mass spectrometry (LC-MS/MS) analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ+/+ group, the LPP and MUCP values of the ERβ−/− group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ−/− female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ−/− mice. This study is the first study to estimate protein expression changes in urethras from ERβ−/− female mice. These changes could be related to the molecular mechanism of ERβ in SUI.
Collapse
Affiliation(s)
- Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, School of Pharmacy, College of Pharmacy, Department of Pharmacology, Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
- Departments of Medical Research, Urology, and Obstetrics and Gynecology, Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, School of Pharmacy, College of Pharmacy, Department of Pharmacology, Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
- Departments of Medical Research, Urology, and Obstetrics and Gynecology, Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Shuyuan Yeh
- Department of Urology, George H Whipple Laboratory for Cancer Research, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Yu-Ning Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, School of Pharmacy, College of Pharmacy, Department of Pharmacology, Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, School of Pharmacy, College of Pharmacy, Department of Pharmacology, Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Wen-Tsong Hsieh
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, School of Pharmacy, College of Pharmacy, Department of Pharmacology, Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Bor-Tsang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, School of Pharmacy, College of Pharmacy, Department of Pharmacology, Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Wen-Lung Ma
- Departments of Medical Research, Urology, and Obstetrics and Gynecology, Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Chi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, School of Pharmacy, College of Pharmacy, Department of Pharmacology, Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
- Departments of Medical Research, Urology, and Obstetrics and Gynecology, Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chawnshang Chang
- Departments of Medical Research, Urology, and Obstetrics and Gynecology, Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Urology, George H Whipple Laboratory for Cancer Research, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (HYC); (CC)
| | - Huey-Yi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, School of Pharmacy, College of Pharmacy, Department of Pharmacology, Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
- Departments of Medical Research, Urology, and Obstetrics and Gynecology, Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
- * E-mail: (HYC); (CC)
| |
Collapse
|
4
|
Synergistic effect of vaginal trauma and ovariectomy in a murine model of stress urinary incontinence: upregulation of urethral nitric oxide synthases and estrogen receptors. Mediators Inflamm 2014; 2014:314846. [PMID: 25258476 PMCID: PMC4166435 DOI: 10.1155/2014/314846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/18/2014] [Indexed: 02/08/2023] Open
Abstract
The molecular mechanisms underlying stress urinary incontinence (SUI) are unclear. We aimed to evaluate the molecular alterations in mice urethras following vaginal trauma and ovariectomy (OVX). Twenty-four virgin female mice were equally distributed into four groups: noninstrumented control; vaginal distension (VD) group; OVX group; and VD + OVX group. Changes in leak point pressures (LPPs), genital tract morphology, body weight gain, plasma 17β-estradiol level and expressions of neuronal nitric oxide synthase (nNOS), induced nitric oxide synthase (iNOS), and estrogen receptors (ERs—ERα and ERβ) were analyzed. Three weeks after VD, the four groups differed significantly in genital size and body weight gain. Compared with the control group, the plasma estradiol levels were significantly decreased in the OVX and VD + OVX groups, and LPPs were significantly decreased in all three groups. nNOS, iNOS, and ERα expressions in the urethra were significantly increased in the VD and VD + OVX groups, whereas ERβ expression was significantly increased only in the VD + OVX group. These results show that SUI following vaginal trauma and OVX involves urethral upregulations of nNOS, iNOS, and ERs, suggesting that NO- and ER-mediated signaling might play a role in the synergistic effect of birth trauma and OVX-related SUI pathogenesis.
Collapse
|
5
|
Hung YC, Chang WC, Chen LM, Chang YY, Wu LY, Chung WM, Lin TY, Chen LC, Ma WL. Non-genomic estrogen/estrogen receptor α promotes cellular malignancy of immature ovarian teratoma in vitro. J Cell Physiol 2014; 229:752-61. [PMID: 24142535 DOI: 10.1002/jcp.24495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022]
Abstract
Malignant immature ovarian teratomas (IOTs) most often occur in women of reproductive age. It is unclear, however, what roles estrogenic signaling plays in the development of IOT. In this study, we examined whether estrogen receptors (ERα and β) promote the cellular malignancy of IOT. Estradiol (E2), PPT (propylpyrazole), and DPN (diarylpropionitrile) (ERα- and β-specific agonists, respectively), as well as ERα- or ERβ-specific short hairpin (sh)RNA were applied to PA-1 cells, a well-characterized IOT cell line. Cellular tumorigenic characteristics, for example, cell migration/invasion, expression of the cancer stem/progenitor cell marker CD133, and evidence for epithelial-mesenchymal transition (EMT) were examined. In PA-1 cells that expressed ERα and ERβ, we found that ERα promoted cell migration and invasion. We also found that E2/ERα signaling altered cell behavior through non-classical transactivation function. Our data show non-genomic E2/ERα activations of focal adhesion kinase-Ras homolog gene family member A (FAK-RhoA) and ERK governed cell mobility capacity. Moreover, E2/ERα signaling induces EMT and overexpression of CD133 through upregulation micro-RNA 21 (miR21; IOT stem/progenitor promoter), and ERK phosphorylations. Furthermore, E2/ERα signaling triggers a positive feedback regulatory loop within miR21 and ERK. At last, expression levels of ERα, CD133, and EMT markers in IOT tissue samples were examined by immunohistochemistry. We found that cytosolic ERα was co-expressed with CD133 and mesenchymal cell markers but not epithelial cell markers. In conclusion, estrogenic signals exert malignant transformation capacity of cancer cells, exclusively through non-genomic regulation in female germ cell tumors.
Collapse
Affiliation(s)
- Yao-Ching Hung
- Sex Hormone Research Center, Department of Obstetric and Gynecology, China Medical University Hospital, Taichung, Taiwan; Department of Pathology, China Medical University Hospital, Taichung, Taiwan; Graduate Institution of Clinical Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chung WM, Chang WC, Chen L, Lin TY, Chen LC, Hung YC, Ma WL. Ligand-independent androgen receptors promote ovarian teratocarcinoma cell growth by stimulating self-renewal of cancer stem/progenitor cells. Stem Cell Res 2014; 13:24-35. [PMID: 24793306 DOI: 10.1016/j.scr.2014.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/30/2014] [Accepted: 04/07/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ovarian teratocarcinoma (OVTC) arises from germ cells and contains a high percentage of cancer stem/progenitor cells (CSPCs), which promote cancer development through their ability to self-renew. Androgen and androgen receptor (androgen/AR) signaling has been reported to participate in cancer stemness in some types of cancer; however, this phenomenon has never been studied in OVTC. METHODS Ovarian teratocarcinoma cell line PA1 was manipulated to overexpress or knockdown AR by lentiviral deliver system. After analyzing of AR expression in PA1 cells, cell growth assay was assessed at every given time point. In order to determine ligand effect on AR actions, luciferase assay was performed to evaluate endogenous and exogenous AR function in PA1 cells. CD133 stem cell marker antibody was used to identify CSPCs in PA1 cells, and AR expression level in enriched CSPCs was determined. To assess AR effects on CD133+ population progression, stem cell functional assays (side population, sphere formation assay, CD133 expression) were used to analyze role of AR in PA1 CSPCs. In tissue specimen, immunohistochemistry staining was used to carry out AR and CD133 staining in normal and tumor tissue. RESULTS We examined androgen/AR signaling in OVTC PA1 cells, a CSPCs-rich cell line, and found that AR, but not androgen, promoted cell growth. We also examined the effects of AR on CSPCs characteristics and found that AR expression was more abundant in CD133+ cells, a well-defined ovarian cancer stem/progenitor marker, than in CD133- populations. Moreover, results of the sphere formation assay revealed that AR expression was required to maintain CSPCs populations. Interestingly, this AR-governed self-renewal capacity of CSPCs was only observed in CD133+ cells. In addition, we found that AR-mediated CSPCs enrichment was accompanied by down-regulation of p53 and p16. Finally, co-expression of AR and CD133 was more abundant in OVTC lesions than in normal ovarian tissue. CONCLUSION The results of this study suggest that AR itself might play a ligand-independent role in the development of OVTC.
Collapse
Affiliation(s)
- Wei-Min Chung
- Sex Hormone Research Center, Graduate Institution of Clinical Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan; Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Chun Chang
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Lumin Chen
- Sex Hormone Research Center, Graduate Institution of Clinical Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan; Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Tze-Yi Lin
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Liang-Chi Chen
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan
| | - Yao-Ching Hung
- Sex Hormone Research Center, Graduate Institution of Clinical Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan; Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan.
| | - Wen-Lung Ma
- Sex Hormone Research Center, Graduate Institution of Clinical Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan; Sex Hormone Research Center, Department of Obstetrics and Gynecology, and Department of Pathology, China Medical University Hospital, Taichung 404, Taiwan.
| |
Collapse
|