1
|
Qian Y, Ke Y, Wang L, Yu N, He Y, Yu Q, Wei S, Ren H, Geng J. Entropy Similarity-Driven Transformation Reaction Molecular Networking Reveals Transformation Pathways and Potential Risks of Emerging Contaminants in Wastewater: The Example of Sartans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4153-4164. [PMID: 39969411 DOI: 10.1021/acs.est.4c13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The transformation pathways and risks of emerging contaminants (ECs) in wastewater remain unclear due to the limited throughput of nontarget screening. In this study, an improved method called entropy similarity-driven transformation reaction molecular networking (ESTRMN) was developed to identify transformation products (TPs) in wastewater. In detail, entropy similarity was the most effective algorithm for identifying parent-product spectrum pairs and a threshold of 0.5 for it was determined with the guarantee of high specificity. Additionally, a TP structure database predicted according to known structures and reactions was established to assist in identification. Sartan is one of the most commonly used angiotensin II receptor blocker antihypertensive drugs. Take sartans as an example, 69 TPs of sartans with confidence levels above 3 were identified by ESTRMN, 43 of which were newly discovered. The most common reactions included hydroxylation, hydrolysis, and oxidation, resulting in the majority of sartan TPs exhibiting higher persistence, mobility, and toxicity (PMT) than their parents. The concentration of 75% sartans and TPs increased after treatment in a WWTP, and the overall risk has not been effectively mitigated. This study emphasizes the role of ESTRMN in incorporating TPs of ECs into environmental monitoring protocols and risk assessment frameworks for wastewater management.
Collapse
Affiliation(s)
- Yuli Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yunhao Ke
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yujie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Qingmiao Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
2
|
Piha MOW, Cajanus K, Engström MT, Neuvonen M, Bergmann TK, Niemi M, Backman JT, Filppula AM, Tornio A. Candesartan Has No Clinically Meaningful Effect on the Plasma Concentrations of Cytochrome P450 2C8 Substrate Repaglinide in Humans. Drug Metab Dispos 2024; 52:1388-1395. [PMID: 39486868 DOI: 10.1124/dmd.124.001798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/07/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024] Open
Abstract
In vitro evidence shows that the acyl-β-D-glucuronide metabolite of candesartan inhibits cytochrome P450 (CYP) 2C8 with an inhibition constant of 7.12 μM. We investigated the effect of candesartan on the plasma concentrations and glucose-lowering effect of repaglinide, a sensitive clinical CYP2C8 index substrate. In a randomized crossover study, ten healthy volunteers ingested 8 mg of candesartan or placebo daily for three days, and on day 3, they also ingested 0.25 mg of repaglinide one hour after candesartan or placebo. We measured the plasma concentrations of repaglinide, candesartan, and candesartan acyl-β-D-glucuronide, and blood glucose concentrations for up to nine hours after repaglinide intake. Candesartan had no effect on the area under the plasma concentration-time curve and peak plasma concentration of repaglinide compared with placebo, with ratios of geometric means of 1.02 [P = 0.809; 90% confidence interval (CI) 0.90-1.15] and 1.13 (P = 0.346; 90% CI 0.90-1.43), respectively. Other pharmacokinetic variables and blood glucose concentrations were neither affected. Candesartan acyl-β-D-glucuronide was detectable in seven subjects, in whom the peak concentration of repaglinide was 1.32-fold higher in the candesartan phase than in the placebo phase (P = 0.041; 90% CI 1.07-1.62). Systemic concentrations of candesartan acyl-β-D-glucuronide were very low compared with its CYP2C8 inhibition constant (ratio ≪ 0.1). Furthermore, in a cohort of 93 cancer patients, no indication of decreased paclitaxel clearance was found in four patients using candesartan concomitantly. In conclusion, candesartan therapy is unlikely to inhibit CYP2C8-mediated metabolism of other drugs to any clinically significant extent. SIGNIFICANCE STATEMENT: The findings of this study suggest that candesartan is unlikely to cause drug-drug interactions via inhibition of cytochrome P450 (CYP) 2C8. Although candesartan acyl-β-D-glucuronide has been shown to inhibit CYP2C8 in vitro, it shows no clinically relevant CYP2C8 inhibition in humans due to low systemic concentrations.
Collapse
Affiliation(s)
- Mikael O W Piha
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland (M.O.W.P., K.C., A.T.); Bioanalytical Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland (M.T.E.); Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland (M.O.W.P., K.C., A.T.); Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (M.Ne., M.Ni., J.T.B.); Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark and Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.K.B.); Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni., J.T.B.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| | - Kristiina Cajanus
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland (M.O.W.P., K.C., A.T.); Bioanalytical Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland (M.T.E.); Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland (M.O.W.P., K.C., A.T.); Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (M.Ne., M.Ni., J.T.B.); Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark and Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.K.B.); Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni., J.T.B.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| | - Marica T Engström
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland (M.O.W.P., K.C., A.T.); Bioanalytical Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland (M.T.E.); Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland (M.O.W.P., K.C., A.T.); Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (M.Ne., M.Ni., J.T.B.); Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark and Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.K.B.); Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni., J.T.B.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| | - Mikko Neuvonen
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland (M.O.W.P., K.C., A.T.); Bioanalytical Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland (M.T.E.); Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland (M.O.W.P., K.C., A.T.); Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (M.Ne., M.Ni., J.T.B.); Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark and Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.K.B.); Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni., J.T.B.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| | - Troels K Bergmann
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland (M.O.W.P., K.C., A.T.); Bioanalytical Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland (M.T.E.); Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland (M.O.W.P., K.C., A.T.); Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (M.Ne., M.Ni., J.T.B.); Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark and Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.K.B.); Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni., J.T.B.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| | - Mikko Niemi
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland (M.O.W.P., K.C., A.T.); Bioanalytical Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland (M.T.E.); Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland (M.O.W.P., K.C., A.T.); Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (M.Ne., M.Ni., J.T.B.); Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark and Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.K.B.); Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni., J.T.B.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| | - Janne T Backman
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland (M.O.W.P., K.C., A.T.); Bioanalytical Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland (M.T.E.); Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland (M.O.W.P., K.C., A.T.); Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (M.Ne., M.Ni., J.T.B.); Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark and Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.K.B.); Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni., J.T.B.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| | - Anne M Filppula
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland (M.O.W.P., K.C., A.T.); Bioanalytical Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland (M.T.E.); Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland (M.O.W.P., K.C., A.T.); Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (M.Ne., M.Ni., J.T.B.); Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark and Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.K.B.); Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni., J.T.B.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| | - Aleksi Tornio
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland (M.O.W.P., K.C., A.T.); Bioanalytical Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland (M.T.E.); Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland (M.O.W.P., K.C., A.T.); Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (M.Ne., M.Ni., J.T.B.); Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark and Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.K.B.); Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni., J.T.B.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| |
Collapse
|
12
|
Ikushiro S, Nishikawa M, Masuyama Y, Shouji T, Fujii M, Hamada M, Nakajima N, Finel M, Yasuda K, Kamakura M, Sakaki T. Biosynthesis of Drug Glucuronide Metabolites in the Budding Yeast Saccharomyces cerevisiae. Mol Pharm 2016; 13:2274-82. [DOI: 10.1021/acs.molpharmaceut.5b00954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Shinichi Ikushiro
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miyu Nishikawa
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Imizu
Institute, TOPU BIO RESEARCH Co., Ltd, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yuuka Masuyama
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tadashi Shouji
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miharu Fujii
- Imizu
Institute, TOPU BIO RESEARCH Co., Ltd, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masahiro Hamada
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Noriyuki Nakajima
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Moshe Finel
- Division
of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Kaori Yasuda
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masaki Kamakura
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Toshiyuki Sakaki
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Imizu
Institute, TOPU BIO RESEARCH Co., Ltd, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|