1
|
Rafique I, Maqbool T, Javed MS. Synthesis of Pyrazolo[3,4-b]pyridine Derivatives and Their In-Vitro and In-Silico Antidiabetic Activities. J Cell Biochem 2024; 125:e30646. [PMID: 39239805 DOI: 10.1002/jcb.30646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
In the current study, new pyrazolo[3,4-b]pyridine esters, hydrazides, and Schiff bases have been synthesized starting from 3-methyl-1-phenyl-1H-pyrazol-5-amine. The first step involved solvent-free synthesis of pyrazolo[3,4-b]pyridine-6-carboxylate derivatives (2a-d) with 55%-70% yield in the minimum time frame compared with the conventional refluxing method, which was followed by the synthesis of corresponding hydrazides (3a-d) and hydrazones (4a-e). The structures of the synthesized derivatives were confirmed using element analysis, FT-IR, 1H NMR, 13C NMR, and LC-MS techniques. Synthesized hydrazides (3a-d) and hydrazones (4a-e) were also tested for their in-vitro antidiabetic activity and found that all the compounds exhibited significant antidiabetic activity, while 3c (IC50 = 9.6 ± 0.5 μM) among the hydrazides and 4c (IC50 = 13.9 ± 0.7 μM) among the hydrazones were found to be more active in comparison to other synthesized derivatives. These in-vitro results were further validated via docking studies against the α-amylase enzyme using the reference drug acarbose (200.1 ± 10.0 μM). The results were greatly in agreement with their in-vitro studies and these derivatives can be encouraging candidates for further in-vivo studies in mice models.
Collapse
Affiliation(s)
- Iqra Rafique
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tahir Maqbool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Salman Javed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
2
|
Babalola BA, Sharma L, Olowokere O, Malik M, Folajimi O. Advancing drug discovery: Thiadiazole derivatives as multifaceted agents in medicinal chemistry and pharmacology. Bioorg Med Chem 2024; 112:117876. [PMID: 39163743 DOI: 10.1016/j.bmc.2024.117876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
In this dispensation of rapid scientific and technological advancements, significant efforts are being made to curb health-related diseases. Research discoveries have highlighted the value of heterocyclic compounds, particularly thiadiazole derivatives, due to their diverse pharmacological activities. These compounds play a crucial role in therapeutic medicine and the development of effective drugs. Thiadiazoles are five-membered heterocyclic compounds consisting of one sulfur and two nitrogen atoms. This review explores advanced synthesis techniques, including the use of heterogeneous catalysts, microwave-assisted methods, ultrasound-assisted synthesis, solvent-free processes, multicomponent reactions, copper-catalyzed aerobic oxidative annulation, intramolecular cyclization, click-chemistry supported synthesis, and alkali-promoted, transition-metal-free mediated synthesis. These methods enhance the diversity and potential applications of thiadiazole compounds. Furthermore, this study provides up-to-date information on the key pharmacological activities of thiadiazole derivatives, highlighting their potential in therapeutic medicine for drug development. The structure-activity relationship (SAR) is also discussed to better understand their interactions and safety in biological systems. This work aims to expand on the reported chemistry and pharmacological potential of the thiadiazole moiety to validate their efficacy as promising pharmacophores in drug design and development.
Collapse
Affiliation(s)
- Benjamin Ayodipupo Babalola
- Department of Chemistry, Purdue University, 560 Oval Drive, IN 47907 West Lafayette, USA; Purdue Institute for Cancer Research, 201 S. University St., IN 47907 West Lafayette, USA.
| | - Lekhnath Sharma
- Department of Chemistry, Indian Institute of Technology Indore Simrol, Khandwa Road, Indore, India
| | - Olanike Olowokere
- Bioscience program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Monika Malik
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, India
| | | |
Collapse
|
3
|
Liu J, Li JH, Zhao SY, Chang YQ, Chen QX, Wu WF, Jiao SM, Xiao H, Zhang Q, Zhao JF, Xu J, Sun PH. Discovery of N-(phenylsulfonyl)thiazole-2-carboxamides as potent α-glucosidase inhibitors. Drug Dev Res 2024; 85:e22128. [PMID: 37984820 DOI: 10.1002/ddr.22128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/22/2023]
Abstract
In a search for novel nonsugar α-glucosidase inhibitors for diabetes treatment, a series of N-(phenylsulfonyl)thiazole-2-carboxamide derivatives were designed and synthesized, the α-glucosidase inhibitory activities were then evaluated. Several compounds with promising α-glucosidase inhibitory effects were identified. Among these, compound W24 which shows low cytotoxicity and good α-glucosidase inhibitory activity with an IC50 value of 53.0 ± 7.7 μM, is more competitive compared with the commercially available drug acarbose (IC50 = 228.3 ± 9.2 μM). W24 was identified as a promising candidate in the development of α-glucosidase inhibitors. Molecular docking studies and molecular dynamics simulation were also performed to reveal the binding pattern of the active compound to α-glucosidase, and the binding free energy of the best compound W24 was 36.3403 ± 3.91 kcal/mol.
Collapse
Affiliation(s)
- Jun Liu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Jia-Hao Li
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Si-Yu Zhao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Yi-Qun Chang
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Qiu-Xian Chen
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Wen-Fu Wu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Shu-Meng Jiao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Haichuan Xiao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Qiang Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Jian-Fu Zhao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Ping-Hua Sun
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| |
Collapse
|
4
|
Patel P, Shah D, Bambharoliya T, Patel V, Patel M, Patel D, Bhavsar V, Padhiyar S, Patel B, Mahavar A, Patel R, Patel A. A Review on the Development of Novel Heterocycles as α-Glucosidase Inhibitors for the Treatment of Type-2 Diabetes Mellitus. Med Chem 2024; 20:503-536. [PMID: 38275074 DOI: 10.2174/0115734064264591231031065639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/30/2023] [Accepted: 09/08/2023] [Indexed: 01/27/2024]
Abstract
One of the most effective therapeutic decencies in the treatment of Type 2 Diabetes Mellitus is the inhibition of α-glucosidase enzyme, which is present at the brush border of the intestine and plays an important role in carbohydrate digestion to form mono-, di-, and polysaccharides. Acarbose, Voglibose, Miglitol, and Erniglitate have been well-known α-glucosidase inhibitors in science since 1990. However, the long synthetic route and side effects of these inhibitors forced the researchers to move their focus to innovate simple and small heterocyclic scaffolds that work as excellent α-glucosidase inhibitors. Moreover, they are also effective against the postprandial hyperglycemic condition in Type 2 Diabetes Mellitus. In this aspect, this review summarizes recent progress in the discovery and development of heterocyclic molecules that have been appraised to show outstanding inhibition of α-glucosidase to yield positive effects against diabetes.
Collapse
Affiliation(s)
- Prexa Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Drashti Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | | | - Vidhi Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Dharti Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | | | | | | | - Anjali Mahavar
- Chandaben Mohanbhai Patel Institute of Computer Application, Charotar University of Science and Technology, CHARUSAT-Campus, Changa, Gujarat, India
| | - Riddhisiddhi Patel
- Department of Pharmaceutical Science, Saurashtra University, Rajkot, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| |
Collapse
|
5
|
Emadi M, Mosavizadeh-Marvest F, Asadipour A, Pourshojaei Y, Hosseini S, Mojtabavi S, Faramarzi MA, Larijani B, Mohammadi-Khanaposhtani M, Mahdavi M. Indole-carbohydrazide linked phenoxy-1,2,3-triazole-N-phenylacetamide derivatives as potent α-glucosidase inhibitors: design, synthesis, in vitro α-glucosidase inhibition, and computational studies. BMC Chem 2023; 17:56. [PMID: 37316931 DOI: 10.1186/s13065-023-00971-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND A new series of indole-carbohydrazide-phenoxy-1,2,3-triazole-N-phenylacetamide hybrids 11a-o was designed based on molecular hybridization of the active pharmacophores of the potent α-glucosidase inhibitors. These compounds were synthesized and evaluated against α-glucosidase. METHODS The 15 various derivatives of indole-carbohydrazide-phenoxy-1,2,3-triazole-N-phenylacetamide scaffold were synthesized, purified, and fully characterized. These derivatives were evaluated against yeast α-glucosidase in vitro and in silico. ADMET properties of the most potent compounds were also predicted. RESULTS All new derivatives 11a-o (IC50 values = 6.31 ± 0.03-49.89 ± 0.09 µM) are excellent α-glucosidase inhibitors in comparison to acarbose (IC50 value = 750.0 ± 10.0 µM) that was used as a positive control. Representatively, (E)-2-(4-((4-((2-(1H-indole-2-carbonyl)hydrazono)methyl) phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(4-methoxyphenyl)acetamide 11d with IC50 = 6.31 µM against MCF-7 cells, was 118.8-times more potent than acarbose. This compound is an uncompetitive inhibitor against α-glucosidase and showed the lowest binding energy at the active site of this enzyme in comparison to other potent compounds. Furthermore, computational calculations predicted that compound 11d can be an orally active compound. CONCLUSION According to obtained data, compound 11d can be a valuable lead compound for further structural development and assessments to obtain effective and potent new α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Mehdi Emadi
- Electrical and Computer Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Fahimeh Mosavizadeh-Marvest
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Hu CM, Zheng YY, Lin AT, Zhang X, Wu XZ, Lin J, Xu XT, Xiong Z. Design, synthesis and evaluation of indole-based bisacylhydrazone derivatives as α-glucosidase inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Priya B, Utreja D, Kalia A. Schiff Bases of Indole-3-Carbaldehyde: Synthesis and Evaluation as Antimicrobial Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Taha M, Salahuddin M, Almandil NB, Farooq RK, Rahim F, Uddin N, Nawaz M, Alhibshi AH, Anouar EH, Khan KM. In Vitro and in Vivo Antidiabetics Study of New Oxadiazole Derivatives Along with Molecular Docking Study. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2127799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noor Barak Almandil
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry, Hazara University Mansehra, Mansehra, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amani H. Alhibshi
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
9
|
Zhang JH, Xie HX, Li Y, Wang KM, Song Z, Zhu KK, Fang L, Zhang J, Jiang CS. Design, synthesis and biological evaluation of novel (E)-2-benzylidene-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)hydrazine-1-carboxamide derivatives as α-glucosidase inhibitors. Bioorg Med Chem Lett 2021; 52:128413. [PMID: 34634473 DOI: 10.1016/j.bmcl.2021.128413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 11/15/2022]
Abstract
In this present study, a series of novel (E)-2-benzylidene-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)hydrazine-1-carboxamide derivatives against α-glucosidase were designed and synthesized, and their biological activities were evaluated in vitro and in vivo. Most of the designed analogues exhibited better inhibitory activity than the marketed acarbose, especially the most potent compound 7 with an IC50 value of 9.26 ± 1.84 μM. The direct binding of 7 and 8 with α-glucosidase was confirmed by fluorescence quenching experiments, and the kinetic and molecular docking studies revealed that 7 and 8 inhibited α-glucosidase in a non-competitive manner. Cytotoxicity bioassay indicated compounds 7 and 8 were non-toxic towards LO2 and HepG2 at 100 μM. Furthermore, both compounds were demonstrated to have in vivo hypoglycemic activity by reducing the blood glucose levels in sucrose-treated rats.
Collapse
Affiliation(s)
- Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hong-Xu Xie
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yue Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhiling Song
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
10
|
Klochkov VG, Bezsonova EN, Dubar M, Melekhina DD, Temnov VV, Zaryanova EV, Lozinskaya NA, Babkov DA, Spasov AA. Towards multi-target antidiabetic agents: In vitro and in vivo evaluation of 3,5-disubstituted indolin-2-one derivatives as novel α-glucosidase inhibitors. Bioorg Med Chem Lett 2021; 55:128449. [PMID: 34780899 DOI: 10.1016/j.bmcl.2021.128449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 11/18/2022]
Abstract
Type 2 diabetes mellitus is a chronic progressive disease that usually requires polypharmacological treatment approaches. Previously we have described a series of 2-oxindole derivatives as GSK3β inhibitors with in vivo antihyperglycemic activity. α-Glucosidase is another antidiabetic target that prevents postprandial hyperglycemia and corresponding hyperinsulinemic response. Herein we report a study of 3,5-disubstituted indolin-2-one derivatives as potent α-glucosidase inhibitors. These inhibitors were identified via efficient synthesis, in vitro screening, and biological evaluation. The most active compound 5f inhibits yeast α-glucosidase with IC50 of 6.78 µM and prevents postprandial hyperglycemia in rats after maltose and sucrose challenge at 5.0 mg/kg dose. Two lead glucosidase inhibitors, 5f and 5m, are also GSK3β inhibitors with submicromolar potency. Hence, structure-activity studies elucidate foundation for development of dual GSK3β/α-glucosidase inhibitors for treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Vladlen G Klochkov
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov Sq. 1, Volgograd 400131, Russia
| | - Elena N Bezsonova
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory St., 1, Moscow 119234, Russia
| | - Meriam Dubar
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory St., 1, Moscow 119234, Russia
| | - Daria D Melekhina
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory St., 1, Moscow 119234, Russia
| | - Victor V Temnov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory St., 1, Moscow 119234, Russia
| | - Ekaterina V Zaryanova
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory St., 1, Moscow 119234, Russia
| | - Natalia A Lozinskaya
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory St., 1, Moscow 119234, Russia.
| | - Denis A Babkov
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov Sq. 1, Volgograd 400131, Russia; Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya St. 39, Volgograd 400087, Russia.
| | - Alexander A Spasov
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov Sq. 1, Volgograd 400131, Russia; Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya St. 39, Volgograd 400087, Russia
| |
Collapse
|
11
|
Gummidi L, Kerru N, Ebenezer O, Awolade P, Sanni O, Islam MS, Singh P. Multicomponent reaction for the synthesis of new 1,3,4-thiadiazole-thiazolidine-4-one molecular hybrids as promising antidiabetic agents through α-glucosidase and α-amylase inhibition. Bioorg Chem 2021; 115:105210. [PMID: 34332231 DOI: 10.1016/j.bioorg.2021.105210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/29/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
A simple and efficient protocol was developed to synthesize a new library of thiazolidine-4-one molecular hybrids (4a-n) via a one-pot multicomponent reaction involving 5-substituted phenyl-1,3,4-thiadiazol-2-amines, substituted benzaldehydes and 2-mercaptoacetic acid. The synthesized compounds were evaluated in vitro for their antidiabetic activities through α-glucosidase and α-amylase inhibition as well as their antioxidant and antimicrobial potentials. Compound 4e exhibited the most promising α-glucosidase and α-amylase inhibition with an IC50 value of 2.59 μM, which is ~1.5- and 14-fold superior as compared to the standard inhibitor acarbose. Structure-activity relationship (SAR) analysis revealed that the nature and position of substituents on the phenyl rings had a significant effect on the inhibitory potency.
Collapse
Affiliation(s)
- Lalitha Gummidi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Oluwakemi Ebenezer
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Olakunle Sanni
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
12
|
Hu CM, Wang WJ, Ye YN, Kang Y, Lin J, Wu PP, Li DL, Bai LP, Xu XT, Li BQ, Zhang K. Novel cinnamic acid magnolol derivatives as potent α-glucosidase and α-amylase inhibitors: Synthesis, in vitro and in silico studies. Bioorg Chem 2021; 116:105291. [PMID: 34438122 DOI: 10.1016/j.bioorg.2021.105291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/06/2023]
Abstract
In this study, twenty novel cinnamic acid magnolol derivatives were synthesized, and screened for their anti-hyperglycemic potential. All synthesized compounds exhibited good to moderate α-glucosidase and α-amylase inhibitory activities with IC50 values: 5.11 ± 1.46-90.26 ± 1.85 µM and 4.27 ± 1.51-49.28 ± 2.54 µM as compared to the standard acarbose (IC50: 255.44 ± 1.89 μM and 80.33 ± 2.95 μM, respectively). Compound 6j showed the strongest inhibitory activity against α-glucosidase (IC50 = 5.11 ± 1.46 µM) and α-amylase (IC50 = 4.27 ± 1.51 µM). Kinetic study indicated that compound 6j was reversible and a mixed type inhibitor against α-glucosidase and α-amylase. In silico studies revealed the binding interaction between 6j and two enzymes, respectively. Finally, cells cytotoxicity assay revealed that compound 6j showed low toxicity against 3 T3-L1 cells and HepG2 cells.
Collapse
Affiliation(s)
- Chun-Mei Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Wen-Jing Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Yuan-Na Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Yu Kang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Jing Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Pan-Pan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Dong-Li Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, PR China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Bao-Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; School of biomedicine and pharmaceutical sciences, Guangdong University of Technology, Guangdong 510006, PR China.
| |
Collapse
|
13
|
Solangi M, Kanwal, Mohammed Khan K, Saleem F, Hameed S, Iqbal J, Shafique Z, Qureshi U, Ul-Haq Z, Taha M, Perveen S. Indole acrylonitriles as potential anti-hyperglycemic agents: Synthesis, α-glucosidase inhibitory activity and molecular docking studies. Bioorg Med Chem 2020; 28:115605. [PMID: 33065441 DOI: 10.1016/j.bmc.2020.115605] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/04/2023]
Abstract
One of the most prevailing metabolic disorder diabetes mellitus has become the global health issue that has to be addressed and cured. Different marketed drugs have been made available for the treatment of diabetes but there is still a need of introducing new therapeutic agents that are economical and have lesser or no side effects. The current study deals with the synthesis of indole acrylonitriles (3-23) and the evaluation of these compounds for their potential for α-glucosidase inhibition. The structures of these synthetic molecules were deduced by using different spectroscopic techniques. Acarbose (IC50 = 2.91 ± 0.02 μM) was used as standard in this study and the synthetic molecules (3-23) have shown promising α-glucosidase inhibitory activity. Compounds 4, 8, 10, 11, 14, 18, and 21 displayed superior inhibition of α-glucosidase enzyme in the range of (IC50 = 0.53 ± 0.01-1.36 ± 0.04 μM) as compared to the standard acarbose. Compound 10 (IC50 = 0.53 ± 0.01 μM) was the most effective inhibitor of this library and displayed many folds enhanced activity in contrast to the standard. Molecular docking of synthetic compounds was performed to verify the binding interactions of ligand with the active site of enzyme. This study had identified a number of potential α-glucosidase inhibitors that can be used for further research to identify a potent therapeutic agent against diabetes.
Collapse
Affiliation(s)
- Mehwish Solangi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Institute of Marine Biotechnology, Universiti Malaysia Terengannu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 31441, Dammam, Saudi Arabia.
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Zainab Shafique
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Urooj Qureshi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 31441, Dammam, Saudi Arabia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan
| |
Collapse
|
14
|
Synthesis and antiproliferative activity of salicylidenehydrazones based on indole-2(3)-carboxylic acids. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Taha M, Rahim F, Khan AA, Anouar EH, Ahmed N, Shah SAA, Ibrahim M, Zakari ZA. Synthesis of diindolylmethane (DIM) bearing thiadiazole derivatives as a potent urease inhibitor. Sci Rep 2020; 10:7969. [PMID: 32409737 PMCID: PMC7224224 DOI: 10.1038/s41598-020-64729-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/26/2020] [Indexed: 11/30/2022] Open
Abstract
The current study describes synthesis of diindolylmethane (DIM) derivatives based-thiadiazole as a new class of urease inhibitors. Diindolylmethane is natural product alkaloid reported to use in medicinal chemistry extensively. Diindolylmethane-based-thiadiazole analogs (1–18) were synthesized and characterized by various spectroscopic techniques 1HNMR, 13C-NMR, EI-MS and evaluated for urease (jack bean urease) inhibitory potential. All compounds showed excellent to moderate inhibitory potential having IC50 value within the range of 0.50 ± 0.01 to 33.20 ± 1.20 µM compared with the standard thiourea (21.60 ± 0.70 µM). Compound 8 (IC50 = 0.50 ± 0.01 µM) was the most potent inhibitor amongst all derivatives. Structure-activity relationships have been established for all compounds. The key binding interactions of most active compounds with enzyme were confirmed through molecular docking studies.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of clinical pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Ahmad Khan
- Department of Chemistry, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Adnan Ali Shah
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia, 42300, D. E., Selangor, Malaysia.,Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia, 42300, Darul Ehsan, Selangor, Malaysia
| | - Mohamed Ibrahim
- Department of clinical pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Zainul Amiruddin Zakari
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Halal Institute Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
16
|
Liu X, Zang X, Yin X, Yang W, Huang J, Huang J, Yu C, Ke C, Hong Y. Semi-synthesis of C28-modified triterpene acid derivatives from maslinic acid or corosolic acid as potential α-glucosidase inhibitors. Bioorg Chem 2020; 97:103694. [DOI: 10.1016/j.bioorg.2020.103694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 02/07/2023]
|
17
|
Synthesis, α-glycosidase inhibitory potential and molecular docking study of benzimidazole derivatives. Bioorg Chem 2020; 95:103555. [DOI: 10.1016/j.bioorg.2019.103555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023]
|
18
|
Almandil NB, Taha M, Gollapalli M, Rahim F, Ibrahim M, Mosaddik A, Anouar EH. Indole bearing thiadiazole analogs: synthesis, β-glucuronidase inhibition and molecular docking study. BMC Chem 2019; 13:14. [PMID: 31384763 PMCID: PMC6661955 DOI: 10.1186/s13065-019-0522-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/16/2019] [Indexed: 12/05/2022] Open
Abstract
Indole based thiadiazole derivatives (1-22) have synthesized, characterized by NMR and HREI-MS and evaluated for β-Glucuronidase inhibition. All compounds showed outstanding β-glucuronidase activity with IC50 values ranging between 0.5 ± 0.08 to 38.9 ± 0.8 µM when compared with standard d-saccharic acid 1,4 lactone (IC50 value of 48.1 ± 1.2 µM). The compound 6, a 2,3-dihydroxy analog was found the most potent among the series with IC50 value 0.5 ± 0.08 µM. Structure activity relationship has been established for all compounds. To confirm the binding interactions of these newly synthesized compounds, molecular docking study have been carried out which reveal that these compounds established stronger hydrogen bonding networks with active site residues.
Collapse
Affiliation(s)
- Noor Barak Almandil
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Mohammed Gollapalli
- Department of Computer Information Systems, College of Computer Science & Information Technology, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, 21300 Khyber Pakhtunkhwa Pakistan
| | - Mohamed Ibrahim
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Ashik Mosaddik
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - El Hassane Anouar
- Department of Chemistry, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj, 11942 Saudi Arabia
| |
Collapse
|
19
|
Bakherad Z, Mohammadi-Khanaposhtani M, Sadeghi-Aliabadi H, Rezaei S, Fassihi A, Bakherad M, Rastegar H, Biglar M, Saghaie L, Larijani B, Mahdavi M. New thiosemicarbazide-1,2,3-triazole hybrids as potent α-glucosidase inhibitors: Design, synthesis, and biological evaluation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Taha M, Uddin I, Gollapalli M, Almandil NB, Rahim F, Farooq RK, Nawaz M, Ibrahim M, Alqahtani MA, Bamarouf YA, Selvaraj M. Synthesis, anti-leishmanial and molecular docking study of bis-indole derivatives. BMC Chem 2019; 13:102. [PMID: 31410413 PMCID: PMC6685257 DOI: 10.1186/s13065-019-0617-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/31/2019] [Indexed: 11/10/2022] Open
Abstract
We have synthesized new series of bisindole analogs (1–27), characterized by 1HNMR and HR-EI-MS and evaluated for their anti-leishmanial potential. All compounds showed outstanding inhibitory potential with IC50 values ranging from 0.7 ± 0.01 to 13.30 ± 0.50 µM respectively when compared with standard pentamidine with IC50 value of 7.20 ± 0.20 µM. All analogs showed greater potential than standard except 10, 19 and 23 when compared with standard. Structure activity relationship has been also established for all compounds. Molecular docking studies were carried out to understand the binding interaction of active molecules.![]()
Collapse
Affiliation(s)
- Muhammad Taha
- 1Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Imad Uddin
- 2Department of Chemistry, Hazara University, Mansehra, 21300 Khyber Pakhtunkhwa Pakistan
| | - Mohammed Gollapalli
- 3Department of Computer Information Systems, College of Computer Science & Information Technology, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Noor Barak Almandil
- 1Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Fazal Rahim
- 2Department of Chemistry, Hazara University, Mansehra, 21300 Khyber Pakhtunkhwa Pakistan
| | - Rai Khalid Farooq
- 4Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Muhammad Nawaz
- 5Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Mohamed Ibrahim
- 1Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Mohammed A Alqahtani
- 1Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Yasser A Bamarouf
- 3Department of Computer Information Systems, College of Computer Science & Information Technology, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Manikandan Selvaraj
- 6Monash University School of Chemical Engineering, 47500 Bandar Sunway, Selangor Malaysia
| |
Collapse
|
21
|
Dhameja M, Gupta P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. Eur J Med Chem 2019; 176:343-377. [DOI: 10.1016/j.ejmech.2019.04.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 01/18/2023]
|
22
|
Nasli‐Esfahani E, Mohammadi‐Khanaposhtani M, Rezaei S, Sarrafi Y, Sharafi Z, Samadi N, Faramarzi MA, Bandarian F, Hamedifar H, Larijani B, Hajimiri M, Mahdavi M. A new series of Schiff base derivatives bearing 1,2,3‐triazole: Design, synthesis, molecular docking, and α‐glucosidase inhibition. Arch Pharm (Weinheim) 2019; 352:e1900034. [DOI: 10.1002/ardp.201900034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Ensieh Nasli‐Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran Iran
| | - Maryam Mohammadi‐Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research InstituteBabol University of Medical Sciences Babol Iran
| | - Sepideh Rezaei
- School of PharmacyTabriz University of Medical Sciences Tabriz Iran
| | | | - Zeinab Sharafi
- Razi Herbal Medicines Research CenterLorestan University of Medical Sciences Khorramabad Iran
| | - Nasser Samadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research CenterTehran University of Medical Sciences Tehran Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research CenterTehran University of Medical Sciences Tehran Iran
| | - Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research CenterAlborz University of Medical Sciences Karaj Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran Iran
| | - Mirhamed Hajimiri
- Nano Alvand Company, Avicenna Tech ParkTehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
23
|
Agrawal N, Mishra P. Novel isoxazole derivatives as potential antiparkinson agents: synthesis, evaluation of monoamine oxidase inhibitory activity and docking studies. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02388-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Zeng Z, Yin X, Wang X, Yang W, Liu X, Hong Y. Synthesis of water soluble pentacyclic dihydroxyterpene carboxylic acid derivatives coupled amino acids and their inhibition activities on α-glucosidase. Bioorg Chem 2019; 86:277-287. [DOI: 10.1016/j.bioorg.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
|
25
|
Indole derivatives as multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity of indole hydrazones. Bioorg Chem 2019; 85:568-576. [PMID: 30825715 DOI: 10.1016/j.bioorg.2019.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 01/09/2023]
Abstract
Two series of indole derivatives 4-17, 20-22 were easily prepared and assayed for their radical-scavenging ability. Arylidene-1H-indole-2-carbohydrazones showed different extent antioxidant activity in DPPH, FRAP and ORAC assays. Good antioxidant activity is related to the number and position of hydroxyl groups on the arylidene moiety as well as to the presence of methoxy or 4-(diethylamino) group. On the contrary low antioxidant activity is showed by the isomeric 1H-indol-2-yl(methylene)-benzohydrazides. Furthermore, hydrazones 4-17 showed photoprotective capacities with satisfactory in vitro SPF as compared to the commercial PBSA sunscreen filter. The indole 16 and 17, showing the best antioxidant and photoprotective profile, were included in different formulation and their topical release was evaluated. Varying the formulation composition, it was possible to optimize skin adsorption and solubility of the active indole in the formulation. The antiproliferative effect of the hydrazones 4-17 was tested on human erythroleukemia K562 and melanoma Colo-38 cells. Hydrazones 11, 16 and 17 showed growth inhibition at sub micromolar concentrations on both cell lines. These results indicate indole hydrazones as potential multifunctional molecules especially in the treatment of neoplastic diseases being the good antioxidant properties of 16 and 17 correlated to their high antiproliferative activity.
Collapse
|
26
|
Agrawal N, Mishra P. Synthesis, monoamine oxidase inhibitory activity and computational study of novel isoxazole derivatives as potential antiparkinson agents. Comput Biol Chem 2019; 79:63-72. [PMID: 30731360 DOI: 10.1016/j.compbiolchem.2019.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 01/13/2023]
Abstract
Monoamine oxidase (MAO) enzymes are one of the most promising targets for the treatment of neurological disorders. A series of phenylisoxazole carbohydrazides was designed, synthesized and screened for both MAO-A and MAO-B inhibition using Amplex Red assays. None of the compounds inhibited the MAO-A activity while most of them significantly inhibited MAO-B in the micromolar to nanomolar range. Among them, the compound N'-(4-methylbenzylidene)-5-phenylisoxazole-3-carbohydrazide (6c) exhibited the most potent inhibitory activity towards MAO-B. Enzyme kinetic studies revealed the reversible and competitive nature of compound 6c towards MAO-B inhibition. The results of the enzyme inhibition assay were in agreement with molecular docking study, in which compound 6c displayed a strong binding affinity for MAO-B with a docking score of -10.98 Kcal/mol. In order to explore the neuroprotective effect of compound 6c, MPTP-induced mouse model for Parkinson's disease was used, and motor behavioural assessment of experimental animals was carried out. The compound 6c was able to significantly prevent the MPTP-induced neurotoxicity as revealed by improvement in gait behaviour in footprint test and increase in grip strength score in horizontal wire test. Thus, phenylisoxazole carbohydrazides can be promising leads in the development of potent, selective and reversible MAO-B inhibitors for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India.
| | - Pradeep Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| |
Collapse
|
27
|
Comparative α-glucosidase and α-amylase inhibition studies of rhodanine–pyrazole conjugates and their simple rhodanine analogues. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2272-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Nazir M, Abbasi MA, Aziz-ur-Rehman, Siddiqui SZ, Khan KM, Kanwal, Salar U, Shahid M, Ashraf M, Arif Lodhi M, Ali Khan F. New indole based hybrid oxadiazole scaffolds with N-substituted acetamides: As potent anti-diabetic agents. Bioorg Chem 2018; 81:253-263. [DOI: 10.1016/j.bioorg.2018.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/04/2023]
|
29
|
Biological evaluation of 9-(1H-Indol-3-yl) xanthen-4-(9H)-ones derivatives as noncompetitive α-glucosidase inhibitors: kinetics and molecular mechanisms. Struct Chem 2018. [DOI: 10.1007/s11224-018-1218-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Imran S, Taha M, Selvaraj M, Ismail NH, Chigurupati S, Mohammad JI. Synthesis and biological evaluation of indole derivatives as α-amylase inhibitor. Bioorg Chem 2017; 73:121-127. [PMID: 28648924 DOI: 10.1016/j.bioorg.2017.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/13/2017] [Accepted: 06/17/2017] [Indexed: 01/17/2023]
Abstract
A series of twenty indole hydrazone analogs (1-21) were synthesized, characterized by different spectroscopic techniques such as 1H NMR and EI-MS, and screened for α-amylase inhibitory activity. All analogs showed a variable degree of α-amylase inhibition with IC50 values ranging between 1.66 and 2.65μM. Nine compounds that are 1 (2.23±0.01μM), 8 (2.44±0.12μM), 10 (1.92±0.12μM), 12 (2.49±0.17μM), 13 (1.66±0.09μM), 17 (2.25±0.1μM), 18 (1.87±0.25μM), 20 (1.83±0.63μM), and 19 (1.97±0.02μM) showed potent α-amylase inhibition when compared with the standard acarbose (1.05±0.29μM). Other analogs showed good to moderate α-amylase inhibition. The structure activity relationship is mainly focusing on difference of substituents on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.
Collapse
Affiliation(s)
- Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Faculty of Applied Science, UiTM Shah Alam, 40450 Shah Alam, Selangor D.E., Malaysia.
| | - Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Faculty of Applied Science, UiTM Shah Alam, 40450 Shah Alam, Selangor D.E., Malaysia
| | - Manikandan Selvaraj
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Faculty of Applied Science, UiTM Shah Alam, 40450 Shah Alam, Selangor D.E., Malaysia
| | - Sridevi Chigurupati
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Malaysia
| | - Jahidul Islam Mohammad
- Department of Pharmacology, Faculty of Medicine, Cyberjaya University College of Medical Sciences, CUCMS, Cyberjaya 63000, Malaysia
| |
Collapse
|
31
|
Taha M, Ismail NH, Imran S, Ainaa I, Selvaraj M, baharudin MS, Ali M, Khan KM, Uddin N. Synthesis of 2-phenyl-1H-imidazo[4,5-b]pyridine as type 2 diabetes inhibitors and molecular docking studies. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1806-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Zawawi NKNA, Taha M, Ahmat N, Ismail NH, Wadood A, Rahim F. Synthesis, molecular docking studies of hybrid benzimidazole as α -glucosidase inhibitor. Bioorg Chem 2017; 70:184-191. [DOI: 10.1016/j.bioorg.2016.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/19/2023]
|
33
|
Synthesis, β-glucuronidase inhibition and molecular docking studies of hybrid bisindole-thiosemicarbazides analogs. Bioorg Chem 2016; 68:56-63. [DOI: 10.1016/j.bioorg.2016.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/30/2016] [Accepted: 07/17/2016] [Indexed: 11/20/2022]
|
34
|
Taha M, Ismail NH, Imran S, Selvaraj M, Rahim F. Synthesis of novel inhibitors of β-glucuronidase based on the benzothiazole skeleton and their molecular docking studies. RSC Adv 2016. [DOI: 10.1039/c5ra23072a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Benzothiazole derivatives (1–20) were evaluated for β-glucuronidase inhibitory activity.
Collapse
Affiliation(s)
- Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery
- Universiti Teknologi MARA (UiTM)
- Puncak Alam Campus
- Malaysia
- Faculty of Applied Science UiTM
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery
- Universiti Teknologi MARA (UiTM)
- Puncak Alam Campus
- Malaysia
- Faculty of Applied Science UiTM
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery
- Universiti Teknologi MARA (UiTM)
- Puncak Alam Campus
- Malaysia
- Faculty of Applied Science UiTM
| | - Manikandan Selvaraj
- Integrative Pharmacogenomics Institute (iPROMISE)
- Universiti Teknologi MARA (UiTM)
- Puncak Alam Campus
- Malaysia
- Faculty of Pharmacy
| | - Fazal Rahim
- Department of Chemistry
- Hazara University
- Mansehra-21120
- Pakistan
| |
Collapse
|
35
|
Synthesis, in vitro evaluation and molecular docking studies of biscoumarin thiourea as a new inhibitor of α-glucosidases. Bioorg Chem 2015; 63:36-44. [DOI: 10.1016/j.bioorg.2015.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/05/2023]
|
36
|
Synthesis of 4-thiazolidinone analogs as potent in vitro anti-urease agents. Bioorg Chem 2015; 63:123-31. [DOI: 10.1016/j.bioorg.2015.10.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 11/21/2022]
|
37
|
Benzimidazole derivatives as new α-glucosidase inhibitors and in silico studies. Bioorg Chem 2015; 64:29-36. [PMID: 26637946 DOI: 10.1016/j.bioorg.2015.11.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/09/2015] [Accepted: 11/21/2015] [Indexed: 12/17/2022]
Abstract
Newly synthesized benzimidazole hydrazone derivatives 1-26 were evaluated for their α-glucosidase inhibitory activity. Compounds 1-26 exhibited varying degrees of yeast α-glucosidase inhibitory activity with IC50 values between 8.40 ± 0.76 and 179.71 ± 1.11 μM when compared with standard acarbose. In this assay, seven compounds that showed highest inhibitory effects than the rest of benzimidazole series were identified. All the synthesized compounds were characterized by different spectroscopic methods adequately. We further evaluated the interaction of the active compounds with enzyme with the help of docking studies.
Collapse
|