1
|
Mashrai A, Manea YK, Mahmood A. Insight into the interaction of 5,6 epoxy-cholesterols with human serum albumin. Arch Biochem Biophys 2024; 756:109993. [PMID: 38636691 DOI: 10.1016/j.abb.2024.109993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
5,6-Epoxy-cholesterols has been recently revealed to control metabolic pathway in breast cancer, which makes investigating their binding interaction with human serum albumin (HSA) an attractive field of research. The main aim of this article is to examine the binding interaction of 5,6 α-epoxy-cholesterol (5,6 α EC) and 5,6 β-epoxy-cholesterol (5,6 β- EC) with HSA using different spectroscopic methods and molecular modeling. These compounds interact with HSA via hydrophobic interactions and hydrogen bonds with binding constants 6.3 × 105 M-1 for 5,6 α-epoxy-cholesterol and 6.9 × 105 M-1 for 5,6 β-epoxy-cholesterol besides, the mechanism of the interaction can be attributed to static quenching. Circular dichroism data indicated that the α-helical content of HSA increased from 50.5 to 59.8 and 61.1 % after the addition of 5,6 α-ECs and 5,6 β-EC, respectively, with a ratio of 1:2. Thermodynamic analysis revealed that binding between 5,6-epoxy-cholesterols and HSA is spontaneous and entropy-driven. The molecular docking and esterase-like activity experiments were performed to envision a link between the experimental and theoretical results. The optimal binding site of 5,6-epoxy-cholesterols with HSA was located in subdomain IIA. Moreover, theoretical calculations were performed using the B3LYP function with the 6-311++G (d,p) basis set, indicating the HOMO-LUMO energy gap of 7.874 eV for 5,6 α-epoxy-cholesterol and 7.873 eV for 5,6 β-epoxy-cholesterol. The obtained findings are assumed to provide basic data for understanding the binding interactions of HSA with oxysterol compounds, which could help explore the pharmacokinetics and pharmacodynamics of oxysterol compounds.
Collapse
Affiliation(s)
- Ashraf Mashrai
- Department of Pharmacy, University of Science and Technology, Ibb, Yemen
| | - Yahiya Kadaf Manea
- Department of Chemistry, Aligarh Muslim University, Aligarh, India; Department of Chemistry, University of Aden, Aden, Yemen.
| | - Ayyaz Mahmood
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Iqbal A, Alam MT, Khan A, Siddiqui T, Ali A. Inhibition of protein misfolding and aggregation by steroidal quinoxalin-2(1H)-one and their molecular docking studies. Int J Biol Macromol 2024; 269:132020. [PMID: 38704061 DOI: 10.1016/j.ijbiomac.2024.132020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
A series of D-ring fused 16-substituted steroidal quinoxalin-2(1H)-one attached to an electron-releasing (ER) or electron-withdrawing (EW) groups via steroidal oxoacetate intermediate were synthesized to investigate their protein aggregation inhibition potential using human lysozyme (HLZ). The influence of the type of substituent at the C-6 positions of the quinoxalin-2(1H)-one ring on the protein aggregation inhibition potential was observed, showing that the EW moiety improved the protein aggregation inhibition potency. Of all the evaluated compounds, NO2-substituted quinoxalin-2(1H)-one derivative 13 was the most active compound and had a maximum protein aggregation inhibition effect. Significant stabilization effects strongly support the binding of the most biologically active steroidal quinoxalin-2(1H)-one with docking studies. The predicted physicochemical and ADME properties lie within a drug-like space which shows no violation of Lipinski's rule of five except compounds 12 and 13. Combined, our results suggest that D-ring fused 16-substituted steroidal quinoxalin-2(1H)-one has the potential to modulate the protein aggregation inhibition effect.
Collapse
Affiliation(s)
- Arfeen Iqbal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Md Tauqir Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Asna Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Tabassum Siddiqui
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Abad Ali
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India.
| |
Collapse
|
3
|
Duay SS, Yap RCY, Gaitano AL, Santos JAA, Macalino SJY. Roles of Virtual Screening and Molecular Dynamics Simulations in Discovering and Understanding Antimalarial Drugs. Int J Mol Sci 2023; 24:ijms24119289. [PMID: 37298256 DOI: 10.3390/ijms24119289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Malaria continues to be a global health threat, with approximately 247 million cases worldwide. Despite therapeutic interventions being available, patient compliance is a problem due to the length of treatment. Moreover, drug-resistant strains have emerged over the years, necessitating urgent identification of novel and more potent treatments. Given that traditional drug discovery often requires a great deal of time and resources, most drug discovery efforts now use computational methods. In silico techniques such as quantitative structure-activity relationship (QSAR), docking, and molecular dynamics (MD) can be used to study protein-ligand interactions and determine the potency and safety profile of a set of candidate compounds to help prioritize those tested using assays and animal models. This paper provides an overview of antimalarial drug discovery and the application of computational methods in identifying candidate inhibitors and elucidating their potential mechanisms of action. We conclude with the continued challenges and future perspectives in the field of antimalarial drug discovery.
Collapse
Affiliation(s)
- Searle S Duay
- Department of Chemistry, De La Salle University, Manila 0922, Philippines
| | - Rianne Casey Y Yap
- Department of Chemistry, De La Salle University, Manila 0922, Philippines
| | - Arturo L Gaitano
- Chemistry Department, Adamson University, Manila 1000, Philippines
| | | | | |
Collapse
|
4
|
Yu L, Zhang X, Sun W, Shen G, Yang Y, Zeng M. The influence of piperine on oxidation-induced porcine myofibrillar protein gelation behavior and fluorescent advanced glycation end products formation in model systems. Food Chem 2023; 420:136119. [PMID: 37060667 DOI: 10.1016/j.foodchem.2023.136119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
This study investigated the effects of piperine on oxidation-induced porcine myofibrillar protein (MP) gelation behavior and fluorescent advanced glycation end products (fAGEs) formation. Model systems were prepared, lipid oxidation, MP gelling behavior, and fAGEs content were determined daily. The results indicated that lipid oxidation, carbonyl content, S0, cooking loss, and tryptophan fluorescence intensity of MP significantly decreased, whereas gel strength, WHC, and whiteness markedly increased as the concentration of piperine increased (from 0 to 30 μM/g protein), indicating that piperine could reduce lipid oxidation and oxidative damage to MP. The fluorescence intensity of fAGEs markedly decreased (P < 0.05), from 93.1 ± 4.4 to 61.2 ± 3.0, as the concentration of piperine increased from 0 μM/g protein to 30 μM/g protein after 5 days of incubation. These results in model systems suggest that the presence of piperine has an important role in the inhibition of MP oxidation and fAGEs formation.
Collapse
Affiliation(s)
- Ligang Yu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University (Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan 030006, China.
| | - Xiaoyue Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wenyan Sun
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Guang Shen
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University (Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan 030006, China.
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Sharma K, Kumar H. Formation of nitrogen-containing six-membered heterocycles on steroidal ring system: A review. Steroids 2023; 191:109171. [PMID: 36581085 DOI: 10.1016/j.steroids.2022.109171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Steroidal heterocyclic compounds constitute interesting and promising scaffolds for drug discovery as they have displayed diverse chemical reactivity and several types of biological activities. This study is a concise report on the most recent advancements in the chemistry of the steroid skeleton, including reactions at the A, B, and D ring systems. The modern synthetic methods for the steroidal nitrogen-containing six-membered heterocyclic derivatives from 3-keto-, 6-keto-, 17-keto-, and 20-keto-steroids, as well as 2-Aldo-, 4-Aldo-, 6-Aldo-, and 16-Aldo-steroids, are discussed. However, some other methods for the synthesis of steroidal N-containing 6-membered heterocyclic derivatives are also included. These compounds have shown therapeutic potential as cytotoxic agents against various cell lines and have also shown antiproliferative, anti-inflammatory, and antioxidant activities. Therefore, they could be used as prospective candidates for the development of various medications. This paper not only describes synthetic details involved in creating N-containing 6-membered heterocyclic steroid derivatives, but also provides a brief overview of the medicinal applications of these compounds. This information will be highly useful for the medicinal chemists conducting research in this field.
Collapse
Affiliation(s)
- Kamlesh Sharma
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India.
| | - Himanshi Kumar
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India
| |
Collapse
|
6
|
Khan A, Alam MT, Iqbal A, Siddiqui T, Ali A. Microwave-assisted one-pot multicomponent synthesis of steroidal pyrido[2,3-d]pyrimidines and their possible implications in drug development. Steroids 2023; 190:109154. [PMID: 36521632 DOI: 10.1016/j.steroids.2022.109154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Protein misfolding can lead to fibrillar and non-fibrillar deposits which are the signs of countless human diseases. A promising strategy for the prevention of such diseases is the inhibition of protein aggregation, and the most crucial step toward effective prevention is the development of small molecules having the potential for protein-aggregation inhibition. In this search, a series of novel steroidal pyrido[2,3-d]pyrimidines have been synthesized employing steroidal ketone, substituted aldehydes, and 2,6-diaminopyrimidin-4(3H)-one through the microwave-assisted one-pot multicomponent methodology. The aggregation inhibition potential of newly synthesized compounds was evaluated on human lysozyme (HLZ). All the synthesized compounds were found to be efficient in the inhibition of protein aggregation in carefully designed in vitro experiments. Moreover, molecular docking studies also determine the binding interactions between all the synthesized compounds and native HLZ through hydrogen bonding. The structures of synthesized compounds were also elucidated using various spectroscopic techniques.
Collapse
Affiliation(s)
- Asna Khan
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Md Tauqir Alam
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Arfeen Iqbal
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Tabassum Siddiqui
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Abad Ali
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202 002, UP, India.
| |
Collapse
|
7
|
Saral A, Sudha P, Muthu S, Irfan A. Spectroscopic profiling, DFT computations, molecular docking and molecular dynamic simulation of biologically active 5-isoquinolinesulfonic acid. J Biomol Struct Dyn 2023; 41:722-735. [PMID: 34882072 DOI: 10.1080/07391102.2021.2011417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The title compound 5-isoquinolinesulfonic acid (5IQSA) is characterized using the FT-IR, FT-Raman, NMR and UV-Vis spectra. The optimized molecular geometry, vibrational assignments, infrared intensities and Raman scattering are precisely calculated using Density Functional Theory (DFT) with the B3LYP/6-311++G(d,p) basis set. The 1H and 13C NMR chemical shifts are computed and compared with the experimental data. The TD-DFT/M062X/6-311++G(d,p) method is used to compute UV-Vis for different solvents, and the results are compared to UV-Vis spectra obtained experimentally. The HOMO-LUMO band gap energy is calculated for various solvents and compared to the band gap of UV-Vis spectra. Molecular dynamics simulations are used to investigate the biomolecular stability. Non-Linear Optical (NLO) behaviour has been illustrated using hyperpolarizability calculations. Topological studies such as Reduced Gradient Density (RDG), Electron Localization Function (ELF) and Localized Orbital Locator (LOL) are performed. The Molecular Electrostatic Potential (MEP), Natural Bond Orbital (NBO) analysis, Fukui functions and thermodynamic properties were analysed. To explore the biological behaviour of the examined compound, molecular docking was performed to evaluate the hydrogen bond distance and binding energies with (2XA4) kinase inhibitor protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A Saral
- PG and Research Department of Chemistry, Thiru. Vi. Ka. Government Arts College, Thiruvarur, Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.,Department of Chemistry, Panimalar Institute of Technology, Chennai, Tamil Nadu, India
| | - P Sudha
- PG and Research Department of Chemistry, Thiru. Vi. Ka. Government Arts College, Thiruvarur, Tamil Nadu, India
| | - S Muthu
- Department of Physics, Arignar Anna Government Arts College, Cheyyar, Tamil Nadu, India.,Department of Physics, Puratchi Thalaivar Dr. MGR Government Arts and Science College, Uthiramerur, Tamil Nadu, India
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
8
|
Ansari A, Ali A, Khan N, Saad Umar M, Owais M. Synthesis of steroidal dihydropyrazole derivatives using green ZnO NPs and evaluation of their anticancer and antioxidant activity. Steroids 2022; 188:109113. [PMID: 36152868 DOI: 10.1016/j.steroids.2022.109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) were synthesized by a green method using Azadirachta indica leaf extract. The structure of the prepared ZnO (NPs) were characterized by FT-IR, XRD, SEM-EDX and TEM analyses. The biosynthesized ZnO (NPs) were then used as a catalyst for the synthesis of steroidal dihydropyrazole derivatives through a one-pot multicomponent reaction involving phenyl acetylene and hydrazine derivatives. The anticancer activity of newly synthesized compounds were evaluated against three cancer cell lines namely HeLa (human cervical carcinoma), Hep3B (human hepatocellular carcinoma) and MCF7 (human breast adenocarcinoma) by MTT assay. The tested compounds were found to be active against all cancer cell lines and less toxic towards normal peripheral blood mononuclear cells (PBMCs). Antioxidant activity have also been investigated via free radical scavenging ability using DPPH, FRAP and ABTS assay. The tested compounds were found to exhibit moderate to good antioxidant activity which increases with increase in the concentration of steroidal dihydropyrazoles. Among all the tested steroidal dihydropyrazoles, compound 17 is found to be most active.
Collapse
Affiliation(s)
- Anam Ansari
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab 140301, India; Steroid Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, India
| | - Abad Ali
- Steroid Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, India
| | - Nazoora Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Saad Umar
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
9
|
L‐Proline Catalyzed Synthesis of Steroidal Pyridones And Their DFT Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202202286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Hassan EA, Zayed SE, Mahdy AHS, Abo-Bakr AM. An efficient protocol for the synthesis of new camphor pyrimidine and camphor thiazole derivatives using conventional and microwave irradiation techniques and in vitro evaluation as potential antimicrobial agents. Curr Org Synth 2022; 19:COS-EPUB-119939. [PMID: 34983349 DOI: 10.2174/1570179419666220104125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND A series of new pyrimidines and thiazoles containing camphor moiety were synthesized under both conventional and microwave irradiation techniques. METHODS The condensation of camphor either with aminoguanidine or thiosemicarbazide gives the camphor hydrazine carboximidiamide 2 and the camphor thiosemicarbazone 3, respectively. Refluxing of 3 with chloroacetonitrile afforded the camphor thiazol-4-imine 4. Compounds 2 and 4 were used as precursors for the synthesis of target products. RESULTS The reaction of 2 with different species such as arylidene malononitrile, acetylacetone, and ethyl acetoacetate gave the corresponding camphor pyrimidine derivatives 5a,b-7 while refluxing of compound 4 with different reagents e.g. aldehydes, isatin, ninhydrin, acetic anhydride, benzene sulphonyl chloride, and p-nitro-benzoyl chloride afforded the camphor thiazole derivatives 8a-d-13, respectively. CONCLUSION A comparison between the conventional way and the eco-friendly microwave irradiation method occurred in the synthesis of the same compounds, which the latter was more efficient. The elemental analysis, FT-IR, 1H NMR, 13C NMR, and Mass spectra confirm the structures of the obtained new compounds. The potential use of some selected derivatives as antimicrobial agents was investigated and gave promising results.
Collapse
Affiliation(s)
- Entesar A Hassan
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523 Egypt
| | - Salem E Zayed
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523 Egypt
| | - Al-Hassan S Mahdy
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523 Egypt
| | - Ahmed M Abo-Bakr
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523 Egypt
| |
Collapse
|
11
|
Antioxidant activities of Alyssum virgatum plant and its main components. Struct Chem 2021. [DOI: 10.1007/s11224-021-01856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Density functional theory studies of the antioxidants-a review. J Mol Model 2021; 27:271. [PMID: 34463834 DOI: 10.1007/s00894-021-04891-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
The following review article attempts to compare the antioxidant activity of the compounds. For this purpose, density functional theory/Becke three-parameter Lee-Yang-Parr (DFT/B3LYP) methodology was carried out instead of using pharmacological methodologies because of economic benefits and high accuracy. This methodology filtrates the compounds with the lowest antioxidant activity. At first, the Koopmans' theorem was carried out to calculate some descriptors to compare antioxidants. The energy of the highest occupied molecular orbitals (HOMO) was accepted as the best indicator, and then some studies confirmed that the highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO-LUMO) energy gap is the more precise descriptor. Although it would be better to compare spin density distribution (SDD) on the oxygen of the corresponding radical in the polarizable continuum model (PCM) to evaluate their capability to chain reaction inhibition. Next, it was mentioned that in the multi-target directed ligands (MTDLs), the antioxidant is connected to other moieties in para positions to create better antioxidants or novel hybrid compounds. Indeed, SDD was introduced as a descriptor for MTDL antioxidant effectiveness. Then, the relation between antioxidants and aromaticity was investigated. The more the aromaticity of an antioxidant, the more stable the corresponding radical is. Subsequently, in preferred antioxidant activity, it was defined that the hydrogen atom transfer (HAT) mechanism is more favored in metabolism phase I. It has been seen that the solvent model can change the antioxidant mechanism. Therefore, the solvent model is more important than the chemical structure of antioxidants, and an ideal antioxidant should be evaluated in PCM for pharmacological evaluations.
Collapse
|
13
|
Lakshmanan S, Govindaraj D, Mahalakshmi K, Thirumurugan K, Ramalakshmi N, Antony SA. Synthesis, characterization, and anti-cancer activity of chalcone derivatives as-potent anaplastic lymphoma kinase inhibitors. Struct Chem 2021. [DOI: 10.1007/s11224-020-01707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Molecular docking and density functional theory studies of potent 1,3-disubstituted-9H-pyrido[3,4-b]indoles antifilarial compounds. Struct Chem 2021. [DOI: 10.1007/s11224-021-01772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
El‐serwy WS, Mohamed HS, El‐serwy WS, Mohamed NA, Kassem EMM, Mahmoud K, Nossier ES. Thiopyrimidine‐5‐carbonitrile Derivatives as VEGFR‐2 Inhibitors: Synthesis, Anticancer Evaluation, Molecular Docking, ADME Predictions and QSAR Studies. ChemistrySelect 2020. [DOI: 10.1002/slct.202002566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Walaa S. El‐serwy
- Department of Therapeutic Chemistry Pharmaceutical and Drug Industries Research Division, National Research Centre Dokki, Giza 12622 Egypt
| | - Hanaa S. Mohamed
- Department of Therapeutic Chemistry Pharmaceutical and Drug Industries Research Division, National Research Centre Dokki, Giza 12622 Egypt
| | - Weam S. El‐serwy
- Chemistry of Natural and Microbial Products Department Pharmaceutical and Drug Industries Research Division, National Research Centre Dokki, Giza 12622 Egypt
| | - Neama A. Mohamed
- Department of Therapeutic Chemistry Pharmaceutical and Drug Industries Research Division, National Research Centre Dokki, Giza 12622 Egypt
| | - Emad M. M. Kassem
- Department of Therapeutic Chemistry Pharmaceutical and Drug Industries Research Division, National Research Centre Dokki, Giza 12622 Egypt
| | - Khaled Mahmoud
- Department of Pharmacognosy National Research Centre, Dokki Giza 12622 Egypt
| | - Eman S. Nossier
- Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy Al-Azhar University (Girls) Cairo 11754 Egypt
| |
Collapse
|
16
|
Song S, Liu Q, Chai WM, Xia SS, Yu ZY, Wei QM. Inhibitory potential of 4-hexylresorcinol against α-glucosidase and non-enzymatic glycation: Activity and mechanism. J Biosci Bioeng 2020; 131:241-249. [PMID: 33191127 DOI: 10.1016/j.jbiosc.2020.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
Inhibition of α-glucosidase as well as non-enzymatic glycation is thought as an effective method for treating type-2 diabetes mellitus. In this study, we investigated the inhibitory potential and mechanism of 4-hexylresorcinol against α-glucosidase and non-enzymatic glycation by using multispectroscopic analyses and molecular docking. The results of enzyme kinetics showed that 4-hexylresorcinol reversibly inhibited α-glucosidase activity in a noncompetitive way. Fluorescence quenching then revealed that it increased the hydrophobicity of α-glucosidase and changed the conformation of the enzyme by forming the α-glucosidase-hexylresorcinol complex. Thermodynamic analysis and molecular docking further demonstrated that the inhibition of 4-hexylresorcinol on the α-glucosidase was mainly dependent on hydrogen bond and hydrophobic interaction. Moreover, the 4-hexylresorcinol moderately inhibited the formation of fructosamine, and strongly suppressed the generation of α-dicarbonyl compounds and advanced glycation end products (AGEs). The interaction between 4-hexylresorcinol and bovine serum albumin was mainly driven by hydrophobic interaction. This study showed a novel inhibitor of α-glucosidase as well as non-enzymatic glycation, and provided a drug candidate for the prevention and treatment of type-2 diabetes.
Collapse
Affiliation(s)
- Shuang Song
- College of Life Science and Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Qing Liu
- College of Life Science and Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Wei-Ming Chai
- College of Life Science and Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China.
| | - Si-Shi Xia
- College of Life Science and Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Zi-Yi Yu
- College of Life Science and Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Qi-Ming Wei
- College of Life Science and Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| |
Collapse
|
17
|
Konar M, Sahoo H. Tyrosine mediated conformational change in bone morphogenetic protein – 2: Biophysical implications of protein – phytoestrogen interaction. Int J Biol Macromol 2020; 150:727-736. [DOI: 10.1016/j.ijbiomac.2020.02.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 01/18/2023]
|
18
|
Sharma K, Yadav P, Sharma B, Pandey M, Awasthi SK. Interaction of coumarin triazole analogs to serum albumins: Spectroscopic analysis and molecular docking studies. J Mol Recognit 2020; 33:e2834. [PMID: 32017307 DOI: 10.1002/jmr.2834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022]
Abstract
The interaction of triazole substituted 4-methyl-7-hydroxycoumarin derivatives (CUM1-4) with serum albumin (bovine serum albumin [BSA] and human serum albumin [HSA]) have been studied employing ultraviolet-visible (UV-Vis), fluorescence, circular dichroism (CD) spectroscopy, and molecular docking methods at physiological pH 7.4. The fluorescence quenching occurred with increasing concentration of CUMs, and the binding constant of CUM derivatives with BSA and HSA obtained from fluorescence quenching experiment was found to be ~ 104 L mol-1 . CD study showed conformational changes in the secondary structure of serum albumin upon titration of CUMs. The observed experimental results were further validated by theoretical studies involving density functional theory (DFT) and molecular docking.
Collapse
Affiliation(s)
- Kumkum Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, New Delhi, India
| | - Priyanka Yadav
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, New Delhi, India
| | - Bhawana Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, New Delhi, India
| | - Meenakshi Pandey
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, New Delhi, India
| | - Satish K Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
19
|
Monier M, El-Mekabaty A, Abdel-Latif D, Doğru Mert B, Elattar KM. Heterocyclic steroids: Efficient routes for annulation of pentacyclic steroidal pyrimidines. Steroids 2020; 154:108548. [PMID: 31805293 DOI: 10.1016/j.steroids.2019.108548] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/09/2019] [Accepted: 11/24/2019] [Indexed: 01/01/2023]
Abstract
Steroids are components of cell membranes, signaling molecules and are a type of secondary metabolites as a result of their high impact of biological significance. The present review described the literature reports of pentacyclic steroidal pyrimidines as a type of heterocyclic steroids. The main sections included the synthesis of the investigated steroids fused at rings-A or B or D of steroid skeleton, synthesis of binary or linked-type pyrimidines, pyrimidine oxides, macromolecules and mono- or di- or tri-peptides linked-steroidal pyrimidines. Besides, the present research highlighted the biological significance of steroidal pyrimidines, in which the compounds revealed potent anticancer, antioxidant, antibacterial, and anti-Alzheimer agents. In addition, some hetero-steroids were screened for binding DNA assay and gene expression analysis. It was settled that the incorporation of pyrimidine scaffold into steroid basic skeleton is crucial for better biological results.
Collapse
Affiliation(s)
- M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Al-Bahr, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
| | - Ahmed El-Mekabaty
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
| | - Doaa Abdel-Latif
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Al-Bahr, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
| | - Başak Doğru Mert
- Adana Alparslan Türkeş Science and Technology University, Department of Energy Systems Engineering, 01250 Adana, Turkey
| | - Khaled M Elattar
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt.
| |
Collapse
|
20
|
Prabu DSD, Lakshmanan S, Thirumurugan K, Ramalakshmi N, Antony SA. Synthesis, Molecular Docking, DFT Study of Novel N-Benzyl-2-(3-cyano-4-isobutoxyphenyl)-
4-methylthiazole-5-carboxamide Derivatives and their Antibacterial Activity. ACTA ACUST UNITED AC 2020. [DOI: 10.14233/ajchem.2020.22390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A series of febuxostat based new chemical entities was synthesized using microwave method and characterized by NMR, mass and FT-IR spectral studies. Molecular docking of febuxostat amide nucleus substitution compounds 8c (-7.91kcal/mol), 8g (-7.94 kcal/mol) exhibiting high binding energy against ALK receptors. Theoretical investigation of MEPs, HOMO, LUMO and energy gap of HOMO-LUMO were calculated by B3LYP/6-31G method. Among the tested compounds, methoxy substituted compound 8g showed highest antibacterial activity against S. aereus and B. subtilis.
Collapse
Affiliation(s)
| | | | - K. Thirumurugan
- Department of Chemistry, Presidency College, Chennai-600005, India
| | - N. Ramalakshmi
- Department of Chemistry, Presidency College, Chennai-600005, India
| | - S. Arul Antony
- Department of Chemistry, Presidency College, Chennai-600005, India
| |
Collapse
|
21
|
Ali A, Asif M, Rizvi A, Farhan M, Zaman S. Discovery of a novel oxadiazine derivative of glucocorticoids endowed with DNA binding activities and molecular docking studies. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2019. [DOI: 10.1080/16583655.2019.1603575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Abad Ali
- Steroid Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, India
- Organometallic Synthesis and Catalysis Group, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, India
| | - Mohd Asif
- Steroid Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Asim Rizvi
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Mohd Farhan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Shamsuz Zaman
- Steroid Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
22
|
Alam M, Park S. Spectroscopic Identifications, Molecular Docking, Neuronal Growth and Enzyme Inhibitory Activities of Steroidal Nitro Olefin: Quantum Chemical Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201902093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mahboob Alam
- Division of Chemistry and BiotechnologyDongguk University Gyeongju 780-714 South Korea
| | - Soonheum Park
- Department of Advanced Materials ChemistryDongguk University Gyeongju 780-714 South Korea
| |
Collapse
|
23
|
Cortés-Percino A, Vega-Báez JL, Romero-López A, Puerta A, Merino-Montiel P, Meza-Reyes S, Padrón JM, Montiel-Smith S. Synthesis and Evaluation of Pyrimidine Steroids as Antiproliferative Agents. Molecules 2019; 24:molecules24203676. [PMID: 31614780 PMCID: PMC6832952 DOI: 10.3390/molecules24203676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
A small and focused library of steroidal non-fused and fused pyrimidines was prepared from pregnenolone acetate and diosgenin, respectively. The key step was the cycloaddition reaction of nitrogen-containing 1,3-binucleophiles with the steroidal α,β-unsaturated ketone. Urea, thiourea and guanidine reacted in a similar manner and afforded the steroidal pyrimidines in good yields. The antiproliferative tests against human tumor cell lines gave GI50 values in the micromolar range and had no effect on healthy fibroblasts. Additional experiments indicated that the compounds did not act as P-glycoprotein substrates, thus avoiding the rise of drug resistance. The fused steroidal pyrimidinethione was selected as drug lead for further testing due to its strong antiproliferative activities within the low micromolar range.
Collapse
Affiliation(s)
- Alejandra Cortés-Percino
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico.
| | - José Luis Vega-Báez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico.
| | - Anabel Romero-López
- Instituto de Física "Luis Rivera Terrazas" Benemérita Universidad Autónoma de Puebla Ecocampus Valsequillo, 72960 San Pedro Zacachimalpa, Pue., Mexico.
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, c/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain.
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico.
| | - Socorro Meza-Reyes
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico.
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, c/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain.
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico.
| |
Collapse
|
24
|
Yadav P, Yadav JK, Agarwal A, Awasthi SK. Insights into the interaction of potent antimicrobial chalcone triazole analogs with human serum albumin: spectroscopy and molecular docking approaches. RSC Adv 2019; 9:31969-31978. [PMID: 35530759 PMCID: PMC9072648 DOI: 10.1039/c9ra04192c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/17/2019] [Indexed: 02/03/2023] Open
Abstract
Mechanistic insights into the interaction of five previously chemically synthesized triazole-linked chalcone analogs (CTs) with human serum albumin (HSA) were sought using various spectroscopic techniques (UV-visible absorption, fluorescence, and circular dichroism) and molecular docking. The fluorescence quenching experiments performed at three different temperatures (288, 298 and 308 K) revealed the static mode of quenching and the binding constants (K b ∼ 106-9) obtained indicated the strong affinity of these analogs for HSA. Furthermore, significant changes in the secondary structure of HSA in the presence of these analogs were also confirmed by far UV-CD spectroscopy. The thermodynamic properties such as the enthalpy change (ΔH°), Gibbs free energy change (ΔG°) and entropy change (ΔS°) revealed that the binding process was spontaneous and exothermic. Theoretical studies, viz., DFT and molecular docking corroborated the experimental results as these five analogs could bind with HSA through hydrogen bonding and hydrophobic interactions. The present study provides useful information regarding the interaction mechanism of these analogs with HSA, which can provide a new avenue to design more potent chalcone triazole analogs for use in the biomedical field.
Collapse
Affiliation(s)
- Priyanka Yadav
- Chemical Biology Laboratory, University of Delhi Delhi-110007 India
| | - Jitendra Kumar Yadav
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 UP India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 UP India
| | - Satish K Awasthi
- Chemical Biology Laboratory, University of Delhi Delhi-110007 India
| |
Collapse
|
25
|
Investigation of inhibitory potential of quercetin to the pyruvate dehydrogenase kinase 3: Towards implications in anticancer therapy. Int J Biol Macromol 2019; 136:1076-1085. [DOI: 10.1016/j.ijbiomac.2019.06.158] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022]
|
26
|
Ansari A, Ali A, Asif M. Steroidal thiazolidinone derivatives: Design, synthesis and their molecular interaction with human serum albumin. Steroids 2019; 148:99-113. [PMID: 31082411 DOI: 10.1016/j.steroids.2019.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 12/17/2022]
Abstract
A series of steroidal thiazolidinone derivatives have been synthesized through one-pot multicomponent reaction involving steroidal ketone, thiosemicarbazide/methyl-thiosemicarbazide and DMAD in presence of AlCl3 as a Lewis acid catalyst. Among all the synthesized steroidal thiazolidinone derivatives, compound 7-9 (ST 7-9) were investigated for their in vitro molecular interaction with human serum albumin. Intrinsic fluorescence spectroscopy, constant wavelength synchronous fluorescence spectroscopy, circular dichroism and UV-visible absorption techniques have been exploited to characterize the binding phenomena in phosphate buffer solution at pH 7.4. The experimental results indicated that ST 7-9 bind to HSA and the intrinsic fluorescence of HSA was quenched through static quenching mechanism. The binding parameters were calculated and the binding constants obtained were 1.44 × 105 M-1 for ST 7, 0.84 × 105 M-1 for ST 8 and 1.06 × 105 M-1 for ST 9. Circular dichroism analysis confirms that the presence of ST 7-9, altered the secondary structure of HSA due to partial unfolding of the polypeptide chain. Furthermore, hemolytic activity assay demonstrated that the synthesized steroidal thiazolidinone derivatives have good compatibility towards human red blood cells. Finally, molecular docking studies revealed that the steroidal thiazolidinones can bind in the hydrophobic cavity of HSA, by hydrophobic and hydrogen bonding interaction. These results provided valuable information about the binding mechanism of ST 7-9 with HSA and play a pivotal role in the development of steroidal heterocycle inspired compounds.
Collapse
Affiliation(s)
- Anam Ansari
- Steroid Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, India
| | - Abad Ali
- Steroid Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, India; Organometallic Synthesis and Catalysis Group, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| | - Mohd Asif
- Steroid Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, India
| |
Collapse
|
27
|
Yadav P, Kumar Yadav J, Dixit AK, Agarwal A, Kumar Awasthi S. Insight into the interaction of benzothiazole tethered triazole analogues with human serum albumin: Spectroscopy and molecular docking approaches. LUMINESCENCE 2019; 34:812-822. [PMID: 31317650 DOI: 10.1002/bio.3676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/23/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Abstract
The interaction of four benzothiazole tethered triazole analogues (MS43, MS70, MS71, and MS78) with human serum albumin (HSA) was investigated using various spectroscopic techniques (ultraviolet-visible (UV-vis) light absorption, fluorescence, circular dichroism (CD), molecular docking and density functional theory (DFT) studies). Fluorescence quenching constants (~1012 ) revealed a static mode of quenching and binding constants (Kb ~104 ) indicating the strong affinity of these analogues for HSA. Further alteration in the secondary structure of HSA in the presence of these analogues was also confirmed by far UV-CD spectroscopy. The intensity loss in CD studied at 222 nm indicated an increase in random coil/β-sheet conformations in the protein. Binding energy values (MS71 (-9.3 kcal mol-1 ), MS78 (-8.02 kcal mol-1 ), MS70 (-7.16 kcal mol-1 ) and MS43 (-6.81 kcal mol-1 )) obtained from molecular docking revealed binding of these analogues with HSA. Molecular docking and DFT studies validated the experimental results, as these four analogues bind with HSA at site II through hydrogen bonding and hydrophobic interactions.
Collapse
Affiliation(s)
- Priyanka Yadav
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Jitendra Kumar Yadav
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | | | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
28
|
Mukherjee S, Ganorkar K, Kumar A, Sehra N, Ghosh SK. Switching of Trp-214 intrinsic rotamer population in human serum albumin: An insight into the aftermath of embracing therapeutic bioorganic luminophore azapodophyllotoxin into sudlow site I. Bioorg Chem 2019; 84:63-75. [DOI: 10.1016/j.bioorg.2018.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 01/14/2023]
|
29
|
Awasthi S, Preethy R, Saraswathi N. Nordihydroguaiaretic acid prevents glycation induced structural alterations and aggregation of albumin. Int J Biol Macromol 2019; 122:479-484. [DOI: 10.1016/j.ijbiomac.2018.10.173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022]
|
30
|
Sam Daniel Prabu D, Lakshmanan S, Ramalakshmi N, Thirumurugan K, Govindaraj D, Antony SA. Synthesis, characterization of benzimidazole carboxamide derivatives as potent anaplastic lymphoma kinase inhibitor and antioxidant activity. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1554144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- D. Sam Daniel Prabu
- PG and Research Department of Chemistry, Presidency College, Chennai, TN, India
| | | | - N. Ramalakshmi
- PG and Research Department of Chemistry, Presidency College, Chennai, TN, India
| | - K. Thirumurugan
- PG and Research Department of Chemistry, Presidency College, Chennai, TN, India
| | - Dharman Govindaraj
- Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, TN, India
| | - S. Arul Antony
- PG and Research Department of Chemistry, Presidency College, Chennai, TN, India
| |
Collapse
|
31
|
Albuquerque HMT, Santos CMM, Silva AMS. Cholesterol-Based Compounds: Recent Advances in Synthesis and Applications. Molecules 2018; 24:E116. [PMID: 30597999 PMCID: PMC6337470 DOI: 10.3390/molecules24010116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 01/31/2023] Open
Abstract
This review reports on the latest developments (since 2014) in the chemistry of cholesterol and its applications in different research fields. These applications range from drug delivery or bioimaging applications to cholesterol-based liquid crystals and gelators. A brief overview of the most recent synthetic procedures to obtain new cholesterol derivatives is also provided, as well as the latest anticancer, antimicrobial, and antioxidant new cholesterol-based derivatives. This review discusses not only the synthetic details of the preparation of new cholesterol derivatives or conjugates, but also gives a short summary concerning the specific application of such compounds.
Collapse
Affiliation(s)
- Hélio M T Albuquerque
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Clementina M M Santos
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Artur M S Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
32
|
Guan J, Yan X, Zhao Y, Lu J, Sun Y, Peng X. Investigation of the molecular interactions of triclocarban with human serum albumin using multispectroscopies and molecular modeling. J Biomol Struct Dyn 2018; 37:3550-3565. [DOI: 10.1080/07391102.2018.1520149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiao Guan
- School of Life Sciences, Tianjin University, Tianjin, People’s Republic of China
| | - Xin Yan
- School of Life Sciences, Tianjin University, Tianjin, People’s Republic of China
| | - Yajing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Jing Lu
- Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi, People’s Republic of China
| | - Yinhe Sun
- Tianjin Institute of Metrological Supervision and Testing, Nankai District, Tianjin, People’s Republic of China
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
33
|
Thirumurugan K, Lakshmanan S, Govindaraj D, Daniel Prabu DS, Ramalakshmi N, Arul Antony S. Design, synthesis and anti-inflammatory activity of pyrimidine scaffold benzamide derivatives as epidermal growth factor receptor tyrosine kinase inhibitors. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Chen Y, Liu J, Song M, Jiang L, Liu L, Liu Y, Fu G, Xue J, Liu JY, Huang M, Li J. Insights into the binding mechanism of BODIPY-based photosensitizers to human serum albumin: A combined experimental and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:158-165. [PMID: 29864639 DOI: 10.1016/j.saa.2018.05.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
Photodynamic therapy (PDT) is a noninvasive and effective approach in clinical cancer treatments. Boron-dipyrromethene (BODIPY)-based derivatives have emerged as novel and promising photosensitizers (PSs) in PDT, attributed to their strong near-infrared singlet oxygen luminescence emissions and high photostabilities. However, the binding mechanism of BODIPY derivatives to proteins, key for their therapeutic and biomedical applications is still poorly understood. Here, we investigated the molecular interactions of two 2, 6-diiodo-BODIPY derivatives with human serum albumin (HSA) using combined experimental and computational techniques. Our spectroscopic results showed that both BODIPY derivatives formed stable complexes with HSA. Strikingly, the BODIPY/HSA complexes exhibited notably enhanced water solubility and singlet oxygen generation efficiency with respect to the BODIPY alone. Furthermore, molecular docking, molecular dynamics simulations, and binding free energy calculations provided the structural and energetic insights into the binding mechanism of BODIPY-based derivatives to HSA. Our work demonstrated that conjugation of BODIPYs with HSA may be a promising strategy to enhance the performance of BODIPY-based PSs, and the combination of computational and experimental techniques is expected to play key roles in the design and development of novel PSs with improved bioavailability and biocompatibility for cancer therapeutic applications.
Collapse
Affiliation(s)
- Yayu Chen
- College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jianzhi Liu
- Department of Otolaryngology,Fujian Medical University Union Hospital, Fuzhou 350002, China
| | - Meiru Song
- College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Lizhi Jiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lin Liu
- College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yichang Liu
- College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Gang Fu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinping Xue
- College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jian-Yong Liu
- College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
35
|
Lin MZ, Chai WM, Zheng YL, Huang Q, Ou-Yang C. Inhibitory kinetics and mechanism of rifampicin on α-glucosidase: Insights from spectroscopic and molecular docking analyses. Int J Biol Macromol 2018; 122:1244-1252. [PMID: 30227201 DOI: 10.1016/j.ijbiomac.2018.09.077] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/12/2023]
Abstract
α-Glucosidase is a critical enzyme associated with diabetes mellitus, and the inhibitors of the enzyme play important roles in the treatment of the disease. In this study, the inhibitory effect and mechanism of rifampicin on α-glucosidase were investigated by multispectroscopic methods along with molecular docking technique. The results showed that rifampicin inhibited α-glucosidase activity prominently (IC50 = 135 ± 1.2 μM) in a reversible and competitive-type manner. The fluorescence intensity of α-glucosidase was quenched by rifampicin through forming rifampicin-α-glucosidase complex in a static procedure. And the formation of the rifampicin-α-glucosidase complex was driven spontaneously by hydrophobic forces and hydrogen bonds. The results obtained from molecular docking further indicated that hydrophobic forces were formed between rifampicin and amino acid residues Phe 173, Pro151, and hydrogen bonds were generated by the interactions of rifampicin with residues Ser 180, Asn 414, Gly160, and Gly161 of α-glucosidase. Moreover, it was found that the binding of rifampicin to α-glucosidase could alter the conformation of the enzyme to make it steady, and the binding distance was estimated to be 1.02 nm. Therefore, this study confirmed a novel α-glucosidase inhibitor and possibly contributed to the improvement of newfangled anti-diabetic agent.
Collapse
Affiliation(s)
- Mei-Zhen Lin
- College of Life Science and Key Laboratory of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wei-Ming Chai
- College of Life Science and Key Laboratory of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Yun-Ling Zheng
- College of Life Science and Key Laboratory of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qian Huang
- College of Life Science and Key Laboratory of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chong Ou-Yang
- College of Life Science and Key Laboratory of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
36
|
Kumar H, Devaraji V, Joshi R, Wankar S, Ghosh SK. A Chalcone-Based Potential Therapeutic Small Molecule That Binds to Subdomain IIA in HSA Precisely Controls the Rotamerization of Trp-214. ACS OMEGA 2018; 3:10114-10128. [PMID: 31459141 PMCID: PMC6644364 DOI: 10.1021/acsomega.8b01079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/20/2018] [Indexed: 06/10/2023]
Abstract
The principal intent of this work is to explore whether the site-specific binding of a newly synthesized quinoline-appended anthracenyl chalcone, (E)-3-(anthracen-10-yl)-1-(6,8-dibromo-2-methylquinolin-3-yl)prop-2-en-1-one (ADMQ), with an extracellular protein of the human circulatory system, human serum albumin (HSA), can control the rotamerization of its sole tryptophan residue, Trp-214. With this aim, we have systematically studied the binding affinity, interactions, and localization pattern of the title compound inside the specific binding domain of the transport protein and any conformation alteration caused therein. Multiple spectroscopic experiments substantiated by an in silico molecular modeling exercise provide evidence for the binding of the guest ADMQ in the hydrophobic domain of HSA, which is primarily constituted by residues Trp-214, Arg-218, Arg-222, Asp-451, and Tyr-452. Rotationally restricted ADMQ prefers to reside in Sudlow site I (subdomain IIA) of HSA in close proximity (2.45 nm) to the intrinsic fluorophore Trp-214 and is interestingly found to control its vital rotamerization process. The driving force for this rotational interconversion is predominantly found to be governed by the direct interaction of ADMQ with Trp-214. However, the role of induced conformational perturbation in the biomacromolecule itself upon ADMQ adoption cannot be ruled out completely, as indicated by circular dichroism, 3D fluorescence, root-mean-square deviation, root-mean-square fluctuation, and secondary structure element observations. The comprehensive spectroscopic study outlined herein provides important information on the biophysical interaction of a chalcone-based potential therapeutic candidate with a carrier protein, exemplifying its utility in having a regulatory effect on the microconformations of Trp-214.
Collapse
Affiliation(s)
- Himank Kumar
- Department
of Chemistry, Visvesvaraya National Institute
of Technology, Nagpur, Maharashtra 440010, India
| | - Vinod Devaraji
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Madras Medical College, Chennai 600003, India
| | - Ritika Joshi
- Department
of Chemistry, Visvesvaraya National Institute
of Technology, Nagpur, Maharashtra 440010, India
| | - Sneha Wankar
- Department
of Chemistry, Visvesvaraya National Institute
of Technology, Nagpur, Maharashtra 440010, India
| | - Sujit Kumar Ghosh
- Department
of Chemistry, Visvesvaraya National Institute
of Technology, Nagpur, Maharashtra 440010, India
| |
Collapse
|
37
|
Riccardi C, Musumeci D, Russo Krauss I, Piccolo M, Irace C, Paduano L, Montesarchio D. Exploring the conformational behaviour and aggregation properties of lipid-conjugated AS1411 aptamers. Int J Biol Macromol 2018; 118:1384-1399. [PMID: 30170359 DOI: 10.1016/j.ijbiomac.2018.06.137] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
AS1411 is a nucleolin-binding aptamer which attracted great interest as active targeting ligand for the selective delivery of therapeutic agents to tumour cells. In this work we selected three AS1411 derivatives 5'-conjugated with lipophilic tails and studied their properties in view of their application in liposomial formulations and/or lipid coated-nanoparticles for targeted therapies. The conformational behaviour of these AS1411 analogs has been investigated in comparison with the unmodified aptamer by CD, UV, PAGE, SEC-HPLC, DLS and thioflavin T (ThT) fluorescence assays to get insight in their secondary structure and aggregation properties. This study has been performed in pseudo-physiological buffers mimicking the extra- and intracellular environments, and at different concentrations in the μM range, paying special attention to the effects of the lipophilic tail on the overall aptamer conformation. The 5'-lipidated AS1411 derivatives proved to fold into stable, parallel unimolecular G-quadruplex structures, forming large aggregates, mainly micelles, at conc. >10 μM. Preliminary bioscreenings on selected cancer cells showed that these derivatives are less cytotoxic than AS1411, but maintain a similar biological behaviour. This study demonstrated that lipophilic tails dramatically favour the formation of AS1411 aggregates, however not impairing the formation and thermal stability of its peculiar G4 motifs.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Fi), Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Fi), Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; Institute for Endocrinology and Oncology "Gaetano Salvatore", CNR, Via Pansini 5, 80131 Napoli, Italy.
| |
Collapse
|
38
|
Ansari A, Ali A, Asif M, Rauf MA, Owais M. Facile one-pot multicomponent synthesis and molecular docking studies of steroidal oxazole/thiazole derivatives with effective antimicrobial, antibiofilm and hemolytic properties. Steroids 2018; 134:22-36. [PMID: 29653115 DOI: 10.1016/j.steroids.2018.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/17/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
A series of steroidal oxazole and thiazole derivatives have been synthesized employing thiosemicarbazide/semicarbazide hydrochloride and ethyl 2-chloroacetoacetate with a simple and facile one-pot multicomponent reaction pathway. The antimicrobial activity of newly synthesized compounds were evaluated against four bacterial strains namely Gram-negative (Escherichia coliand Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) in addition to pathogenic fungi (Candida albicans and Cryptococcus neoformans). Bioactivity assay manifested that most of the compounds exhibited good antimicrobial activity. To provide additional insight into antimicrobial activity, the compounds were also tested for their antibiofilm activity against S. aureus biofilm. Moreover, molecular docking study shows binding of compounds with amino acid residues of DNA gyrase and glucosamine-6-phosphate synthase (promising antimicrobial target) through hydrogen bonding interactions. Hemolytic activity have been also investigated to ascertain the effect of compounds over RBC lysis and results indicate good prospects for biocompatibility. The expedient synthesis of steroidal heterocycles, effective antibacterial and antifungal behavior against various clinically relevant human pathogens, promising biocompatibility offer opportunities for further modification and potential applications as therapeutic agents.
Collapse
Affiliation(s)
- Anam Ansari
- Steroid Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, India
| | - Abad Ali
- Steroid Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, India; Organometallic Synthesis and Catalysis Group, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| | - Mohd Asif
- Steroid Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, India
| | - Mohd Ahmar Rauf
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
39
|
Molecular structure, spectral studies, NBO, HOMO–LUMO profile, MEP and Mulliken analysis of 3β,6β-dichloro-5α-hydroxy-5α–cholestane. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Scherbakov AM, Komkov AV, Komendantova AS, Yastrebova MA, Andreeva OE, Shirinian VZ, Hajra A, Zavarzin IV, Volkova YA. Steroidal Pyrimidines and Dihydrotriazines as Novel Classes of Anticancer Agents against Hormone-Dependent Breast Cancer Cells. Front Pharmacol 2018; 8:979. [PMID: 29375380 PMCID: PMC5767602 DOI: 10.3389/fphar.2017.00979] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/21/2017] [Indexed: 12/30/2022] Open
Abstract
Most breast and prostate tumors are hormone-dependent, making it possible to use hormone therapy in patients with these tumors. The design of effective endocrine drugs that block the growth of tumors and have no severe side effects is a challenge. Thereupon, synthetic steroids are promising therapeutic drugs for the treatment of diseases such as hormone-dependent breast and prostate cancers. Here, we describe novel series of steroidal pyrimidines and dihydrotriazines with anticancer activities. A flexible approach to unknown pyrimidine and dihydrotriazine derivatives of steroids with selective control of the heterocyclization pattern is disclosed. A number of 18-nor-5α-androsta-2,13-diene[3,2-d]pyrimidine, androsta-2-ene[3,2-d]pyrimidine, Δ1, 3, 5(10)-estratrieno[16,17-d]pyrimidine, and 17-chloro-16-dihydrotriazine steroids were synthesized by condensations of amidines with β-chlorovinyl aldehydes derived from natural hormones. The synthesized compounds were screened for cytotoxicity against breast cancer cells and showed IC50 values of 7.4 μM and higher. Compounds were tested against prostate cancer cells and exhibited antiproliferative activity with IC50 values of 9.4 μM and higher comparable to that of cisplatin. Lead compound 4a displayed selectivity in ERα-positive breast cancer cells. At 10 μM concentration, this heterosteroid inhibited 50% of the E2-mediated ERα activity and led to partial ERα down-regulation. The ERα reporter assay and immunoblotting were supported by the docking study, which showed the probable binding mode of compound 4a to the estrogen receptor pocket. Thus, heterosteroid 4a proved to be a selective ERα modulator with the highest antiproliferative activity against hormone-dependent breast cancer and can be considered as a candidate for further anticancer drug development. In total, the synthesized heterosteroids may be considered as new promising classes of active anticancer agents.
Collapse
Affiliation(s)
- Alexander M Scherbakov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Alexander V Komkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna S Komendantova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Margarita A Yastrebova
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Olga E Andreeva
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Valerii Z Shirinian
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati University, Santiniketan, India
| | - Igor V Zavarzin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia A Volkova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
41
|
Ansari A, Ali A, Asif M, Shamsuzzaman S. Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines. NEW J CHEM 2018. [DOI: 10.1039/c7nj03742b] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MgO NPs were proved to be a highly efficient catalyst for mild and clean conversion of steroids to steroidal heterocycles.
Collapse
Affiliation(s)
- Anam Ansari
- Steroid Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - Abad Ali
- Steroid Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - Mohd Asif
- Steroid Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | | |
Collapse
|
42
|
Lakshmanan S, Govindaraj D, Ramalakshmi N, Antony SA. Synthesis, molecular docking, DFT calculations and cytotoxicity activity of benzo[g]quinazoline derivatives in choline chloride-urea. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Is the Sudlow site I of human serum albumin more generous to adopt prospective anti-cancer bioorganic compound than that of bovine: A combined spectroscopic and docking simulation approach. Bioorg Chem 2017; 75:332-346. [DOI: 10.1016/j.bioorg.2017.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/16/2017] [Accepted: 10/22/2017] [Indexed: 11/18/2022]
|
44
|
Romero-Hernández LL, Merino-Montiel P, Meza-Reyes S, Vega-Baez JL, López Ó, Padrón JM, Montiel-Smith S. Synthesis of unprecedented steroidal spiro heterocycles as potential antiproliferative drugs. Eur J Med Chem 2017; 143:21-32. [PMID: 29172080 DOI: 10.1016/j.ejmech.2017.10.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/09/2017] [Accepted: 10/22/2017] [Indexed: 01/14/2023]
Abstract
Herein we report the straightforward preparation of novel conformationally-restricted steroids from trans-androsterone and estrone, decorated with spiranic oxazolidin-2-one or 2-aminooxazoline motifs at C-17 as potential antiproliferative agents. Such unprecedented pharmacophores were accessed using an aminomethylalcohol derivative at C-17 as the key intermediate; reaction of such functionality with triphosgene, or conversion into N-substituted thioureas, followed by an intramolecular cyclodesulfurization reaction promoted by yellow HgO, furnished such spirocycles in excellent yields. Title compounds were tested in vitro against a panel of six human tumor cell lines, named A549 (non-small cell lung), HBL-100 (breast), HeLa (cervix), SW1573 (non-small cell lung), T-47D (breast) and WiDr (colon), and the results were compared with steroidal chemotherapeutic agents (abiraterone and galeterone); the A-ring of the steroidal backbone, the nature of the heterocycle and the N-substituents proved to be essential motifs for establishing structure-activity relationships concerning not only the potency but also the selectivity against tumor cell lines. Estrone derivatives, particularly those bearing a spiranic 2-aminooxazoline scaffold were found to be the most active compounds, with GI50 values ranging from the low micromolar to the submicromolar level (0.34-1.5 μM). Noteworthy, the lead compounds showed a remarkable increase in activity against the resistant cancer cell lines (T-47D and WiDr) compared to the anticancer reference drugs (up to 120-fold).
Collapse
Affiliation(s)
- Laura L Romero-Hernández
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico.
| | - Socorro Meza-Reyes
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - José Luis Vega-Baez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, c/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico.
| |
Collapse
|