1
|
Gheibzadeh MS, Capasso C, Supuran CT, Zolfaghari Emameh R. Antibacterial carbonic anhydrase inhibitors targeting Vibrio cholerae enzymes. Expert Opin Ther Targets 2024; 28:623-635. [PMID: 39028535 DOI: 10.1080/14728222.2024.2369622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Cholera is a bacterial diarrheal disease caused by pathogen bacteria Vibrio cholerae, which produces the cholera toxin (CT). In addition to improving water sanitation, oral cholera vaccines have been developed to control infection. Besides, rehydration and antibiotic therapy are complementary treatment strategies for cholera. ToxT regulatory protein activates transcription of CT gene, which is enhanced by bicarbonate (HCO3-). AREAS COVERED This review delves into the genomic blueprint of V. cholerae, which encodes for α-, β-, and γ- carbonic anhydrases (CAs). We explore how the CAs contribute to the pathogenicity of V. cholerae and discuss the potential of CA inhibitors in mitigating the disease's impact. EXPERT OPINION CA inhibitors can reduce the virulence of bacteria and control cholera. Here, we reviewed all reported CA inhibitors, noting that α-CA from V. cholerae (VchCAα) was the most effective inhibited enzyme compared to the β- and γ-CA families (VchCAβ and VchCAγ). Among the CA inhibitors, acyl selenobenzenesulfonamidenamides and simple/heteroaromatic sulfonamides were the best VchCA inhibitors in the nM range. It was noted that some antibacterial compounds show good inhibitory effects on all three bacterial CAs. CA inhibitors belonging to other classes may be synthesized and tested on VchCAs to harness cholera.
Collapse
Affiliation(s)
- Mohammad Sadegh Gheibzadeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
2
|
Holly KJ, Youse MS, Flaherty DP. Enterococci carbonic anhydrase inhibition. Enzymes 2024; 55:283-311. [PMID: 39222994 DOI: 10.1016/bs.enz.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrase metalloenzymes are encoded in genomes throughout all kingdoms of life with a conserved function catalyzing the reversible conversion of CO2 to bicarbonate. Carbonic anhydrases have been well-investigated in humans, but are still relatively understudied in bacterial organisms, including Enterococci. Studies over the past decade have presented bacterial carbonic anhydrases as potential drug targets, with some chemical scaffolds potently inhibiting the Enterococcus carbonic anhydrases in vitro and displaying antimicrobial efficacy against Enterococcus organisms. While carbonic anhydrases in Enterococci still have much to be explored, hypotheses may be drawn from similar Gram-positive organisms for which known information exists about carbonic anhydrase function and relevance. Within this chapter is reported information and rational hypotheses regarding the subcellar locations, potential physiological roles, essentiality, structures, and kinetics of carbonic anhydrases in Enterococci.
Collapse
Affiliation(s)
- Katrina J Holly
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Molly S Youse
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
3
|
Türkeş C. Carbonic anhydrase inhibition by antiviral drugs in vitro and in silico. J Mol Recognit 2023; 36:e3063. [PMID: 37807620 DOI: 10.1002/jmr.3063] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Enzyme inhibition is a commonly utilized method for controlling enzymatic activity in various physiologically relevant biological systems. Herein, the selected five active antiviral drugs, abacavir, emtricitabine, lamivudine, ribavirin, and ritonavir, were assayed as inhibitors of two human isoforms of the metalloenzyme carbonic anhydrase (hCA, EC 4.2.1.1) involved in various physiological/pathological conditions. For this aim, in vitro and in silico studies were performed to gain insights into the plausible binding interactions and affinities for the antiviral drugs within hCA I and II isoforms' active sites. The hCA I, an isoform involved in some pathological conditions such as retinal or cerebral edema, was moderately inhibited by these five drugs at micromolar concentrations with KI s spanning from 0.49 ± 0.05 to 3.51 ± 0.37 μM compared with the reference drug acetazolamide (AAZ, KI of 0.19 ± 0.01 μM). Moreover, hCA II, a promising target for edema, glaucoma, epilepsy, and altitude sickness, was a reasonably inhibited isoform by these agents, with KI s in the range of 0.64 ± 0.08-5.80 ± 0.64 μM compared with AAZ (KI of 0.17 ± 0.01 μM). Both in vitro and in silico results demonstrated significant interactions between these five drugs and hCAs and that they can support therapeutic targets against the above-mentioned pathological conditions. Additionally, the results obtained will help optimize the clinical dosage regimens of these drugs and avoid drug-drug interactions unexpectedly when used in combination with other agents.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
4
|
Ramos-Inza S, Henriquez-Figuereo A, Moreno E, Berzosa M, Encío I, Plano D, Sanmartín C. Unveiling a New Selenocyanate as a Multitarget Candidate with Anticancer, Antileishmanial and Antibacterial Potential. Molecules 2022; 27:7477. [PMID: 36364304 PMCID: PMC9656702 DOI: 10.3390/molecules27217477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 09/02/2023] Open
Abstract
Currently, cancer, leishmaniasis and bacterial infections represent a serious public health burden worldwide. Six cinnamyl and benzodioxyl derivatives incorporating selenium (Se) as selenocyanate, diselenide, or selenide were designed and synthesized through a nucleophilic substitution and/or a reduction using hydrides. Ferrocene was also incorporated by a Friedel–Crafts acylation. All the compounds were screened in vitro for their antiproliferative, antileishmanial, and antibacterial properties. Their capacity to scavenge free radicals was also assessed as a first approach to test their antioxidant activity. Benzodioxyl derivatives 2a –b showed cytotoxicity against colon (HT-29) and lung (H1299) cancer cell lines, with IC50 values below 12 µM, and were also fairly selective when tested in nonmalignant cells. Selenocyanate compounds 1 –2a displayed potent antileishmanial activity in L. major and L. infantum , with IC50 values below 5 µM. They also exhibited antibacterial activity in six bacterial strains, notably in S. epidermidis with MIC and MBC values of 12.5 µg/mL. Ferrocene-containing selenide 2c was also identified as a potent antileishmanial agent with radical scavenging activity. Remarkably, derivative 2a with a selenocyanate moiety was found to act as a multitarget compound with antiproliferative, leishmanicidal, and antibacterial activities. Thus, the current work showed that 2a could be an appealing scaffold to design potential therapeutic drugs for multiple pathologies.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Institute of Tropical Health of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Esther Moreno
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
- Institute of Tropical Health of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Melibea Berzosa
- Institute of Tropical Health of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Department of Microbiology and Parasitology, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
- Department of Health Sciences, Public University of Navarra, Avda. Barañain s/n, E-31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
- Institute of Tropical Health of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
- Institute of Tropical Health of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
5
|
Arjmand Z, Hamburger M, Dastan D. Isolation and purification of terpenoid compounds from Ferula haussknechtii and evaluation of their antibacterial effects. Nat Prod Res 2022; 37:1617-1624. [PMID: 35895028 DOI: 10.1080/14786419.2022.2103558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The roots of F. haussknechtii are used by local people in order to treat wounds and urinary infections. Ferula species are rich in bioactive compounds with biological effects. In line with our previous studies about screening antibacterial natural products, five terpenoid derivatives were purified from Ferula haussknechtii. The separation and purification were performed by column chromatography. Their structures were determined by 1 D and 2 D NMR as hawraman 8-p-hydroxybenzoyl-tovarol (1), ferutinin (2), lancerotriol 6-(p-hydroxybenzoate) (3), chimganin (4), and chimgin (5). Then, the antibacterial effects of the purified compounds were evaluated by measuring their MIC values against Gram-positive and Gram-negative bacteria. The results showed that compound (1) had the most antibacterial effect on Bacillus cereus (MIC = 16 µg/mL). The antibacterial effects of F. haussknechtii compounds are in line with their local application and it is suggested that further studies should be conducted to determine their mechanism of action.
Collapse
Affiliation(s)
- Zahra Arjmand
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Matthias Hamburger
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Di Fiore A, De Luca V, Langella E, Nocentini A, Buonanno M, Maria Monti S, Supuran CT, Capasso C, De Simone G. Biochemical, structural, and computational studies of a γ-carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei. Comput Struct Biotechnol J 2022; 20:4185-4194. [PMID: 36016712 PMCID: PMC9389205 DOI: 10.1016/j.csbj.2022.07.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Melioidosis is a severe disease caused
Burkholderia pseudomallei. γ-carbonic anhydrases (γ-CAs) have been recently
introduced as novel antibacterial drug targets. A new γ-CA from B.
pseudomallei has been investigated by a
multidisciplinary approach. Obtained results provide an important starting point
for developing new anti-melioidosis drugs.
Melioidosis is a severe disease caused by the highly
pathogenic gram-negative bacterium Burkholderia
pseudomallei. Several studies have highlighted the broad
resistance of this pathogen to many antibiotics and pointed out the pivotal
importance of improving the pharmacological arsenal against it. Since γ-carbonic
anhydrases (γ-CAs) have been recently introduced as potential and novel
antibacterial drug targets, in this paper, we report a detailed characterization
of BpsγCA, a γ-CA from B.
pseudomallei by a multidisciplinary approach. In
particular, the enzyme was recombinantly produced and biochemically
characterized. Its catalytic activity at different pH values was measured, the
crystal structure was determined and theoretical pKa calculations were carried
out. Results provided a snapshot of the enzyme active site and dissected the
role of residues involved in the catalytic mechanism and ligand recognition.
These findings are an important starting point for developing new
anti-melioidosis drugs targeting BpsγCA.
Collapse
|
7
|
Chuai H, Zhang SQ, Bai H, Li J, Wang Y, Sun J, Wen E, Zhang J, Xin M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur J Med Chem 2021; 223:113621. [PMID: 34217061 DOI: 10.1016/j.ejmech.2021.113621] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential micronutrient of organism and has important function. It participates in the functions of selenoprotein in several manners. In recent years, Se has attracted much attention because of its therapeutic potential against several diseases. Many natural and synthetic organic Se-containing compounds were studied and explored for the treatment of cancer and other diseases. Studies have showed that incorporation of Se atom into small molecules significantly enhanced their bioactivities. In this paper, according to different applications and structural characteristics, the research progress and therapeutic application of Se-containing compounds are reviewed, and more than 110 Se-containing compounds were selected as representatives which showed potent activities such as anticancer, antioxidant, antifibrolytic, antiparasitic, antibacterial, antiviral, antifungal and central nervous system related effects. This review is expected to provide a basis for further study of new promising Se-containing compounds.
Collapse
Affiliation(s)
- Hongyan Chuai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Huanrong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiyu Li
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Yang Wang
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Jiajia Sun
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Ergang Wen
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiye Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
8
|
Kostić MD, Divac VM. Diselenides and Selenocyanates as Versatile Precursors for the Synthesis of Pharmaceutically Relevant Compounds. Curr Org Synth 2021; 19:317-330. [PMID: 33655868 DOI: 10.2174/1570179418666210303113723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 11/22/2022]
Abstract
Organoselenium chemistry has undergone extensive development during the past decades, mostly due to the unique chemical properties of organoselenium compounds that have been widely explored in a number of synthetic transformations, as well as due to the interesting biological properties of these compounds. Diselenides and selenocyanates constitute the promising classes of organoselenium compounds that possess interesting biological effects and that can be used in the preparation of other selenium compounds. The combination of diselenide and selenocyanate moieties with other biologically relevant molecules (such as heterocycles, steroids, etc.) is a way for the development of compounds with promising pharmaceutical potential. Therefore, the aim of this review is to highlight the recent achievements in the use of diselenides or selenocyanates as precursors for the synthesis of pharmaceutically relevant compounds, preferentially compounds with antitumor and antimicrobial activities.
Collapse
Affiliation(s)
- Marina D Kostić
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac. Serbia
| | - Vera M Divac
- Faculty of Science, Department of Chemistry, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac. Serbia
| |
Collapse
|
9
|
Mancuso F, De Luca L, Angeli A, Berrino E, Del Prete S, Capasso C, Supuran CT, Gitto R. In Silico-Guided Identification of New Potent Inhibitors of Carbonic Anhydrases Expressed in Vibrio cholerae. ACS Med Chem Lett 2020; 11:2294-2299. [PMID: 33214843 DOI: 10.1021/acsmedchemlett.0c00417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023] Open
Abstract
Carbonic anhydrases from Vibrio cholerae (VchCAs) play a significant role in bacterial pathophysiological processes. Therefore, their inhibition leads to a reduction of gene expression virulence and bacterial growth impairment. Herein, we report the first ligand-based pharmacophore model as a computational tool to study selective inhibitors of the β-class of VchCA. By a virtual screening on a collection of sulfonamides, we retrieved 9 compounds that were synthesized and evaluated for their inhibitory effects against VchCAβ as well as α- and γ-classes of VchCAs and selectivity over human ubiquitous isoforms hCA I and II. Notably, all tested compounds were active inhibitors of VchCAs. The N-(4-sulfamoylbenzyl)-[1,1'-biphenyl]-4-carboxamide (20e) stood out as the most exciting inhibitor toward the β-class (K i = 95.6 nM), also showing a low affinity against the tested human isoforms. By applying docking procedures, we described the binding mode of the inhibitor 20e within the catalytic cavity of the modeled open conformation of VchCAβ.
Collapse
Affiliation(s)
- Francesca Mancuso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci 13, I-98168 Messina, Italy
| | - Laura De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci 13, I-98168 Messina, Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff, I-50019 Sesto Fiorentino, Italy
| | - Emanuela Berrino
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff, I-50019 Sesto Fiorentino, Italy
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse - CNR, Via Pietro Castellino 111 - I-80131 Napoli, Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse - CNR, Via Pietro Castellino 111 - I-80131 Napoli, Italy
| | - Claudiu T. Supuran
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff, I-50019 Sesto Fiorentino, Italy
| | - Rosaria Gitto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Viale Palatucci 13, I-98168 Messina, Italy
| |
Collapse
|
10
|
Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat 2020; 30:963-982. [PMID: 32806966 DOI: 10.1080/13543776.2020.1811853] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The clinically licensed drugs used as antibiotics prevent the microbial growth interfering with the biosynthesis of proteins, nucleic acids, microorganism wall biosynthesis or wall permeability, and microbial metabolic pathways. A serious, emerging problem is the arisen of extensive drug resistance afflicting most countries worldwide. AREAS COVERED An exciting approach to fight drug resistance is the identification of essential enzymes encoded by pathogen genomes. Inhibition of such enzymes may impair microbial growth or virulence due to interference with crucial metabolic processes. Genome exploration of pathogenic and nonpathogenic microorganisms has revealed carbonic anhydrases (CAs, EC 4.2.1.1) as possible antibacterial targets. EXPERT OPINION Balancing the equilibrium between CO2 and HCO3 - is essential for microbial metabolism and is regulated by at least four classes of CAs. Classical CA inhibitors (CAIs) such as ethoxzolamide were shown to kill the gastric pathogen Helicobacter pylori in vitro, whereas acetazolamide and some of its more lipophilic derivatives were shown to be effective against vancomycin-resistant Enterococcus spp., with MICs in the range of 0.007-2 µg/mL, better than linezolid, the only clinically used agent available to date. Such results reinforce the rationale of considering existing and newly designed CAIs as antibacterials with an alternative mechanism of action.
Collapse
|
11
|
Demir-Yazıcı K, Güzel-Akdemir Ö, Angeli A, Supuran CT, Akdemir A. Novel Indole-Based Hydrazones as Potent Inhibitors of the α-class Carbonic Anhydrase from Pathogenic Bacterium Vibrio cholerae. Int J Mol Sci 2020; 21:ijms21093131. [PMID: 32365482 PMCID: PMC7247680 DOI: 10.3390/ijms21093131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
Due to the increasing resistance of currently used antimicrobial drugs, there is an urgent problem for the treatment of cholera disease, selective inhibition of the α-class carbonic anhydrases (CA, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae (VcCA) presents an alternative therapeutic target. In this study, a series of hydrazone derivatives, carrying the 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide scaffold, have been evaluated as inhibitors of the VcCA with molecular modeling studies. The results suggest that these compounds may bind to the active site of VcCA. To verify this, VcCA enzyme inhibition studies were performed and as predicted most of the tested compounds displayed potent inhibitory activities against VcCA with three compounds showing KI values lower than 30 nM. In addition, all these compounds showed selectivity for VcCA and the off-targets hCA I and II.
Collapse
Affiliation(s)
- Kübra Demir-Yazıcı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Beyazit, 34116 Istanbul, Turkey
| | - Özlen Güzel-Akdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Beyazit, 34116 Istanbul, Turkey
| | - Andrea Angeli
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Atilla Akdemir
- Computer-aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, 34093 Istanbul, Turkey
- Correspondence: ; Tel.: +90-212-523-2288 (ext. 3142)
| |
Collapse
|
12
|
Güzel-Akdemir Ö, Carradori S, Grande R, Demir-Yazıcı K, Angeli A, Supuran CT, Akdemir A. Development of Thiazolidinones as Fungal Carbonic Anhydrase Inhibitors. Int J Mol Sci 2020; 21:ijms21082960. [PMID: 32331447 PMCID: PMC7215574 DOI: 10.3390/ijms21082960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
In our efforts to find new and selective thiazolidinone-based anti-Candida agents, we synthesized and tested 26 thiazolidinones against several Candida spp. and Gram-positive and Gram-negative bacteria. The compounds showed selective antifungal activity with potency similar to fluconazole and clotrimazole, while lacking strong antibacterial activity. Molecular docking and molecular dynamics studies were performed on Candida CYP51a1 and carbonic anhydrase (CA) enzymes to further suggest putative targets that could mediate the antifungal effects of these compounds. Finally, the compounds were tested in enzyme inhibition assays to assess their putative mechanism of action and showed promising KI values in the 0.1–10 µM range against the Candida glabrata β-CA enzyme CgNce103.
Collapse
Affiliation(s)
- Özlen Güzel-Akdemir
- Istanbul University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 34116 Istanbul, Turkey; (Ö.G.-A.); (K.D.-Y.)
| | - Simone Carradori
- Dipartimento di Farmacia, “G. d′Annunzio” University of Chieti-Pescara, Via dei vestini 31, 66100 Chieti, Italy; (S.C.); (R.G.)
| | - Rossella Grande
- Dipartimento di Farmacia, “G. d′Annunzio” University of Chieti-Pescara, Via dei vestini 31, 66100 Chieti, Italy; (S.C.); (R.G.)
| | - Kübra Demir-Yazıcı
- Istanbul University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 34116 Istanbul, Turkey; (Ö.G.-A.); (K.D.-Y.)
| | - Andrea Angeli
- Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (C.T.S.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (C.T.S.)
| | - Atilla Akdemir
- Bezmialem Vakif University, Computer-aided drug discovery laboratory, Department of Pharmacology, Faculty of Pharmacy, 34093 Istanbul, Turkey
- Correspondence: ; Tel.: +90-212-523-2288 (ext. 3142)
| |
Collapse
|
13
|
Sulfonamide Inhibition Studies of an α-Carbonic Anhydrase from Schistosoma mansoni, a Platyhelminth Parasite Responsible for Schistosomiasis. Int J Mol Sci 2020; 21:ijms21051842. [PMID: 32155992 PMCID: PMC7084386 DOI: 10.3390/ijms21051842] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 01/04/2023] Open
Abstract
Schistosomiasis is a debilitating infection provoked by parasitic flatworms called schistosomes. The species Schistosoma mansoni is endemic in Africa, where it causes intestinal schistosomiasis. Recently, an α-carbonic anhydrase (CA, EC 4.2.1.1) was cloned and characterized from this organism and designated as SmCA. The protein is expressed in the tegument (skin) of S. mansoni at the host–parasite interface. Recombinant SmCA possesses high catalytic activity in the CO2 hydration reaction, similar to that of human CA isoform II with a kcat of 1.2 × 106 s−1 and a kcat/KM of 1.3 × 108 M−1·s−1. It has been found that schistosomes whose SmCA gene is suppressed using RNA interference are unable to establish a robust infection in mice, suggesting that the chemicals that inhibit SmCA function should have the same debilitating effect on the parasites. In this study, a collection of aromatic/heterocyclic sulfonamides were investigated as possible SmCA inhibitors. Several sulfonamides inhibited SmCA with medium to weak potency (KI values of 737.2 nM−9.25 μM), whereas some heterocyclic compounds inhibited the enzyme with KI values in the range of 124−325 nM. The α-CA from S. mansoni, SmCA, is proposed as a new anti-schistosomiasis drug target.
Collapse
|
14
|
Angeli A, Pinteala M, Maier SS, Simionescu BC, Milaneschi A, Abbas G, del Prete S, Capasso C, Capperucci A, Tanini D, Carta F, Supuran CT. Evaluation of Thio- and Seleno-Acetamides Bearing Benzenesulfonamide as Inhibitor of Carbonic Anhydrases from Different Pathogenic Bacteria. Int J Mol Sci 2020; 21:E598. [PMID: 31963423 PMCID: PMC7014678 DOI: 10.3390/ijms21020598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
A series of 2-thio- and 2-seleno-acetamides bearing the benzenesulfonamide moiety were evaluated as Carbonic Anhydrase (CA, EC 4.2.1.1) inhibitors against different pathogenic bacteria such as the Vibrio cholerae (VchCA-α and VchCA-β), Burkholderia pseudomallei (BpsCA-β and BpsCA-γ), Mycobacterium tuberculosis (Rv3723-β) and the Salmonella enterica serovar Typhimurium (StCA2-β). The molecules represent interesting leads worth developing as innovative antibacterial agents since they possess new mechanism of action and isoform selectivity preferentially against the bacterial expressed CAs. The identification of potent and selective inhibitors of bacterial CAs may lead to tools also useful for deciphering the physiological role(s) of such proteins.
Collapse
Affiliation(s)
- Andrea Angeli
- Sezione di Scienze Farmaceutiche, NEUROFARBA Dept., Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (A.M.); (F.C.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Stelian S. Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
- Polymeric Release Systems Research Group, Polymers Research Center, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| | - Bogdan C. Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Andrea Milaneschi
- Sezione di Scienze Farmaceutiche, NEUROFARBA Dept., Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (A.M.); (F.C.)
| | - Ghulam Abbas
- Department of Biological Sciences and Chemistry, University of Nizwa, Birkat Al-Mauz, P.O.Box 33, Nizwa-616, Sultanate of Oman;
| | - Sonia del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.d.P.); (C.C.)
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.d.P.); (C.C.)
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, I-50019 Sesto Fiorentino (Florence), Italy; (A.C.); (D.T.)
| | - Damiano Tanini
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, I-50019 Sesto Fiorentino (Florence), Italy; (A.C.); (D.T.)
| | - Fabrizio Carta
- Sezione di Scienze Farmaceutiche, NEUROFARBA Dept., Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (A.M.); (F.C.)
| | - Claudiu T. Supuran
- Sezione di Scienze Farmaceutiche, NEUROFARBA Dept., Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (A.M.); (F.C.)
| |
Collapse
|
15
|
Al-Tamimi AMS, Etxebeste-Mitxeltorena M, Sanmartín C, Jiménez-Ruiz A, Syrjänen L, Parkkila S, Selleri S, Carta F, Angeli A, Supuran CT. Discovery of new organoselenium compounds as antileishmanial agents. Bioorg Chem 2019; 86:339-345. [DOI: 10.1016/j.bioorg.2019.01.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/13/2018] [Accepted: 01/30/2019] [Indexed: 12/29/2022]
|
16
|
Selenocompounds as Novel Antibacterial Agents and Bacterial Efflux Pump Inhibitors. Molecules 2019; 24:molecules24081487. [PMID: 31014009 PMCID: PMC6514980 DOI: 10.3390/molecules24081487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 11/17/2022] Open
Abstract
Bacterial multidrug resistance is becoming a growing problem for public health, due to the development and spreading of bacterial strains resistant to antimicrobials. In this study, the antibacterial and multidrug resistance reversing activity of a series of seleno-carbonyl compounds has been evaluated. The effects of eleven selenocompounds on bacterial growth were evaluated in Staphylococcus aureus, methicillin resistant S. aureus (MRSA), Enterococcus faecalis, Escherichia coli, and Chlamydia trachomatis D. The combination effect of compounds with antibiotics was examined by the minimum inhibitory concentration reduction assay. Their efflux pump (EP) inhibitory properties were assessed using real-time fluorimetry. Relative expressions of EP and quorum-sensing genes were studied by quantitative PCR. Results showed that a methylketone selenoester had remarkable antibacterial activity against Gram-positive bacteria and potentiated the activity of oxacillin in MRSA. Most of the selenocompounds showed significant anti-chlamydial effects. The selenoanhydride and the diselenodiester were active inhibitors of the AcrAB-TolC system. Based on these results it can be concluded that this group of selenocompounds can be attractive potential antibacterials and EP inhibitors. The discovery of new derivatives with a significant antibacterial activity as novel selenocompounds, is of high impact in the fight against resistant pathogens.
Collapse
|
17
|
Akdemir A, Angeli A, Göktaş F, Eraslan Elma P, Karalı N, Supuran CT. Novel 2-indolinones containing a sulfonamide moiety as selective inhibitors of candida β-carbonic anhydrase enzyme. J Enzyme Inhib Med Chem 2019; 34:528-531. [PMID: 30724625 PMCID: PMC6366411 DOI: 10.1080/14756366.2018.1564045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Inhibition of the β-carbonic anhydrase (CA, EC 4.2.1.1) from pathogenic Candida glabrata (CgNce103) by 1H-indole-2,3-dione 3-[N-(4-sulfamoylphenyl)thiosemicarbazones] 4a–m was investigated. All the compounds were found to be potent inhibitors of CgNce103, with inhibition constants in the range of 6.4-63.9 nM. The 5,7-dichloro substituted derivative 4l showed the most effective inhibition (KI of 6.4 nM) as well as the highest selectivity for inhibiting CgNce103 over the cytosolic human (h) isoforms hCA I and II. A possible binding interaction of compound 4l within the active site of CgNce103 has been proposed based on docking studies.
Collapse
Affiliation(s)
- Atilla Akdemir
- a Computer-aided drug discovery laboratory, Department of Pharmacology, Faculty of Pharmacy , Bezmialem Vakif University , Istanbul , Turkey
| | - Andrea Angeli
- b Sezione di Scienza Farmaceutiche, Neurofarba Department , Universita degli Studi di Firenze , Florence , Italy
| | - Füsun Göktaş
- c Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Istanbul University , Istanbul , Turkey
| | - Pınar Eraslan Elma
- c Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Istanbul University , Istanbul , Turkey
| | - Nilgün Karalı
- c Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Istanbul University , Istanbul , Turkey
| | - Claudiu T Supuran
- b Sezione di Scienza Farmaceutiche, Neurofarba Department , Universita degli Studi di Firenze , Florence , Italy
| |
Collapse
|
18
|
Berrino E, Supuran CT. Novel approaches for designing drugs that interfere with pH regulation. Expert Opin Drug Discov 2019; 14:231-248. [PMID: 30681011 DOI: 10.1080/17460441.2019.1567488] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In all living species, pH regulation is a tightly controlled process, with a plethora of proteins involved in its regulation. These include sodium-proton exchangers, carbonic anhydrases, anion exchangers, bicarbonate transporters/cotransporters, H+-ATPases, and monocarboxylate transporters. All of them play crucial roles in acid-base balancing, both in eukaryotic as well as in prokaryotic organisms, making them interesting drug targets for the management of pathological events (in)directly involved in pH regulation. Areas covered: Interfering with pH regulation for the treatment of tumors and microbial infections is the main focus of this review, with particular attention paid to inhibitors targeting the above-mentioned proteins. The latest advances in each field id reviewed. Expert opinion: Interfering with the pH regulation of tumor cells is a validated approach to tackle primary tumors and metastases growth. Carbonic anhydrases are the most investigated proteins of those aforementioned, with several inhibitors in clinical development. Recent advances in the characterization of proteins involved in pH homeostasis of various pathogens evidenced their crucial role in the survival and virulence of bacterial, fungal, and protozoan microorganisms. Some encouraging results shed light on the possibility to target such proteins for obtaining new anti-infectives, overcoming the extensive drug resistance problems of clinically used drugs.
Collapse
Affiliation(s)
- Emanuela Berrino
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche , University of Florence , Sesto Fiorentino (Florence) , Italy
| | - Claudiu T Supuran
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche , University of Florence , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|