1
|
Burmistrova DA, Galustyan A, Pomortseva NP, Pashaeva KD, Arsenyev MV, Demidov OP, Kiskin MA, Poddel’sky AI, Berberova NT, Smolyaninov IV. Synthesis, electrochemical properties, and antioxidant activity of sterically hindered catechols with 1,3,4-oxadiazole, 1,2,4-triazole, thiazole or pyridine fragments. Beilstein J Org Chem 2024; 20:2378-2391. [PMID: 39319031 PMCID: PMC11420547 DOI: 10.3762/bjoc.20.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
A series of new RS-, RS-CH2- and R2N-CH2-functionalized сatechols with heterocyclic fragments such as 1,3,4-oxadiazole, 1,2,4-triazole, thiazole, or pyridine were synthesized by the reaction of 3,5-di-tert-butyl-o-benzoquinone or 3,5-di-tert-butyl-6-methoxymethylcatechol with different heterocyclic thiols. The S-functionalized catechols were prepared by the Michael reaction from 3,5-di-tert-butyl-o-benzoquinone and the corresponding thiols. The starting reagents such as substituted 1,3,4-oxadiazole-2-thiols and 4H-triazole-3-thiols are characterized by thiol-thione tautomerism, therefore their reactions with 3,5-di-tert-butyl-6-methoxymethylcatechol can proceed at the sulfur or nitrogen atom. In the case of mercapto-derivatives of thiazole or pyridine, this process leads to the formation of the corresponding thioethers with a methylene linker. At the same time, thiolated 1,3,4-oxadiazole or 1,2,4-triazole undergo alkylation at the nitrogen atom in the reaction with 3,5-di-tert-butyl-6-methoxymethylcatechol to form the corresponding thiones. The yield of reaction products ranges from 42 to 80%. The crystal structures of catechols with 3-nitropyridine or 1,3,4-oxadiazole-2(3H)-thione moieties were established by single-crystal X-ray analysis. The possibility of forming intra- and intermolecular hydrogen bonds has been established for these compounds. The electrochemical behavior of the studied compounds is influenced by several factors: the nature of the heterocycle and its substituents, the presence of a sulfur atom in the catechol ring, or a thione group in the heterocyclic core. The radical scavenging activity and antioxidant properties were determined using the reaction with synthetic radicals, the cupric reducing antioxidant capacity assay, the inhibition process of superoxide radical anion formation by xanthine oxidase, and the process of lipid peroxidation of rat liver (Wistar) homogenates in vitro.
Collapse
Affiliation(s)
- Daria A Burmistrova
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Andrey Galustyan
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Nadezhda P Pomortseva
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Kristina D Pashaeva
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Maxim V Arsenyev
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinin str. 49, 603137, Nizhny Novgorod, Russia
| | - Oleg P Demidov
- North-Caucasus Federal University, Pushkin str. 1, 355017, Stavropol, Russia
| | - Mikhail A Kiskin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp., 31, 119991, Moscow, Russia
| | - Andrey I Poddel’sky
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Nadezhda T Berberova
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| | - Ivan V Smolyaninov
- Chemistry Department, Astrakhan State Technical University, Tatischev str. 16/1, 414056, Astrakhan, Russia
| |
Collapse
|
2
|
Burmistrova DA, Pomortseva NP, Voronina YK, Kiskin MA, Dolgushin FM, Berberova NT, Eremenko IL, Poddel’sky AI, Smolyaninov IV. Synthesis, Structure, Electrochemical Properties, and Antioxidant Activity of Organogermanium(IV) Catecholate Complexes. Int J Mol Sci 2024; 25:9011. [PMID: 39201696 PMCID: PMC11354772 DOI: 10.3390/ijms25169011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
A series of novel organogermanium(IV) catecholates 1-9 of the general formula R'2Ge(Cat), where R' = Ph, Et, have been synthesized. Compounds were characterized by 1H, 13C NMR, IR spectroscopy, and elemental analysis. The molecular structures of 1-3, 6, and 8 in crystal state were established using single-crystal X-ray analysis. The complexes are tetracoordinate germanium(IV) compounds containing a dioxolene ligand in a dianion (catecholato) form. Electrochemical transformations of target germanium(IV) complexes have been studied by cyclic voltammetry. The electro-oxidation mechanism of complexes 1-5, 7, and 10 (the related complex Ph2Ge(3,5-Cat) where 3,5-Cat is 3,5-di-tert-butylcatecholate) involves the consecutive formation of mono- and dicationic derivatives containing the oxidized forms of redox-active ligands. The stability of the generated monocations depends both on the hydrocarbon groups at the germanium atom and on the substituents in the catecholate ring. Compounds 6, 8, and 9 are oxidized irreversibly under the electrochemical conditions with the formation of unstable complexes. The radical scavenging activity and antioxidant properties of new complexes were estimated in the reaction with DPPH radical, ABTS radical cation, and CUPRACTEAC assay. It has been found that compounds 8 and 9 with benzothiazole or phenol fragments are more active in DPPH test. The presence of electron-rich moieties in the catecholate ligand makes complexes 5 and 7-9 more reactive to ABTS radical cation. The value of CUPRACTEAC for organogermanium(IV) catecholates varies from 0.23 to 1.45. The effect of compounds 1-9 in the process of lipid peroxidation of rat liver (Wistar) homogenate was determined in vitro. It was found that most compounds are characterized by pronounced antioxidant activity. A feature of complexes 1, 3, and 5-9 is the intensification of the antioxidant action with the incubation time. In the presence of additives of complexes 3, 5, 6, and 8, an induction period was observed during the process of lipid peroxidation.
Collapse
Affiliation(s)
- Daria A. Burmistrova
- Chemistry Department, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| | - Nadezhda P. Pomortseva
- Chemistry Department, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| | - Yulia K. Voronina
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.V.); (M.A.K.); (F.M.D.); (I.L.E.)
| | - Mikhail A. Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.V.); (M.A.K.); (F.M.D.); (I.L.E.)
| | - Fedor M. Dolgushin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.V.); (M.A.K.); (F.M.D.); (I.L.E.)
| | - Nadezhda T. Berberova
- Chemistry Department, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| | - Igor L. Eremenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.V.); (M.A.K.); (F.M.D.); (I.L.E.)
| | - Andrey I. Poddel’sky
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Ivan V. Smolyaninov
- Chemistry Department, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| |
Collapse
|
3
|
Zhao Y, Xu L, Feng Z, Yin S, Feng W, Yan H. Regulation of Photophysical Behaviors in Hyperbranched Aggregation-Induced Emission Polymers for Reactive Oxygen Species Scavenging. Biomacromolecules 2024; 25:2635-2644. [PMID: 38478586 DOI: 10.1021/acs.biomac.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Developing nonconjugated materials with large Stokes shifts is highly desired. In this work, three kinds of hyperbranched aggregation-induced emission (AIE) polymers with tunable n/π electronic effects were synthesized. HBPSi-CBD contains alkenyl groups in the backbone and possesses a promoted n-π* transition and red-shifted emission wavelength with a large Stokes shift of 186 nm. Experiments and theoretical simulations confirmed that the planar π electrons in the backbone are responsible for the red-shifted emission due to the strong through-space n···π interactions and restricted backbone motions. Additionally, the designed HBPSi-CBD could be utilized as an ROS scavenger after coupling with l-methionine. The HBPSi-Met exhibits remarkable ROS scavenging properties with a scavenging capacity of 77%. This work not only gains further insight into the structure-property relationship of nonconjugated hyperbranched AIE polymers but also provides a promising ROS-scavenging biomaterial for the treatment of ROS-related diseases.
Collapse
Affiliation(s)
- Yan Zhao
- School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, Xi'an 710129, China
| | - Lei Xu
- School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, Xi'an 710129, China
| | - Zhixuan Feng
- School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, Xi'an 710129, China
| | - Sha Yin
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an 710003, China
| | - Weixu Feng
- School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, Xi'an 710129, China
| | - Hongxia Yan
- School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, Xi'an 710129, China
| |
Collapse
|
4
|
Kolyada MN, Osipova VP, Berberova NT. Use of cryoprotectors and antioxidants in sturgeon semen cryopreservation. Cryobiology 2023:S0011-2240(23)00022-6. [PMID: 36791902 DOI: 10.1016/j.cryobiol.2023.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
In recent years, the possibility of increasing the low cryoresistance of sturgeon sperm by using antioxidants in basic cryoprotective media has been studied. The goal of this work was to review the current literature on impact of the cryoprotectors, well-known antioxidants and new multifunctional compounds on the activity indicators and fertilizing capability of sperm, as well as on biomarkers of cryostress. A special attention is given to the radical scavenging activity of studied compounds in relation to the highly reactive oxygen species, to prevent and negate oxidative stress damage of sturgeon sperm. Also, new trends for future research through the application of novel polyfunctional antioxidants to sturgeon sperm cryopreservation were indicated.
Collapse
Affiliation(s)
- M N Kolyada
- Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., 344006, Rostov-on-Don, Russia.
| | - V P Osipova
- Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., 344006, Rostov-on-Don, Russia.
| | - N T Berberova
- Astrakhan State Technical University, 16 Tatisheva str., 414056, Astrakhan, Russia.
| |
Collapse
|
5
|
Smolyaninov IV, Burmistrova DA, Pomortseva NP, Poddel’sky AI, Berberova NT. Antioxidant Activity of Catechol Thioethers with Heterocyclic Moieties in Reactions with Radical Promoters. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822600134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Smolyaninov IV, Burmistrova DA, Arsenyev MV, Polovinkina MA, Pomortseva NP, Fukin GK, Poddel’sky AI, Berberova NT. Synthesis and Antioxidant Activity of New Catechol Thioethers with the Methylene Linker. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103169. [PMID: 35630646 PMCID: PMC9144179 DOI: 10.3390/molecules27103169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/16/2022]
Abstract
Novel catechol thio-ethers with different heterocyclic substituents at sulfur atom were prepared by reacting 3,5-di-tert-butyl-6-methoxymethylcatechol with functionalized thiols under acidic conditions. A common feature of compounds is a methylene bridge between the catechol ring and thioether group. Two catechols with the thio-ether group, bound directly to the catechol ring, were also considered to assess the effect of the methylene linker on the antioxidant properties. The crystal structures of thio-ethers with benzo-thiazole moieties were established by single-crystal X-ray analysis. The radical scavenging and antioxidant activities were determined using 2,2′-diphenyl-1-picrylhydrazyl radical test, ABTS∙+, CUPRAC (TEAC) assays, the reaction with superoxide radical anion generated by xanthine oxidase (NBT assay), the oxidative damage of the DNA, and the process of lipid peroxidation of rat liver (Wistar) homogenates in vitro. Most catechol-thioethers exhibit the antioxidant effect, which varies from mild to moderate depending on the model system. The dual anti/prooxidant activity characterizes compounds with adamantyl or thio-phenol substituent at the sulfur atom. Catechol thio-ethers containing heterocyclic groups (thiazole, thiazoline, benzo-thiazole, benzo-xazole) can be considered effective antioxidants with cytoprotective properties. These compounds can protect molecules of DNA and lipids from the different radical species.
Collapse
Affiliation(s)
- Ivan V. Smolyaninov
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
- Correspondence: (I.V.S.); (A.I.P.)
| | - Daria A. Burmistrova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| | - Maxim V. Arsenyev
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
| | - Maria A. Polovinkina
- Toxicology Research Group of Southern Scientific Centre of Russian Academy of Science, 41 Chekhova Str., 344006 Rostov-on-Don, Russia;
| | - Nadezhda P. Pomortseva
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| | - Georgy K. Fukin
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
| | - Andrey I. Poddel’sky
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
- Correspondence: (I.V.S.); (A.I.P.)
| | - Nadezhda T. Berberova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| |
Collapse
|
7
|
Cervantes O, Lopez ZDR, Casillas N, Knauth P, Checa N, Cholico FA, Hernandez-Gutiérrez R, Quintero LH, Paz JA, Cano ME. A Ferrofluid with Surface Modified Nanoparticles for Magnetic Hyperthermia and High ROS Production. Molecules 2022; 27:544. [PMID: 35056860 PMCID: PMC8781673 DOI: 10.3390/molecules27020544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
A ferrofluid with 1,2-Benzenediol-coated iron oxide nanoparticles was synthesized and physicochemically analyzed. This colloidal system was prepared following the typical co-precipitation method, and superparamagnetic nanoparticles of 13.5 nm average diameter, 34 emu/g of magnetic saturation, and 285 K of blocking temperature were obtained. Additionally, the zeta potential showed a suitable colloidal stability for cancer therapy assays and the magneto-calorimetric trails determined a high power absorption density. In addition, the oxidative capability of the ferrofluid was corroborated by performing the Fenton reaction with methylene blue (MB) dissolved in water, where the ferrofluid was suitable for producing reactive oxygen species (ROS), and surprisingly a strong degradation of MB was also observed when it was combined with H2O2. The intracellular ROS production was qualitatively corroborated using the HT-29 human cell line, by detecting the fluorescent rise induced in 2,7-dichlorofluorescein diacetate. In other experiments, cell metabolic activity was measured, and no toxicity was observed, even with concentrations of up to 4 mg/mL of magnetic nanoparticles (MNPs). When the cells were treated with magnetic hyperthermia, 80% of cells were dead at 43 °C using 3 mg/mL of MNPs and applying a magnetic field of 530 kHz with 20 kA/m amplitude.
Collapse
Affiliation(s)
- Oscar Cervantes
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1421, Col. Olímpica, Guadalajara C.P. 44430, Jalisco, Mexico; (O.C.); (N.C.)
| | - Zaira del Rocio Lopez
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Norberto Casillas
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1421, Col. Olímpica, Guadalajara C.P. 44430, Jalisco, Mexico; (O.C.); (N.C.)
| | - Peter Knauth
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Nayeli Checa
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Francisco Apolinar Cholico
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Rodolfo Hernandez-Gutiérrez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Av. Normalistas 800 Colinas de La Normal, Guadalajara C.P. 44270, Jalisco, Mexico;
| | - Luis Hector Quintero
- Centro Universitario de Ciencias Económico Administrativas, Universidad de Guadalajara, Periférico Norte 799, Col. Los Belenes, Zapopan C.P. 45100, Jalisco, Mexico;
| | - Jose Avila Paz
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Mario Eduardo Cano
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| |
Collapse
|
8
|
Molecular modeling and docking of new 2-acetamidothiazole-based compounds as antioxidant agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Phenolic Thiazoles with Antioxidant and Antiradical Activity. Synthesis, In Vitro Evaluation, Toxicity, Electrochemical Behavior, Quantum Studies and Antimicrobial Screening. Antioxidants (Basel) 2021; 10:antiox10111707. [PMID: 34829578 PMCID: PMC8615111 DOI: 10.3390/antiox10111707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress represents the underlying cause of many chronic diseases in human; therefore, the development of potent antioxidant compounds for preventing or treating such conditions is useful. Starting from the good antioxidant and antiradical properties identified for the previously reported Dihydroxy-Phenyl-Thiazol-Hydrazinium chloride (DPTH), we synthesized a congeneric series of phenolic thiazoles. The radical scavenging activity, and the antioxidant and chelation potential were assessed in vitro, a series of quantum descriptors were calculated, and the electrochemical behavior of the synthesized compounds was studied to evaluate the impact on the antioxidant and antiradical activities. In addition, their antibacterial and antifungal properties were evaluated against seven aerobic bacterial strains and a strain of C. albicans, and their cytotoxicity was assessed in vitro. Compounds 5a-b, 7a-b and 8a-b presented remarkable antioxidant and antiradical properties, and compounds 5a-b, 7a and 8a displayed good Cu+2 chelating activity. Compounds 7a and 8a were very active against P. aeruginosa ATCC 27853 compared to norfloxacin, and proved less cytotoxic than ascorbic acid against the human keratinocyte cell line (HaCaT cells, CLS-300493). Several phenolic compounds from the synthesized series presented excellent antioxidant activity and notable anti-Pseudomonas potential.
Collapse
|
10
|
Smolyaninov IV, Burmistrova DA, Arsenyev MV, Almyasheva NR, Ivanova ES, Smolyaninova SA, Pashchenko KP, Poddel'sky AI, Berberova NT. Catechol‐ and Phenol‐Containing Thio‐Schiff Bases: Synthesis, Electrochemical Properties and Biological Evaluation. ChemistrySelect 2021. [DOI: 10.1002/slct.202102246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ivan V. Smolyaninov
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Daria A. Burmistrova
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Maxim V. Arsenyev
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences 49 Tropinina str. 603137 Nizhny Novgorod Russia
| | - Nailya R. Almyasheva
- Gause Institute of New Antibiotics 11/1 Bolshaya Pirogovskaya str. Moscow 119021 Russian Federation
| | - Ekaterina S. Ivanova
- Blokhin National Medical Research Center of Oncology 24 Kashirskoye Shosse Moscow 115478 Russian Federation
| | - Susanna A. Smolyaninova
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Konstantin P. Pashchenko
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Andrey I. Poddel'sky
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences 49 Tropinina str. 603137 Nizhny Novgorod Russia
| | - Nadezhda T. Berberova
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| |
Collapse
|
11
|
Haddouchi F, Chaouche TM, Ksouri R, Larbat R. Leafy Stems of Phagnalon saxatile subsp. saxatile from Algeriaas a Source of Chlorogenic Acids and Flavonoids with Antioxidant Activity: Characterization and Quantification Using UPLC-DAD-ESI-MS n. Metabolites 2021; 11:280. [PMID: 33946628 PMCID: PMC8145861 DOI: 10.3390/metabo11050280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Phagnalon saxatile subsp. saxatile is a wild species widespread in Algeria which is utilized for medicinal purposes as analgesic and anticholesterolemic. However, information is still scarce regarding its phytochemical content. The objective of this study was to identify and quantify the phenolic compounds from different extracts of its leafy stems. For this purpose, the effects of four extracting solvents were investigated on the content of phenolic compounds and the antioxidant activity of this plant. The extracts prepared with polar solvents (methanol and water) contained higher amounts of phenolic compounds and showed better antioxidant activity than the extracts with apolar solvents (hexane, dichloromethane). The methanolic extract, richest in total phenolic and total flavonoid, had significant antioxidant activity as regarded by DPPH° scavenging capacity (IC50 of 5.5 µg/mL), ABTS+° scavenging capacity (IC50 of 63.8 µg/mL) and inhibition of oxidation of linoleic acid (IC50 of 22.7 µg/mL), when compared to synthetic antioxidants. Chlorogenic acids and several flavonoids were identified and quantified by UPLC-DAD-MSn. The di-O-caffeoylquinic acids isomers were the most concentrated phenolics (25.4 mg/g DW) in the methanolic extract.
Collapse
Affiliation(s)
- Farah Haddouchi
- Natural Products Laboratory, Department of Biology, Abou Bekr Belkaid University, B.P 119, Tlemcen 13000, Algeria;
| | - Tarik Mohammed Chaouche
- Natural Products Laboratory, Department of Biology, Abou Bekr Belkaid University, B.P 119, Tlemcen 13000, Algeria;
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, B.P 901, Hammam-Lif 2050, Tunisia;
| | - Romain Larbat
- Laboratoire Agronomie et Environnement, Université de Lorraine, INRAE, F-54000 Nancy, France;
| |
Collapse
|
12
|
Smolyaninov IV, Fukin GK, Berberova NT, Poddel’sky AI. Triphenylantimony(V) Catecholates of the Type (3-RS-4,6-DBCat)SbPh 3-Catechol Thioether Derivatives: Structure, Electrochemical Properties, and Antiradical Activity. Molecules 2021; 26:2171. [PMID: 33918799 PMCID: PMC8069174 DOI: 10.3390/molecules26082171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
A new series of triphenylantimony(V) 3-alkylthio/arylthio-substituted 4,6-di-tert-butylcatecholates of the type (3-RS-4,6-DBCat)SbPh3, where R = n-butyl (1), n-hexyl (2), n-octyl (3), cyclopentyl (4), cyclohexyl (5), benzyl (6), phenyl (7), and naphthyl-2 (8), were synthesized from the corresponding catechol thioethers and Ph3SbBr2 in the presence of a base. The crystal structures of 1, 2, 3, and 5 were determined by single-crystal X-ray analysis. The coordination polyhedron of 1-3 is better described as a tetragonal pyramid with a different degree of distortion, while that for 5- was a distorted trigonal bipyramid (τ = 0.014, 0.177, 0.26, 0.56, respectively). Complexes demonstrated different crystal packing of molecules. The electrochemical oxidation of the complexes involved the catecholate group as well as the thioether linker. The introduction of a thioether fragment into the aromatic ring of catechol ligand led to a shift in the potential of the "catechol/o-semiquinone" redox transition to the anodic region, which indicated the electron-withdrawing nature of the RS group. The radical scavenging activity of the complexes was determined in the reaction with DPPH radical.
Collapse
Affiliation(s)
- Ivan V. Smolyaninov
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (I.V.S.); (N.T.B.)
| | - Georgy K. Fukin
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., 603137 Nizhny Novgorod, Russia;
| | - Nadezhda T. Berberova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (I.V.S.); (N.T.B.)
| | - Andrey I. Poddel’sky
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., 603137 Nizhny Novgorod, Russia;
| |
Collapse
|
13
|
Zherebtsov MA, Zhiganshina ER, Lenshina NA, Kovylin RS, Baranov EV, Shushunova NY, Shurygina MP, Arsenyev MV, Chesnokov SA, Cherkasov VK. Synthesis and photoinitiating ability of substituted 4,5-di-tert-alkyl-o-benzoquinones in radical polymerization. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Zheng N, Cudjoe DK, Song W. Multicomponent Polymerization toward Cationic Polymers for Efficient Gene Delivery. Macromol Rapid Commun 2020; 42:e2000464. [PMID: 33051922 DOI: 10.1002/marc.202000464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/18/2020] [Indexed: 12/17/2022]
Abstract
A new class of cationic polymers containing tertiary amine, thioether, and hydroxyl groups are prepared via a catalyst-free, multicomponent polymerization method using dithiol, formaldehyde, and di-sec-amine with a ratio of 1:2:1, to access a library of water-soluble polymers with well-defined structures and suitable molecular weights (Mw ranging from 5000 to 8000 Da) in high yields (up to 90%). Such polycations are demonstrated to be promising nonviral gene delivery vectors with high transfection efficiency (up to 3.5-fold of PEI25k) and low toxicity with multiple functionalities: 1) efficient gene condensation by tertiary amine groups; 2) reactive oxygen species scavenging by thioether groups; and 3) positive charge shielding by hydroxyl groups. Both the thioether and hydroxyl groups are contributed to reduce the cytotoxicity of the polycations by tuning the oxidative stress and preventing the undesired serum binding. The optimized polycations can achieve high transfection efficiency under the serum conditions, indicating the great potential as a nonviral gene delivery vector candidate for clinical application.
Collapse
Affiliation(s)
- Nan Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Daniel Kwesi Cudjoe
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wangze Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
15
|
Catechol inhibits epidermal growth factor-induced epithelial-to-mesenchymal transition and stem cell-like properties in hepatocellular carcinoma cells. Sci Rep 2020; 10:7620. [PMID: 32376896 PMCID: PMC7203133 DOI: 10.1038/s41598-020-64603-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a major cellular process in which epithelial cells lose cell polarity and cell-cell adhesion and become motility and invasiveness by transforming into mesenchymal cells. Catechol is one of the natural compounds present in fruits and vegetables and has various pharmacological and physiological activities including anti-carcinogenic effects. However, the effects of catechol on EMT has not been reported. Epidermal growth factor (EGF) is one of the growth factors and is known to play a role in inducing EMT. The present study showed that catechol suppressed not only the morphological changes to the mesenchymal phenotype of epithelial HCC cells, but also the reduction of E-cadherin and the increment of Vimentin, which are typical hallmark of EMT. In addition, catechol suppressed EMT-related steps such as migration, invasion, anoikis resistance acquisition, and stem cell-like characterization through the EGFR-AKT-ERK signaling pathway during liver cancer metastasis. Therefore, these results suggest that catechol may be able to regulate the early metastasis of liver cancer in vitro.
Collapse
|
16
|
Havasi MH, Ressler AJ, Parks EL, Cocolas AH, Weaver A, Seeram NP, Henry GE. Antioxidant and tyrosinase docking studies of heterocyclic sulfide derivatives containing a thymol moiety. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Smolyaninov IV, Poddel’sky AI, Smolyaninova SA, Arsenyev MV, Fukin GK, Berberova NT. Polyfunctional Sterically Hindered Catechols with Additional Phenolic Group and Their Triphenylantimony(V) Catecholates: Synthesis, Structure, and Redox Properties. Molecules 2020; 25:molecules25081770. [PMID: 32290617 PMCID: PMC7221534 DOI: 10.3390/molecules25081770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/25/2023] Open
Abstract
New polyfunctional sterically hindered 3,5-di-tert-butylcatechols with an additional phenolic group in the sixth position connected by a bridging sulfur atom—(6-(CH2-S-tBu2Phenol)-3,5-DBCat)H2 (L1), (6-(S-tBu2Phenol)-3,5-DBCat)H2 (L2), and (6-(S-Phenol)-3,5-DBCat)H2 (L3) (3,5-DBCat is dianion 3,5-di-tert-butylcatecolate)—were synthesized and characterized in detail. The exchange reaction between catechols L1 and L3 with triphenylantimony(V) dibromide in the presence of triethylamine leads to the corresponding triphenylantimony(V) catecholates (6-(CH2-S-tBu2Phenol)-3,5-DBCat)SbPh3 (1) and (6-(S-Phenol)-3,5-DBCat)SbPh3 (2). The electrochemical properties of catechols L1–L3 and catecholates 1 and 2 were investigated using cyclic voltammetry. The electrochemical oxidation of L1–L3 at the first stage proceeds with the formation of the corresponding o-benzoquinones. The second process is the oxidation of the phenolic moiety. Complexes 1 and 2 significantly expand their redox capabilities, owing to the fact that they can act as the electron donors due to the catecholate metallocycle capable of sequential oxidations, and as donors of the hydrogen atoms, thus forming a stable phenoxyl radical. The molecular structures of the free ligand L1 and complex 1 in the crystal state were determined by single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Ivan V. Smolyaninov
- Toxicology Research Group, Federal State Budgetary Institution of Science “Federal Research Centre The Southern Scientific Centre of the Russian Academy of The Sciences”, Tatischeva str. 16, 414056 Astrakhan, Russia;
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia; (S.A.S.); (N.T.B.)
| | - Andrey I. Poddel’sky
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
- Correspondence: ; Tel./Fax: +7-831-462-7497
| | - Susanna A. Smolyaninova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia; (S.A.S.); (N.T.B.)
| | - Maxim V. Arsenyev
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
| | - Georgy K. Fukin
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
| | - Nadezhda T. Berberova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia; (S.A.S.); (N.T.B.)
| |
Collapse
|