1
|
Zhao YC, Yan LQ, Xu Y. Recent advances of selenized tubulin inhibitors in cancer therapy. Bioorg Med Chem Lett 2025; 116:130037. [PMID: 39581555 DOI: 10.1016/j.bmcl.2024.130037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Cancer treatment always a huge challenge amidst the resistance and relapse caused by the various treatments. Inhibitors targeting mitosis have been considered as promising therapeutic drugs in clinic, of which tubulins play an important role. Selenium (Se) as an essential microelement in humans and animals, playing a crucial role in the formation of anti-oxidase (glutathione peroxidase) and selenoprotein, also attracted broad attention in cancer therapy. Because the introduction of Se atom could change the length and angle of chemical bond and alter their functional properties, regulating selenized chemotherapeutics has become one of the hot spots. However, little attention has been paid to studying the combination of Se and tubulin inhibitors. Herein, we review the latest research results of selenized tubulin inhibitors in cancer therapy, including its mechanisms, categories and biological activities, providing a theoretical basis for different selenized microtubules inhibitors therapies.
Collapse
Affiliation(s)
- Yong-Chang Zhao
- Department of Pharmacy, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Liang-Qing Yan
- Department of Radiology, The People's Hospital of Yuhuan, Taizhou 317600, China
| | - Yuan Xu
- Department of Pharmacy, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.
| |
Collapse
|
2
|
Valipour M, Ghasemian M, Karima S, Khatir ZZ, Aghamiri H, Shaki F, Akbari S, Amiri FT, Hosseini A, Jafari-Sabet M, Irannejad H, Emami S. Design, synthesis, and structure-activity relationships of five-membered heterocyclic incorporated aryl(alkyl)azoles: From antiproliferative thiazoles to safer anticonvulsant oxadiazoles. Bioorg Chem 2025; 155:108117. [PMID: 39778269 DOI: 10.1016/j.bioorg.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
In the current study, a novel series of 1,2,4-oxadiazoles were designed, synthesized, and evaluated for their biological activities. A cell-based antiproliferative screening was accomplished on the newly synthesized 1,2,4-oxadiazoles along with our previously reported aryl(alkyl)azoles (AAAs) containing middle heterocyclic cores thiazole and oxazole. Among the tested compounds, naphthyl- thiazoles demonstrated higher antiproliferative activity and B3 was identified as the most potent compound with IC50 values in the range of 2.03-3.6 µM against SH-SY5Y neuroblastoma, HT-29 colorectal adenocarcinoma, and fibroblast cells (ten folds more potent than 5-FU and irinotecan). Further investigation revealed that B3 strongly inhibits tubulin polymerization with an IC50 of 0.79 µM, outperforming the reference drug colchicine (IC50 = 1.46 µM). In addition, evaluation of B3 on the expression level of BAX, BCL2, and CYCLIN D1 genes indicated the suppression of the cell cycle in the genome level. Interestingly, the 1,2,4-oxadiazole congeners displayed optimal anticonvulsant activity with significantly reduced cytotoxicity. Among the oxadiazole series, compound D4 featuring a 1,2,4-triazole head group demonstrated the highest activity in the maximal electroshock (MES) and pentylenetetrazol (PTZ) tests, with ED50 values of 2.23 and 24.60 mg/kg, respectively. In vivo evaluations suggested that D4 exerts its anticonvulsant effects by enhancing GABAA currents. In conclusion, our findings indicated that B3 in the thiazole congeners is a promising drug candidate for cancer treatment with a well-defined mechanism of action. Moreover, D4 and its congeners containing oxadiazole core are much safer anti-seizures which have potential for preclinical considerations as novel anticonvulsants.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Ghasemian
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Zahra Zakeri Khatir
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Helia Aghamiri
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical sciences, Tehran, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sholeh Akbari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Jafari-Sabet
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Saeed Emami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Mirzaei H, Hatemi BMJ, Enayati A, Khori V, Jabbari A, Salehi A, Hojati MT, Hossieni SG. Potential antiplatelet agents with grape seed - backbone polyphenols: computational studies. Nat Prod Res 2024:1-9. [PMID: 38907668 DOI: 10.1080/14786419.2024.2370039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
The study focused on grape seed-derived polyphenols for their antiplatelet, anti-inflammatory, and fibrinolytic properties through molecular docking and dynamics simulations. Compounds were evaluated for their effects on P2Y12, PTP1B, thromboxane A2, and other targets. Compounds 1 and 6 showed strong inhibitory potential on P2Y12. Compounds 2 and 7, plus epigallocatechin gallate, demonstrated effective inhibition on NF-KB and COX1. The compounds exhibited drug-like properties and potential for new thrombotic disease therapies. The research sheds light on the interactions between polyphenols and target proteins, paving the way for novel antiplatelet strategies.
Collapse
Affiliation(s)
- Hassan Mirzaei
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Jabbari
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Aref Salehi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohamad Taher Hojati
- Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Ghadir Hossieni
- Department of Public Health, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
Ma Y, Wang T, Cheng L, Ma X, Li R, Zhang M, Chen J, Zhao P. Design, concise synthesis and evaluation of novel amide-based combretastatin A-4 analogues as potent tubulin inhibitors. Bioorg Med Chem Lett 2024; 108:129816. [PMID: 38806101 DOI: 10.1016/j.bmcl.2024.129816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
As our ongoing work, a novel series of the amide-based CA-4 analogues were successfully designed, synthesized, and explored for their biological evaluation. Among these compounds, 7d and 8a illustrated most potent antiproliferative activity toward A549, HeLa, HCT116, and HT-29 cell lines. Most importantly, these two compounds didn't display noticeable cytotoxic activity on the non-tumoural cell line HEK-293. Further mechanism studies revealed that analogue 8a was identified as a novel tubulin polymerization inhibitor with an IC50 value of 6.90 μM, which is comparable with CA-4. The subsequent investigations unveiled that analogue 8a not only effectively caused cell cycle arrest at the G2/M phase but also induced apoptosis in A549 cells via a concentration-dependent manner. The molecular docking revealed that 8a could occupy well the colchicine-binding site of tubulin. Collectively, these findings indicate that amide-based CA-4 scaffold could be worthy of further evaluation for development of novel tubulin inhibitors with improved safety profile.
Collapse
Affiliation(s)
- Yufeng Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Ting Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Li Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xuanxuan Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Rou Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Mengting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Jingkao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| | - Peiliang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
5
|
Mirzaei H, Salehi A, Javan B, Enayati A, Nabi MO, Zahedi M, Zengin G. Potentilla reptans L. preconditioning regulates H19 and MIAT long noncoding RNAs in H9C2 myoblasts Ischemia/Reperfusion model. BMC Complement Med Ther 2023; 23:272. [PMID: 37525174 PMCID: PMC10388489 DOI: 10.1186/s12906-023-04071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023] Open
Abstract
The present study aimed to evaluate the effect of the ethyl acetate fraction of P. reptans root (PEF) preconditioning on expressions of lncRNAs H19 and MIAT in H9C2 myoblasts I/R injury.H9C2 cells were treated with different concentrations ranging from (10-400 µg/ml) of PEF for 24 h, followed by simulation of I/R condition. For I/R experiments, H9C2 cells were subjected with the oxygen and glucose deprivation for 2 h.H9C2 cell viability was significantly enhanced by PEF preconditioning under I/R condition in a concentration-dependent manner up to 200 µg/ml as a EC50. The PEF significantly diminished the expression of lncRNA MIAT and rate of apoptosis against the I/R group. In addition, PEF pretreated before stimulation I/R condition increased H19 expression compared to the normal PEF group with no statistically significant differences between groups. Hence, the results suggest that PEF can protect cardiomyocytes during hypoxia-induced myocardial cell injury by targeting specific involved genes.
Collapse
Affiliation(s)
- Hassan Mirzaei
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Aref Salehi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Bita Javan
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Morteza Olad Nabi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Zahedi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
| |
Collapse
|
6
|
Ji T, Jian X, Chen L, Zeng W, Huo X, Li M, Chen P, Zhang Y, You W, Zhao P. Discovery of novel 6-p-tolyl-3-(3,4,5-trimethoxybenzyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine derivative as a potent tubulin inhibitor with promising in vivo antitumor activity. Eur J Med Chem 2023; 256:115437. [PMID: 37172475 DOI: 10.1016/j.ejmech.2023.115437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Building on our prior research, a novel series of trimethoxyphenoxymethyl- and trimethoxybenzyl-substituted triazolothiadiazine compounds has been designed and achieved successfully via a direct ring-closing strategy. Initial biological evaluation illustrated that the most active derivative B5 exhibited significant cell growth inhibitory activity toward HeLa, HT-29, and A549 giving the IC50 values of 0.046, 0.57, and 0.96 μM, respectively, which are greater or similar with CA-4. The mechanism study revealed that B5 caused the G2/M phase arrest, induced cell apoptosis in HeLa cells in a concentration-dependent manner, and also showed potent tubulin polymerization inhibitory effect. Meanwhile, B5 exerted significant antivascular activity in the wound-healing and tube formation assays. Most importantly, B5 remarkably inhibited tumor growth without obvious signs of toxicity in A549-xenograft mice model. These observations indicate that 6-p-tolyl-3-(3,4,5-trimethoxybenzyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine might be considered as the potential lead compound to develop highly efficient anticancer agents with potent selectivity over normal human cells.
Collapse
Affiliation(s)
- Tangyang Ji
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Xieer Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Wenbin Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiansen Huo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Mingxia Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Peng Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuqi Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Wenwei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Peiliang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
7
|
An update on the recent advances and discovery of novel tubulin colchicine binding inhibitors. Future Med Chem 2023; 15:73-95. [PMID: 36756851 DOI: 10.4155/fmc-2022-0212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Microtubules, formed by α- and β-tubulin heterodimer, are considered as a major target to prevent the proliferation of tumor cells. Microtubule-targeted agents have become increasingly effective anticancer drugs. However, due to the relatively sophisticated chemical structure of taxane and vinblastine, their application has faced numerous obstacles. Conversely, the structure of colchicine binding site inhibitors (CBSIs) is much easier to be modified. Moreover, CBSIs have strong antiproliferative effect on multidrug-resistant tumor cells and have become the mainstream research orientation of microtubule-targeted agents. This review focuses mainly on the recent advances of CBSIs during 2017-2022, attempts to depict their biological activities to analyze the structure-activity relationships and offers new perspectives for designing next generation of novel CBSIs.
Collapse
|
8
|
Novel [1,2,4]triazolo[3,4- b][1,3,4]thiadiazine and [1,2,4]triazolo[3,4- b][1,3,4]thiadiazepine Derivatives: Synthesis, Anti-Viral In Vitro Study and Target Validation Activity. Molecules 2022; 27:molecules27227940. [PMID: 36432042 PMCID: PMC9694146 DOI: 10.3390/molecules27227940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
This study of the interaction system of binucleophilic 3-substituted 4-amino-4H-1,2,4-triazole-5-thiols and 3-phenyl-2-propynal made it possible to develop a new approach to synthesis of such isomeric classes as 7-benzylidene-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine and 8-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazepine. Among the 20 compounds studied in vitro against influenza A/Puerto Rico/8/34 (H1N1) virus, half of them demonstrated selectivity index (SI) of 10 or higher and one of them (4-((3-phenylprop-2-yn-1-yl)amino)-4H-1,2,4-triazole-3-thiol) possessed the highest (SI > 300). Docking results and values showed that the preferred interactant for our ligands was M2 proton channel of the influenza A virus. Protein-ligand interactions modeling showed that the aliphatic moiety of ligands could negatively regulate target activity level.
Collapse
Key Words
- [1,2,4]triazolo[3,4-b][1,3,4]thiadiazepines
- [1,2,4]triazolo[3,4-b][1,3,4]thiadiazines
- annelated heterocycles
- anti-viral activity
- drug design
- influenza virus
Collapse
|
9
|
Chen L, Zhang B, Li YH, Huo XS, You WW, Zhao PL. Concise synthesis and preliminary biological evaluation of new triazolylthioacetone derivatives bearing pyridine, pyrazine, and 3,4,5-trimethoxybenzyl fragment. Bioorg Med Chem Lett 2022; 66:128721. [PMID: 35398303 DOI: 10.1016/j.bmcl.2022.128721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/02/2022]
Abstract
Based on our previous work, a series of novel triazolylthioacetones incorporating pyridine, pyrazine, and 3,4,5-trimethoxybenzyl fragment were synthesized, and evaluated for antiproliferative activities and interactions with tubulin. Some analogues exhibited moderate to excellent potency, with the most promising compound IIc possessing IC50 values of 0.62, 1.46, and 3.65 μM against HT-29, HCT116, and HepG2 tumor cells, respectively, which were comparable with the positive control CA-4. Mechanistical studies revealed that IIc concentration-dependently caused cell cycle arrest at the G2/M phase in HCT116 tumor cells, and displayed a significant inhibition of tubulin polymerization with an IC50 value of 12.7 μM. Moreover, molecular docking analysis suggested that IIc could occupy the colchicine-binding site in a similar way with typical tubulinpolymerizationinhibitors. These results highlighted the 4-amino-triazolylthioacetone scaffold as potential tubulin polymerization inhibitors for development of highly efficient anticancer agents.
Collapse
Affiliation(s)
- Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Yan-Hong Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xian-Sen Huo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
10
|
Synthetic Access to Aromatic α-Haloketones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113583. [PMID: 35684526 PMCID: PMC9182500 DOI: 10.3390/molecules27113583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
α-Haloketones play an essential role in the synthesis of complex N-, S-, O-heterocycles; of which some exhibit a remarkable biological activity. Research further illustrated that α-bromo-, α-chloro-, and α-iodoketones are key precursors for blockbuster pharmacological compounds. Over the past twenty years, substantial advances have been made in the synthesis of these industrially relevant building blocks. Efforts have focused on rendering the synthetic protocols greener, more effective and versatile. In this survey, we summarised and thoroughly evaluated the progress of the field, established in the past two decades, in terms of generality, efficacy and sustainability.
Collapse
|
11
|
Aggarwal R, Hooda M, Kumar P, Sumran G. Vision on Synthetic and Medicinal Facets of 1,2,4-Triazolo[3,4-b][1,3,4]thiadiazine Scaffold. Top Curr Chem (Cham) 2022; 380:10. [PMID: 35122161 PMCID: PMC8816708 DOI: 10.1007/s41061-022-00365-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Abstract
The present review article strives to compile the latest synthetic approaches for the synthesis of triazolothiadiazine and its derivatives, along with their diverse pharmacological activities, viz. anticancer, antimicrobial, analgesic and anti-inflammatory, antioxidant, antiviral, enzyme inhibitors (carbonic anhydrase inhibitors, cholinesterase inhibitors, alkaline phosphatase inhibitors, anti-lipase activity, and aromatase inhibitors) and antitubercular agents. The review focuses particularly on the structure–activity relationship of biologically important 1,2,4-triazolo[3,4-b][1,3,4]thiadiazines, which have profound importance in drug design, discovery and development. In silico pharmacokinetic and molecular modeling studies have also been summarized. It is hoped that this review article will be of help to researchers engaged in the development of new biologically active entities for the rational design and development of new target-oriented 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine-based drugs for the treatment of multifunctional diseases.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India. .,CSIR-National Institute of Science Communication and Policy Research, New Delhi, India.
| | - Mona Hooda
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
| | - Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, Haryana, 134 003, India
| |
Collapse
|
12
|
Karaca H, Delibaş NÇ, Sağlam S, Pişkin H, Sezer S, Hökelek T, Teker M. Metallophthalocyanines derived with phenyl sulfide by bridging triazole using click chemistry: Synthesis, Computational Study, Redox Chemistry and Catalytic Activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Al-Matarneh MC, Amărandi RM, Mangalagiu II, Danac R. Synthesis and Biological Screening of New Cyano-Substituted Pyrrole Fused (Iso)Quinoline Derivatives. Molecules 2021; 26:molecules26072066. [PMID: 33916806 PMCID: PMC8038376 DOI: 10.3390/molecules26072066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 11/22/2022] Open
Abstract
Several new cyano-substituted derivatives with pyrrolo[1,2-a]quinoline and pyrrolo[2,1-a]isoquinoline scaffolds were synthesized by the [3 + 2] cycloaddition of (iso)quinolinium ylides to fumaronitrile. The cycloimmonium ylides reacted in situ as 1,3-dipoles with fumaronitrile to selectively form distinct final compounds, depending on the structure of the (iso)quinolinium salt. Eleven compounds were evaluated for their anticancer activity against a panel of 60 human cancer cell lines. The most potent compound 9a showed a broad spectrum of antiproliferative activity against cancer cell lines representing leukemia, melanoma and cancer of lung, colon, central nervous system, ovary, kidney, breast and prostate cancer. In vitro assays and molecular docking revealed tubulin interaction properties of compound 9a.
Collapse
Affiliation(s)
- Maria Cristina Al-Matarneh
- Department of Chemistry, Faculty of Chemistry, Alexandru Ioan Cuza University of Iași, 11 Carol I, 700506 Iași, Romania; (R.-M.A.); (I.I.M.)
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iași, Romania
- Correspondence: (C.M.A.-M.); (R.D.)
| | - Roxana-Maria Amărandi
- Department of Chemistry, Faculty of Chemistry, Alexandru Ioan Cuza University of Iași, 11 Carol I, 700506 Iași, Romania; (R.-M.A.); (I.I.M.)
- TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483 Iași, Romania
| | - Ionel I. Mangalagiu
- Department of Chemistry, Faculty of Chemistry, Alexandru Ioan Cuza University of Iași, 11 Carol I, 700506 Iași, Romania; (R.-M.A.); (I.I.M.)
| | - Ramona Danac
- Department of Chemistry, Faculty of Chemistry, Alexandru Ioan Cuza University of Iași, 11 Carol I, 700506 Iași, Romania; (R.-M.A.); (I.I.M.)
- Correspondence: (C.M.A.-M.); (R.D.)
| |
Collapse
|
14
|
Development of triazolothiadiazine derivatives as highly potent tubulin polymerization inhibitors: Structure-activity relationship, in vitro and in vivo study. Eur J Med Chem 2020; 208:112847. [DOI: 10.1016/j.ejmech.2020.112847] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
|
15
|
Chen H, Miao L, Huang F, Yu Y, Peng Q, Liu Y, Li X, Liu H. Glochidiol, a natural triterpenoid, exerts its anti-cancer effects by targeting the colchicine binding site of tubulin. Invest New Drugs 2020; 39:578-586. [PMID: 33026557 DOI: 10.1007/s10637-020-01013-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Glochidiol has been shown to have potentially antiproliferative activity in vitro, however its anticancer mechanisms specifically against lung cancer remain unknown. This study aimed to investigate the anti-lung cancer effects of glochidiol in HCC-44 cells in vitro and in vivo. In the present study, glochidiol was found to have potent antiproliferative activity against lung cancer cell lines NCI-H2087, HOP-62, NCI-H520, HCC-44, HARA, EPLC-272H, NCI-H3122, COR-L105 and Calu-6 with IC50 values of 4.12 µM, 2.01 µM, 7.53 µM, 1.62 µM, 4.79 µM, 7.69 µM, 2.36 µM, 6.07 µM and 2.10 µM, respectively. In vivo, glochidiol was found to effectively inhibit lung cancer HCC-44 xenograft tumor growth in nude mice. Docking analysis found that glochidiol forms hydrogen bonds with residues of tubulin. Glochidiol was also found to inhibit tubulin polymerization in vitro with an IC50 value of 2.76 µM. Immunofluorescence staining and EBI competition assay suggest that glochidiol may interact with tubulin by targeting the colchicine binding site. Thus, glochidiol might be a novel colchicine binding site inhibitor with the potential to treat lung cancer.
Collapse
Affiliation(s)
- Hongjie Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lijun Miao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Fengxiang Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yali Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qiang Peng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xixi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hong Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
16
|
Ismail M, Mohamady S, Samir N, Abouzid KAM. Design, Synthesis, and Biological Evaluation of Novel 7 H-[1,2,4]Triazolo[3,4- b][1,3,4]thiadiazine Inhibitors as Antitumor Agents. ACS OMEGA 2020; 5:20170-20186. [PMID: 32832771 PMCID: PMC7439371 DOI: 10.1021/acsomega.0c01829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
A series of novel anticancer hydrazinotriazolothiadiazine-based derivatives were designed based on the structure-activity relationship of the previously reported anticancer triazolothiadiazines. These derivatives were synthesized and biologically screened against full NCI-60 cancer cell lines revealing compound 5l with a potential antiproliferative effect. 5l was screened over 16 kinases to study its cytotoxic mechanism which showed to inhibit glycogen synthase kinase-3 β (GSK-3β) with IC50 equal to 0.883 μM and 14-fold selectivity over CDK2. Also, 5l increased active caspase-3 levels, induced cell cycle arrest at the G2-M phase, and increased the percentage of Annexin V-fluorescein isothiocyanate-positive apoptotic cells in PC-3 prostate cancer-treated cells. Molecular docking and dynamics were performed to predict the binding mode of 5l in the GSK-3β ATP binding site. 5l can be utilized as a starting scaffold for developing potential GSK-3β inhibitors.
Collapse
Affiliation(s)
- Muhammad
I. Ismail
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, 11837 Cairo, Egypt
| | - Samy Mohamady
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, 11837 Cairo, Egypt
| | - Nermin Samir
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Khaled A. M. Abouzid
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department
of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia 32897, Egypt
| |
Collapse
|