1
|
Yim J, Kim S, Lee HH, Chung JS, Park J. Fragment-based approaches to discover ligands for tumor-specific E3 ligases. Expert Opin Drug Discov 2024; 19:1471-1484. [PMID: 39420586 DOI: 10.1080/17460441.2024.2415310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Targeted protein degradation (TPD) has emerged as an innovative therapeutic strategy through selective degradation of specific proteins by harnessing the cellular ubiquitin-proteasome system (UPS), which involves over 600 E3 ubiquitin ligases. Recent proteome profiling reported tumor-specific E3 ligases in human. Development of those tumor-specific E3 ligase ligands would provide a solution for tumor-specific TPD for effective cancer treatment. AREAS COVERED This review provides a comprehensive list of E3 ligases found only in specific types of tumor from public databases and highlights examples of their ligands discovered through fragment-based approaches. It details their discovery process and potential applications for precise TPD and effective cancer treatments. EXPERT OPINION Current TPD strategies using proteolysis-targeting chimeras (PROTACs) primarily utilize general E3 ligases, such as CRBN and VHL. Since these E3 ligases demonstrate effective protein degradation activity in most human cell types, CRBN and VHL-based PROTACs can exhibit undesired TPD in off-target tissues, which often leads to the side effects. Therefore, developing tumor-specific E3 ligase ligands can be crucial for effective cancer treatments. Fragment-based ligand discovery (FBLD) approaches would accelerate the identification of these tumor-specific E3 ligase ligands and associated PROTACs, thereby advancing the field of targeted cancer therapies.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of Chemistry, Kangwon National University, Chuncheon, Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Korea
| | - Solbi Kim
- Department of Chemistry, Kangwon National University, Chuncheon, Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Korea
| | - Hyung Ho Lee
- Department of Urology, Urological Cancer Center, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Jin Soo Chung
- Department of Urology, Urological Cancer Center, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon, Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
2
|
Yao Y, Zhou S, Yan Y, Fu K, Xiao S. The tripartite motif-containing 24 is a multifunctional player in human cancer. Cell Biosci 2024; 14:103. [PMID: 39160596 PMCID: PMC11334367 DOI: 10.1186/s13578-024-01289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024] Open
Abstract
Tripartite motif-containing 24 (TRIM24), also known as transcriptional intermediary factor 1α (TIF1α), is the founding member of TIF1 family. Recent evidence indicates that aberrant expression of TRIM24, functions as an oncogene, is associated with poor prognosis across various cancer types. TRIM24 exhibits a multifaceted structure comprising an N-terminal TRIM region with a RING domain, B-box type 1 and type 2 domains, and a coiled-coil region, as well as a C-terminal plant-homeodomain (PHD)-bromodomain. The bromodomain serves as a 'reader' of epigenetic histone marks, regulating chromatin structure and gene expression by linking associated proteins to acetylated nucleosomal targets, thereby controlling transcription of genes. Notably, bromodomains have emerged as compelling targets for cancer therapeutic development. In addition, TRIM24 plays specialized roles as a signal transduction molecule, orchestrating various cellular signaling cascades in cancer cells. Herein, we review the recent advancements in understanding the functions of TRIM24, and demonstrate the research progress in utilizing TRIM24 as a target for cancer therapy.
Collapse
Affiliation(s)
- Yuanbing Yao
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Sheng Zhou
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yue Yan
- Yanbian University Medical School, Yanji, Jilin, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Center MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87# Xiangya Road, Changsha, 410008, Hunan, China.
| | - Shuai Xiao
- The First Affiliated Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, 69# Chuanshan Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Shah Zaib Saleem R, Schwalm MP, Knapp S. Expanding the ligand spaces for E3 ligases for the design of protein degraders. Bioorg Med Chem 2024; 105:117718. [PMID: 38621319 DOI: 10.1016/j.bmc.2024.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Targeted protein degradation (TPD) has recently emerged as an exciting new drug modality. However, the strategy of developing small molecule-based protein degraders has evolved over the past two decades and has now established molecular tags that are already in clinical use, as well as chimeric molecules, PROteolysis TArgeting Chimeras (PROTACs), based mainly on ligand systems developed for the two E3 ligases CRBN and VHL. The large size of the human E3 ligase family suggests that PROTACs can be developed by targeting a large diversity of E3 ligases, some of which have restricted expression patterns with the potential to design disease- or tissue-specific degraders. Indeed, many new E3 ligands have been published recently, confirming the druggability of E3 ligases. This review summarises recent data on E3 ligases and highlights the challenges in developing these molecules into efficient PROTACs rivalling the established degrader systems.
Collapse
Affiliation(s)
- Rahman Shah Zaib Saleem
- Department of Chemistry & Chemical Engineering, SBA School of Sciences & Engineering, LUMS, Pakistan
| | - Martin P Schwalm
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
4
|
Hoegenauer K, An S, Axford J, Benander C, Bergsdorf C, Botsch J, Chau S, Fernández C, Gleim S, Hassiepen U, Hunziker J, Joly E, Keller A, Lopez Romero S, Maher R, Mangold AS, Mickanin C, Mihalic M, Neuner P, Patterson AW, Perruccio F, Roggo S, Scesa J, Schröder M, Shkoza D, Thai B, Vulpetti A, Renatus M, Reece-Hoyes JS. Discovery of Ligands for TRIM58, a Novel Tissue-Selective E3 Ligase. ACS Med Chem Lett 2023; 14:1631-1639. [PMID: 38116426 PMCID: PMC10726445 DOI: 10.1021/acsmedchemlett.3c00259] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/06/2023] [Indexed: 12/21/2023] Open
Abstract
Redirecting E3 ligases to neo-substrates, leading to their proteasomal disassembly, known as targeted protein degradation (TPD), has emerged as a promising alternative to traditional, occupancy-driven pharmacology. Although the field has expanded tremendously over the past years, the choice of E3 ligases remains limited, with an almost exclusive focus on CRBN and VHL. Here, we report the discovery of novel ligands to the PRY-SPRY domain of TRIM58, a RING ligase that is specifically expressed in erythroid precursor cells. A DSF screen, followed by validation using additional biophysical methods, led to the identification of TRIM58 ligand TRIM-473. A basic SAR around the chemotype was established by utilizing a competitive binding assay employing a short FP peptide probe derived from an endogenous TRIM58 substrate. The X-ray co-crystal structure of TRIM58 in complex with TRIM-473 gave insights into the binding mode and potential exit vectors for bifunctional degrader design.
Collapse
Affiliation(s)
- Klemens Hoegenauer
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Shaojian An
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Jake Axford
- Global Discovery
Chemistry, Novartis Institutes for BioMedical
Research, Cambridge, Massachusetts 02139, United States
| | - Christina Benander
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Christian Bergsdorf
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Josephine Botsch
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Suzanne Chau
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - César Fernández
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Scott Gleim
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Ulrich Hassiepen
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Juerg Hunziker
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Emilie Joly
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Aramis Keller
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Sandra Lopez Romero
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Robert Maher
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Anne-Sophie Mangold
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Craig Mickanin
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Manuel Mihalic
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Philippe Neuner
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Andrew W. Patterson
- Global Discovery
Chemistry, Novartis Institutes for BioMedical
Research, Cambridge, Massachusetts 02139, United States
| | - Francesca Perruccio
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Silvio Roggo
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Julien Scesa
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Martin Schröder
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Dojna Shkoza
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Binh Thai
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Anna Vulpetti
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Martin Renatus
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - John S. Reece-Hoyes
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Gajjela BK, Zhou MM. Bromodomain inhibitors and therapeutic applications. Curr Opin Chem Biol 2023; 75:102323. [PMID: 37207401 PMCID: PMC10524616 DOI: 10.1016/j.cbpa.2023.102323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
The bromodomain acts to recognize acetylated lysine in histones and transcription proteins and plays a fundamental role in chromatin-based cellular processes including gene transcription and chromatin remodeling. Many bromodomain proteins, particularly the bromodomain and extra terminal domain (BET) protein BRD4 have been implicated in cancers and inflammatory disorders and recognized as attractive drug targets. Although clinical studies of many BET bromodomain inhibitors have made substantial progress toward harnessing the therapeutic potential of targeting the bromodomain proteins, the development of this new class of epigenetic drugs is met with challenges, especially on-target dose-limiting toxicity. In this review, we highlight the current development of new-generation small molecule inhibitors for the BET and non-BET bromodomain proteins and discuss the research strategies used to target different bromodomain proteins for a wide array of human diseases including cancers and inflammatory disorders.
Collapse
Affiliation(s)
- Bharath Kumar Gajjela
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, United States
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, United States.
| |
Collapse
|
6
|
Kumar A, Emdad L, Fisher PB, Das SK. Targeting epigenetic regulation for cancer therapy using small molecule inhibitors. Adv Cancer Res 2023; 158:73-161. [PMID: 36990539 DOI: 10.1016/bs.acr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer cells display pervasive changes in DNA methylation, disrupted patterns of histone posttranslational modification, chromatin composition or organization and regulatory element activities that alter normal programs of gene expression. It is becoming increasingly clear that disturbances in the epigenome are hallmarks of cancer, which are targetable and represent attractive starting points for drug creation. Remarkable progress has been made in the past decades in discovering and developing epigenetic-based small molecule inhibitors. Recently, epigenetic-targeted agents in hematologic malignancies and solid tumors have been identified and these agents are either in current clinical trials or approved for treatment. However, epigenetic drug applications face many challenges, including low selectivity, poor bioavailability, instability and acquired drug resistance. New multidisciplinary approaches are being designed to overcome these limitations, e.g., applications of machine learning, drug repurposing, high throughput virtual screening technologies, to identify selective compounds with improved stability and better bioavailability. We provide an overview of the key proteins that mediate epigenetic regulation that encompass histone and DNA modifications and discuss effector proteins that affect the organization of chromatin structure and function as well as presently available inhibitors as potential drugs. Current anticancer small-molecule inhibitors targeting epigenetic modified enzymes that have been approved by therapeutic regulatory authorities across the world are highlighted. Many of these are in different stages of clinical evaluation. We also assess emerging strategies for combinatorial approaches of epigenetic drugs with immunotherapy, standard chemotherapy or other classes of agents and advances in the design of novel epigenetic therapies.
Collapse
|
7
|
Cho HE, Han Y, Lee JJ, Park KS, Kim YJ, Cho SY, Yoon HS, Lee WI, Park TS. The First Case of B-lymphoblastic Leukemia Associated With t(7;8)(q34;p11.2) and FGFR1 Rearrangement. Ann Lab Med 2022; 42:485-487. [PMID: 35177571 PMCID: PMC8859562 DOI: 10.3343/alm.2022.42.4.485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ha-eun Cho
- Department of Medicine, Kyung Hee University, Seoul, Korea
| | - Yujin Han
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea
| | - Jae Joon Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea
| | - Kyung Sun Park
- Department of Laboratory Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Young Jin Kim
- Department of Laboratory Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Sun Young Cho
- Department of Laboratory Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Hoi Soo Yoon
- Department of Pediatrics, Kyung Hee University Hospital, Seoul, Korea
| | - Woo-In Lee
- Department of Laboratory Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Tae Sung Park
- Department of Laboratory Medicine, Kyung Hee University Hospital, Seoul, Korea
| |
Collapse
|
8
|
Yellapu NK, Ly T, Sardiu ME, Pei D, Welch DR, Thompson JA, Koestler DC. Synergistic anti-proliferative activity of JQ1 and GSK2801 in triple-negative breast cancer. BMC Cancer 2022; 22:627. [PMID: 35672711 PMCID: PMC9173973 DOI: 10.1186/s12885-022-09690-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) constitutes 10-20% of breast cancers and is challenging to treat due to a lack of effective targeted therapies. Previous studies in TNBC cell lines showed in vitro growth inhibition when JQ1 or GSK2801 were administered alone, and enhanced activity when co-administered. Given their respective mechanisms of actions, we hypothesized the combinatorial effect could be due to the target genes affected. Hence the target genes were characterized for their expression in the TNBC cell lines to prove the combinatorial effect of JQ1 and GSK2801. METHODS RNASeq data sets of TNBC cell lines (MDA-MB-231, HCC-1806 and SUM-159) were analyzed to identify the differentially expressed genes in single and combined treatments. The topmost downregulated genes were characterized for their downregulated expression in the TNBC cell lines treated with JQ1 and GSK2801 under different dose concentrations and combinations. The optimal lethal doses were determined by cytotoxicity assays. The inhibitory activity of the drugs was further characterized by molecular modelling studies. RESULTS Global expression profiling of TNBC cell lines using RNASeq revealed different expression patterns when JQ1 and GSK2801 were co-administered. Functional enrichment analyses identified several metabolic pathways (i.e., systemic lupus erythematosus, PI3K-Akt, TNF, JAK-STAT, IL-17, MAPK, Rap1 and signaling pathways) enriched with upregulated and downregulated genes when combined JQ1 and GSK2801 treatment was administered. RNASeq identified downregulation of PTPRC, MUC19, RNA5-8S5, KCNB1, RMRP, KISS1 and TAGLN (validated by RT-qPCR) and upregulation of GPR146, SCARA5, HIST2H4A, CDRT4, AQP3, MSH5-SAPCD1, SENP3-EIF4A1, CTAGE4 and RNASEK-C17orf49 when cells received both drugs. In addition to differential gene regulation, molecular modelling predicted binding of JQ1 and GSK2801 with PTPRC, MUC19, KCNB1, TAGLN and KISS1 proteins, adding another mechanism by which JQ1 and GSK2801 could elicit changes in metabolism and proliferation. CONCLUSION JQ1-GSK2801 synergistically inhibits proliferation and results in selective gene regulation. Besides suggesting that combinatorial use could be useful therapeutics for the treatment of TNBC, the findings provide a glimpse into potential mechanisms of action for this combination therapy approach.
Collapse
Affiliation(s)
- Nanda Kumar Yellapu
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA
- The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Thuc Ly
- The University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas, Medical Center, KS, Kansas City, USA
| | - Mihaela E Sardiu
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA
- The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA
- The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Danny R Welch
- The University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas, Medical Center, KS, Kansas City, USA
- Departments of Molecular & Integrative Physiology and Internal Medicine, University of Kansas, Medical Center, KS, Kansas City, USA
| | - Jeffery A Thompson
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA.
- The University of Kansas Cancer Center, Kansas City, KS, USA.
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA.
- The University of Kansas Cancer Center, Kansas City, KS, USA.
| |
Collapse
|
9
|
Xiang Q, Luo G, Zhang C, Hu Q, Wang C, Wu T, Xu H, Hu J, Zhuang X, Zhang M, Wu S, Xu J, Zhang Y, Liu J, Xu Y. Discovery, optimization and evaluation of 1-(indolin-1-yl)ethan-1-ones as novel selective TRIM24/BRPF1 bromodomain inhibitors. Eur J Med Chem 2022; 236:114311. [PMID: 35385803 DOI: 10.1016/j.ejmech.2022.114311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/12/2022]
Abstract
TRIM24 (tripartite motif-containing protein 24) and BRPF1 (bromodomain and PHD finger containing protein 1) are epigenetics "readers" and potential therapeutic targets for cancer and other diseases. Here we describe the structure-guided design of 1-(indolin-1-yl)ethan-1-ones as novel TRIM24/BRPF1 bromodomain inhibitors. The representative compound 20l (Y08624) is a new TRIM24/BRPF1 dual inhibitor, with IC50 values of 0.98 and 1.16 μM, respectively. Cellular activity of 20l was validated by viability assay in prostate cancer (PC) cell lines. In PC xenograft models, 20l suppressed tumor growth (50 mg/kg/day, TGI = 53%) without exhibiting noticeable toxicity. Compound 20l represents a versatile starting point for the development of more potent TRIM24/BRPF1 inhibitors.
Collapse
Affiliation(s)
- Qiuping Xiang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Guolong Luo
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Qingqing Hu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Tianbang Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hongrui Xu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiankang Hu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Xiaoxi Zhuang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Maofeng Zhang
- College of Pharmacy, Taizhou Polytechnic College, Taizhou, 225300, China
| | - Shuang Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| |
Collapse
|
10
|
Gutiérrez JR, Salgadoa ARM, Arias MDÁ, Vergara HSJ, Rada WR, Gómez CMM. Epigenetic Modulators as Treatment Alternative to Diverse Types of Cancer. Curr Med Chem 2021; 29:1503-1542. [PMID: 34963430 DOI: 10.2174/0929867329666211228111036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 10/21/2021] [Indexed: 01/10/2023]
Abstract
DNA is packaged in rolls in an octamer of histones forming a complex of DNA and proteins called chromatin. Chromatin as a structural matrix of a chromosome and its modifications are nowadays considered relevant aspects for regulating gene expression, which has become of high interest in understanding genetic mechanisms regulating various diseases, including cancer. In various types of cancer, the main modifications are found to be DNA methylation in the CpG dinucleotide as a silencing mechanism in transcription, post-translational histone modifications such as acetylation, methylation and others that affect the chromatin structure, the ATP-dependent chromatin remodeling and miRNA-mediated gene silencing. In this review we analyze the main alterations in gene expression, the epigenetic modification patterns that cancer cells present, as well as the main modulators and inhibitors of each epigenetic mechanism and the molecular evolution of the most representative inhibitors, which have opened a promising future in the study of HAT, HDAC, non-glycoside DNMT inhibitors and domain inhibitors.
Collapse
Affiliation(s)
- Jorseth Rodelo Gutiérrez
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Arturo René Mendoza Salgadoa
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Marcio De Ávila Arias
- Department of Medicine, Biotechnology Research Group, Health Sciences Division, Universidad del Norte, Barranquilla, Colombia
| | - Homero San- Juan- Vergara
- Department of Medicine, Biotechnology Research Group, Health Sciences Division, Universidad del Norte, Barranquilla, Colombia
| | - Wendy Rosales Rada
- Advanced Biomedicine Research Group. Faculty of Exact and Natural Sciences, Universidad Libre Seccional, Barranquilla, Colombia
- Advanced Biomedicine Research Group. Faculty of Exact and Natural Sciences, Universidad Libre Seccional, Barranquilla, Colombia
| | - Carlos Mario Meléndez Gómez
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| |
Collapse
|
11
|
Han X, Tian M, Shliaha PV, Zhang J, Jiang S, Nan B, Alam MN, Jensen ON, Shen H, Huang Q. Real-world particulate matters induce lung toxicity in rats fed with a high-fat diet: Evidence of histone modifications. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126182. [PMID: 34492953 DOI: 10.1016/j.jhazmat.2021.126182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Exposure to ambient particulate matters (PMs) has been associated with a variety of lung diseases, and high-fat diet (HFD) was reported to exacerbate PM-induced lung dysfunction. However, the underlying mechanisms for the combined effects of HFD and PM on lung functions remain poorly unraveled. By performing a comparative proteomic analysis, the current study investigated the global changes of histone post-translational modifications (PTMs) in rat lung exposed to long-term, real-world PMs. In result, after PM exposure the abundance of four individual histone PTMs (1 down-regulated and 3 up-regulated) and six combinatorial PTMs (1 down-regulated and 5 up-regulated) were significantly altered in HFD-fed rats while only one individual PTM was changed in rats with normal diet (ND) feeding. Histones H3K18ac, H4K8ac and H4K12ac were reported to be associated with DNA damage response, and we found that these PTMs were enhanced by PM in HFD-fed rats. Together with the elevated DNA damage levels in rat lungs following PM and HFD co-exposure, we demonstrate that PM exposure combined with HFD could induce lung injury through altering more histone modifications accompanied by DNA damage. Overall, these findings will augment our knowledge of the epigenetic mechanisms for pulmonary toxicity caused by ambient PM and HFD exposure.
Collapse
Affiliation(s)
- Xuejingping Han
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Pavel V Shliaha
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 4221-117 Xiang An Nan Road, Xiamen 361102, China.
| | - Shoufang Jiang
- Department of Occupational and Environmental Health, School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Md Nur Alam
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 4221-117 Xiang An Nan Road, Xiamen 361102, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
12
|
Zhang M, Yan X, Wang L, Liu Z. Facile Synthesis of New Imidazo[4',5':4,5]benzo[1,2-d] isoxazol-6-one Derivatives and In Silico Studies of Their Drug-like Profiles. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1920303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maofeng Zhang
- College of Pharmacy, Jiangsu Solid Preparation Engineering Technology Research and Development Center, Taizhou Polytechnic College, Taizhou, P. R. China
| | - Xingli Yan
- College of Pharmacy, Jiangsu Solid Preparation Engineering Technology Research and Development Center, Taizhou Polytechnic College, Taizhou, P. R. China
| | - Lizhong Wang
- College of Pharmacy, Jiangsu Solid Preparation Engineering Technology Research and Development Center, Taizhou Polytechnic College, Taizhou, P. R. China
| | - Zhuyun Liu
- College of Pharmacy, Jiangsu Solid Preparation Engineering Technology Research and Development Center, Taizhou Polytechnic College, Taizhou, P. R. China
| |
Collapse
|
13
|
Saadati-Moshtaghin HR, Maleki B, Tayebee R, Kahrobaei S, Abbasinohoji F. 6-methylguanamine-Supported CoFe 2O 4: An Efficient Catalyst for One-Pot Three-Component Synthesis of Isoxazol-5(4 H)-One Derivatives. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1754865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Behrooz Maleki
- Department of Chemistry, School of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Reza Tayebee
- Department of Chemistry, School of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Sepideh Kahrobaei
- Department of Chemistry, School of Science, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|