1
|
Dhalla NS, Ostadal P, Tappia PS. Involvement of Oxidative Stress and Antioxidants in Modification of Cardiac Dysfunction Due to Ischemia-Reperfusion Injury. Antioxidants (Basel) 2025; 14:340. [PMID: 40227421 PMCID: PMC11939711 DOI: 10.3390/antiox14030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
Delayed reperfusion of the ischemic heart (I/R) is known to impair the recovery of cardiac function and produce a wide variety of myocardial defects, including ultrastructural damage, metabolic alterations, subcellular Ca2+-handling abnormalities, activation of proteases, and changes in cardiac gene expression. Although I/R injury has been reported to induce the formation of reactive oxygen species (ROS), inflammation, and intracellular Ca2+ overload, the generation of oxidative stress is considered to play a critical role in the development of cardiac dysfunction. Increases in the production of superoxide, hydroxyl radicals, and oxidants, such as hydrogen peroxide and hypochlorous acid, occur in hearts subjected to I/R injury. In fact, mitochondria are a major source of the excessive production of ROS in I/R hearts due to impairment in the electron transport system as well as activation of xanthine oxidase and NADPH oxidase. Nitric oxide synthase, mainly present in the endothelium, is also activated due to I/R injury, leading to the production of nitric oxide, which, upon combination with superoxide radicals, generates nitrosative stress. Alterations in cardiac function, sarcolemma, sarcoplasmic reticulum Ca2+-handling activities, mitochondrial oxidative phosphorylation, and protease activation due to I/R injury are simulated upon exposing the heart to the oxyradical-generating system (xanthine plus xanthine oxidase) or H2O2. On the other hand, the activation of endogenous antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, and the concentration of a transcription factor (Nrf2), which modulates the expression of various endogenous antioxidants, is depressed due to I/R injury in hearts. Furthermore, pretreatment of hearts with antioxidants such as catalase plus superoxide dismutase, N-acetylcysteine, and mercaptopropionylglycerine has been observed to attenuate I/R-induced subcellular Ca2+ handling and changes in Ca2+-regulatory activities; additionally, it has been found to depress protease activation and improve the recovery of cardiac function. These observations indicate that oxidative stress is intimately involved in the pathological effects of I/R injury and different antioxidants attenuate I/R-induced subcellular alterations and improve the recovery of cardiac function. Thus, we are faced with the task of developing safe and effective antioxidants as well as agents for upregulating the expression of endogenous antioxidants for the therapy of I/R injury.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Petr Ostadal
- Department of Cardiology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15000 Prague, Czech Republic;
| | - Paramjit S. Tappia
- Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| |
Collapse
|
2
|
Dong Q, Zhu Y, Zhang X, Li L, Yang Y, Liu C, Wen J. Phytochemicals Targeting Mitophagy to Treat Heart Diseases: Retrospective Insights and Prospective Directions. Phytother Res 2025; 39:1592-1614. [PMID: 39912509 DOI: 10.1002/ptr.8448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 02/07/2025]
Abstract
Mitophagy is a process by which cells selectively eliminate damaged or dysfunctional mitochondria through the autophagy-lysosome pathway, thereby maintaining mitochondrial quality and cellular homeostasis. This process is closely linked to the onset and progression of various heart diseases. Modern pharmacological research has demonstrated that phytochemicals can regulate mitochondrial homeostasis in cardiomyocytes through multiple mechanisms, influencing mitophagy and protecting cardiomyocytes, which in turn exerts anti-cardiovascular effects. However, the underlying mechanisms of these effects are not yet fully understood. This study summarizes the pharmacological effects and molecular mechanisms of mitophagy in heart diseases, aiming to provide reference for the research and treatment of phytochemicals targeting mitophagy against heart diseases. The results indicated that phytochemicals (such as Berberine, Ginsenoside Rg1, Quercetin, Resveratrol, Baicalein, and so on) can exert preventive and therapeutic effects on heart diseases (such as cardiac toxicity or damage, myocardial ischemia/reperfusion injury, heart failure, heart aging, cardiac hypertrophy, cardiomyopathy, and so on.) via regulating the PINK1/Parkin and FUNDC1-dependent mitophagy pathway. These compounds mainly exert their effects by regulating mitochondrial homeostasis, mitochondrial dynamics, mitochondrial oxidative stress, mitochondrial apoptosis, and mitochondrial energy metabolism. This study provides a reference that phytochemicals have effect on anti-cardiovascular effects by regulating mitophagy. However, further in-depth mechanistic and clinical research are needed in the future.
Collapse
Affiliation(s)
- Qin Dong
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Yichan Zhu
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Xinghai Zhang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Lu Li
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Yi Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Chuan Liu
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Jianxia Wen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| |
Collapse
|
3
|
Xiao C, Wang Y, Liu J, Li X, Wang P, Zhou J, Xiu H, Lu S, Zhu H, Wang R. Mechanism of Fangji Huangqi decoction against acute kidney injury based on network pharmacology and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156345. [PMID: 39742571 DOI: 10.1016/j.phymed.2024.156345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/21/2024] [Accepted: 10/07/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND Fangji Huangqi Decoction (FJHQD), a famous Traditional Chinese Medicine (TCM) formula, has been widely applied in improving renal function. However, the interaction of bioactives from FJHQD with the targets involved in acute renal injury (AKI) has not been elucidated yet. PURPOSE A network pharmacology-based approach combined with molecular docking and in vitro and in vivo validation was performed to determine the bioactives, key targets, and potential pharmacological mechanism of FJHQD against AKI. MATERIALS AND METHODS The model of mouse renal ischemic reperfusion was adopted to verify the curative effect of FJHQD against renal injury. FJHQD was analyzed and separated by Ultra-High performance liquid chromatography (UHPLC). Bioactives and potential targets of FJHQD, as well as AKI-related targets, were retrieved from public databases. Crucial bioactive ingredients, potential targets, and signaling pathways were acquired through bioinformatics analysis, including protein-protein interaction (PPI), as well as the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Subsequently, molecular docking was carried out to predict the combination of active compounds with core targets. Besides, in vivo and vitro experiments were conducted to verify the findings. RESULTS A total of 20 bioactive ingredients of FJHQD (top 10 positive ion and negative ion compounds) and 274 FJHQD-AKI overlaped targets were screened. Bioinformatics analysis revealed that apoptosis mediated by PI3K-AKT signaling pathway might play an important role in FJHQD against AKI. Further experiments showed that FJHQD alleviated I/R-induced renal injury and OGD/R induced TEC apoptosis by activating PI3K-AKT signaling pathway. Moreover, molecular docking suggested (9Z,12Z,14E)-16-Hydroxy-9,12,14-octadecatrienoic acid, 2-Hydroxyacetophenone, Liquiritigenin, (S)-[10]-Gingerol and Isookanin-7-O-glucoside may be potential candidate agents, among which, PIK3CA interacted with Liquiritigenin, (S)-[10]-Gingerol, Isookanin-7-O-glucoside and 2-Hydroxyacetophenone respectively. AKT1 interacted with (9Z,12Z,14E)-16-Hydroxy-9,12,14-octadecatrienoic acid and 2-Hydroxyacetophenone. Cell experiments showed that the most important ingredient of FJHQD, Liquiritigenin, could inhibit the TEC apoptosis and up-regulate PI3K-Akt signaling pathway, which further confirmed the prediction by network pharmacology strategy and molecular docking. CONCLUSION Our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of FJHQD against AKI. It also provided a promising strategy to uncover the scientific basis and therapeutic mechanism of TCM formulae in treating diseases.
Collapse
Affiliation(s)
- Chengcheng Xiao
- Department of Urology, Qingdao Municipal Hospital, Qingdao, PR China
| | - Yayun Wang
- Department of Hematology, Qingdao Municipal Hospital, Qingdao, PR China
| | - Jingwei Liu
- Department of Urology, Qingdao Chengyang People's Hospital, Qingdao, PR China
| | - Xin Li
- Department of Anorectal, Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Peng Wang
- Department of Urology, Qingdao Municipal Hospital, Qingdao, PR China
| | - Junran Zhou
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao, PR China
| | - Hao Xiu
- Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao, PR China
| | - Shun Lu
- Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao, PR China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, Qingdao, PR China
| | - Renhe Wang
- Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao, PR China.
| |
Collapse
|
4
|
Wang Y, Xue P, Gao L, Wang X, Zhou S, Wu X, Guo C. Improved bioavailability of polydatin and its protective effect against cisplatin induced nephrotoxicity through self-assembled fucoidan and carboxymethyl chitosan delivery system. Int J Biol Macromol 2025; 287:138577. [PMID: 39657878 DOI: 10.1016/j.ijbiomac.2024.138577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Cisplatin induced acute kidney injury (AKI) is clinically prevalent, with a complex pathogenesis and a lack of effective therapeutic drugs. Polydatin (Po) has excellent biological activity, but its low solubility and bioavailability limit its application. In this study, fucoidan (Fu) and carboxymethyl chitosan (Cs) self-assembled into nanoparticles through electrostatic interactions/hydrogen bonding and loaded Po (Fu/Cs Po NPs). In vitro studies found that Fu/Cs Po NPs protected human renal tubular epithelial (HK-2) cells from cisplatin induced damage and accumulation of reactive oxygen species (ROS). Mechanistic studies showed that Fu/Cs Po NPs inhibited cisplatin induced DNA damage and activation of cyclic guanosine monophosphate synthase (cGAS) and intron gene stimulator (STING) pathways. In vivo studies showed that Fu/Cs Po NPs treatment alleviated cisplatin induced AKI symptoms, including elevated blood urea nitrogen (BUN) and serum creatinine (SCr), as well as pathological damage to kidney tissues. In vivo mechanism studies also showed that Fu/Cs Po NPs treatment inhibited cisplatin induced DNA damage and activation of the cGAS-STING pathway. The pharmacokinetic and tissue distribution results demonstrated that the Fu/Cs delivery system enhanced the bioavailability and kidney accumulation of Po in vivo. In summary, our study provided potential drugs for the treatment of cisplatin induced AKI.
Collapse
Affiliation(s)
- Yinghan Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pengyu Xue
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liang Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuefei Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shilin Zhou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
5
|
Sun Z, Zhang X, Li M, Yang Q, Xiao X, Chen X, Liang W. Targeting ferroptosis in treating traumatic brain injury: Harnessing the power of traditional Chinese medicine. Biomed Pharmacother 2024; 180:117555. [PMID: 39413616 DOI: 10.1016/j.biopha.2024.117555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Traumatic brain injury (TBI) exhibits high prevalence and mortality, but current treatments remain suboptimal. Traditional Chinese medicine (TCM) has long been effectively used for TBI intervention. Moreover, the recently discovered iron-dependent cell death pathway, known as ferroptosis, characterized by lipid peroxidation, as a key target in TCM-based treatments for TBI. This review provides a comprehensive overview of the latest advancements in TCM strategies targeting ferroptosis in TBI therapy, covering natural product monomers, classic formulas, and acupuncture/moxibustion. The review also addresses current challenges and outlines future research directions to further advance the development and application of TBI management strategies.
Collapse
Affiliation(s)
- Zhongjie Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Chen Z, Wang K, He X, Xue D, Ma X. Ezetimibe ketone protects against renal ischemia-reperfusion injury and attenuates oxidative stress via activation of the Nrf2/HO-1 signaling pathway. J Biochem Mol Toxicol 2024; 38:e23792. [PMID: 39082152 DOI: 10.1002/jbt.23792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Recently, ezetimibe (EZM) has been suggested to be a potent Nrf2 activator that is important for preventing oxidative stress. Interestingly, we found that its metabolite ezetimibe ketone (EZM-K) also has antioxidant effects. Thus, we investigated the role of EZM-K in preventing renal ischemia‒reperfusion injury (RIRI). Cultured NRK-52E cells were subjected to simulated IR with or without EZM-K. Rats were used to simulate in vivo experiments. EZM-K alleviated H2O2-induced apoptosis and reactive oxygen species (ROS) and upregulated Nrf2 and HO-1 levels in NRK-52E cells. A HO-1 and a Nrf2 inhibitor reversed the protective effects of EZM-K. In the rat RIRI model, pretreatment with EZM-K activated the Nrf2/HO-1 signaling pathway, suppressed tubular injury and inflammation, and improved renal function. EZM-K significantly prevented renal injury caused by ischemia‒reperfusion via the Nrf2/HO-1 signaling axis both in vivo and in vitro. The other metabolite of EZM, ezetimibe glucuronide (EZM-G) had no protective effects against ROS in RIRI. EZM-G also had no antioxidant effects and could not activate Nrf2/HO-1 signal pathway. Our findings also indicated the therapeutic potential of EZM-K in preventing RIRI.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Urology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Kai Wang
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaozhou He
- Department of Urology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Dong Xue
- Department of Urology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Xuyi Ma
- Department of Urology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
7
|
Zhang Z, Sun Z, Jia R, Jiang D, Xu Z, Zhang Y, Wu YQ, Wang X. Protective effects of polydatin against bone and joint disorders: the in vitro and in vivo evidence so far. Nutr Res Rev 2024; 37:96-107. [PMID: 37088535 DOI: 10.1017/s0954422423000082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Polydatin is an active polyphenol displaying multifaceted benefits. Recently, growing studies have noticed its potential therapeutic effects on bone and joint disorders (BJDs). Therefore, this article reviews recent in vivo and in vitro progress on the protective role of polydatin against BJDs. An insight into the underlying mechanisms is also presented. It was found that polydatin could promote osteogenesis in vitro, and symptom improvements have been disclosed with animal models of osteoporosis, osteosarcoma, osteoarthritis and rheumatic arthritis. These beneficial effects obtained in laboratory could be mainly attributed to the bone metabolism-regulating, anti-inflammatory, antioxidative, apoptosis-regulating and autophagy-regulating functions of polydatin. However, studies on human subjects with BJDs that can lead to early identification of the clinical efficacy and adverse effects of polydatin have not been reported yet. Accordingly, this review serves as a starting point for pursuing clinical trials. Additionally, future emphasis should also be devoted to the low bioavailability and prompt metabolism nature of polydatin. In summary, well-designed clinical trials of polydatin in patients with BJD are in demand, and its pharmacokinetic nature must be taken into account.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Department of Spine Surgery, Youyang Tujia and Miao Autonomous County People's Hospital, Chongqing, 409899, People's Republic of China
| | - Zhicheng Sun
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Runze Jia
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Dingyu Jiang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Zhenchao Xu
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yilu Zhang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yun-Qi Wu
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Xiyang Wang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| |
Collapse
|
8
|
He YQ, Zhou CC, Jiang SG, Lan WQ, Zhang F, Tao X, Chen WS. Natural products for the treatment of chemotherapy-related cognitive impairment and prospects of nose-to-brain drug delivery. Front Pharmacol 2024; 15:1292807. [PMID: 38348396 PMCID: PMC10859466 DOI: 10.3389/fphar.2024.1292807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Chemotherapy-related cognitive deficits (CRCI) as one of the common adverse drug reactions during chemotherapy that manifest as memory, attention, and executive function impairments. However, there are still no effective pharmacological therapies for the treatment of CRCI. Natural compounds have always inspired drug development and numerous natural products have shown potential therapeutic effects on CRCI. Nevertheless, improving the brain targeting of natural compounds in the treatment of CRCI is still a problem to be overcome at present and in the future. Accumulated evidence shows that nose-to-brain drug delivery may be an excellent carrier for natural compounds. Therefore, we reviewed natural products with potential anti-CRCI, focusing on the signaling pathway of these drugs' anti-CRCI effects, as well as the possibility and prospect of treating CRCI with natural compounds based on nose-to-brain drug delivery in the future. In conclusion, this review provides new insights to further explore natural products in the treatment of CRCI.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng-Gui Jiang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wen-Qian Lan
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
10
|
Sun Z, Wang Y, Pang X, Wang X, Zeng H. Mechanisms of polydatin against spinal cord ischemia-reperfusion injury based on network pharmacology, molecular docking and molecular dynamics simulation. Bioorg Chem 2023; 140:106840. [PMID: 37683540 DOI: 10.1016/j.bioorg.2023.106840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Polydatin has shown considerable pharmacological activities in ischemia-reperfusion injuries of various organs. However, its effects and mechanisms in spinal cord ischemia-reperfusion injury have not been fully established. In this study, the mechanisms of polydatin against spinal cord ischemia-reperfusion injury were investigated via network pharmacology, molecular docking and molecular dynamics simulation. METHODS Spinal cord ischemia-reperfusion injury-related targets were obtained from the GeneCards database, while polydatin-related action targets were obtained from the CTD and SwissTarget databases. A protein-protein interaction network of potential targets was constructed using the String platform. After selecting the potential key targets, GO functional enrichment and KEGG pathway enrichment analyses were performed via the Metascape database, and a network map of "drug-target-pathway-disease" constructed. The relationships between polydatin and various key targets were assessed via molecular docking. Molecular dynamics simulation was conducted for optimal core protein-compound complexes obtained by molecular docking. RESULTS Topological analysis of the PPI network revealed 14 core targets. GO functional enrichment analysis revealed that 435 biological processes, 12 cell components and 29 molecular functions were enriched while KEGG pathway enrichment analysis revealed 91 enriched signaling pathways. Molecular docking showed that polydatin had the highest binding affinity for MAPK3, suggesting that MAPK3 is a key target of polydatin against spinal cord ischemia-reperfusion injury. Molecular dynamics simulations revealed good binding abilities between polydatin and MAPK3. CONCLUSIONS Polydatin exerts its effects on spinal cord ischemia-reperfusion injury through multiple targets and pathways. MAPK3 may be a key target of polydatin in spinal cord ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhicheng Sun
- Department of Spinal Surgery, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Yuanqing Wang
- School of Life Science and Technology, Central South University of Forestry and Technology, Changsha, PR China.
| | - Xiaoyang Pang
- Department of Spinal Surgery, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Xiyang Wang
- Department of Spinal Surgery, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Hao Zeng
- Department of Spine and Osteopathy Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
11
|
Niu Y, Zhang J, Shi D, Zang W, Niu J. Glycosides as Potential Medicinal Components for Ulcerative Colitis: A Review. Molecules 2023; 28:5210. [PMID: 37446872 DOI: 10.3390/molecules28135210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic, non-specific disease of unknown etiology. The disease develops mainly in the rectum or colon, and the main clinical symptoms include abdominal pain, diarrhea, and purulent bloody stools, with a wide variation in severity. The specific causative factors and pathogenesis of the disease are not yet clear, but most scholars believe that the disease is caused by the interaction of genetic, environmental, infectious, immune, and intestinal flora factors. As for the treatment of UC, medications are commonly used in clinical practice, mainly including aminosalicylates, glucocorticoids, and immunosuppressive drugs. However, due to the many complications associated with conventional drug therapy and the tendency for UC to recur, there is an urgent need to discover new, safer, and more effective drugs. Natural compounds with biodiversity and chemical structure diversity from medicinal plants are the most reliable source for the development of new drug precursors. Evidence suggests that glycosides may reduce the development and progression of UC by modulating anti-inflammatory responses, inhibiting oxidative stress, suppressing abnormal immune responses, and regulating signal transduction. In this manuscript, we provide a review of the epidemiology of UC and the available drugs for disease prevention and treatment. In addition, we demonstrate the protective or therapeutic role of glycosides in UC and describe the possible mechanisms of action to provide a theoretical basis for preclinical studies in drug development.
Collapse
Affiliation(s)
- Yating Niu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Jun Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Dianhua Shi
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Weibiao Zang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianguo Niu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
12
|
Chandel R, Kumar V, Kaur R, Kumar S, Gill MS, Sharma R, Wagh RV, Kumar D. Functionality enhancement of osmo-dried sand pear cubes using different sweeteners: quality, bioactive, textural, molecular, and structural characterization. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
He M, Feng L, Chen Y, Gao B, Du Y, Zhou L, Li F, Liu H. Polydatin attenuates tubulointerstitial fibrosis in diabetic kidney disease by inhibiting YAP expression and nuclear translocation. Front Physiol 2022; 13:927794. [PMID: 36277194 PMCID: PMC9585250 DOI: 10.3389/fphys.2022.927794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
The activation of Yes-associated protein (YAP) pathway is mutually causal with the increase of extracellular matrix (ECM) stiffness. Polydatin (PD) has been proved to have anti-fibrosis effect in diabetic kidney disease (DKD), but it is still a mystery whether PD participates in YAP-related mechano-transduction. Therefore, this study intends to solve the following two problems: 1) To construct an in vitro system of polyacrylamide hydrogels (PA gels) based on the true stiffness of kidneys in healthy and DKD rats, and observe the effect of PD on pathological matrix stiffness-induced YAP expression in renal fibroblasts; 2) Compared with verteporfin (VP), a pharmacological inhibitor of YAP, to explore whether the therapeutic effect of PD on DKD in vivo model is related to the regulation of YAP. In this study, the in vitro system of PA gels with 3 kPa, 12 kPa and 30 kPa stiffness was constructed and determined for the first time to simulate the kidney stiffness of healthy rats, rats with DKD for 8 weeks and 16 weeks, respectively. Compared with the PA gels with 3 kPa stiffness, the PA gels with 12 kPa and 30 kPa stiffness significantly increased the expression of YAP, α-smooth muscle actin (α-SMA) and collagen I, and the production of reactive oxygen species (ROS) in renal fibroblasts, and the PA gels with 30 kPa stiffness were the highest. PD significantly inhibited the above-mentioned changes of fibroblasts induced by pathological matrix stiffness, suggesting that the inhibition of PD on fibroblast-to-myofibroblast transformation and ECM production was at least partially associated with regulating YAP-related mechano-transduction pathway. Importantly, the inhibitory effect of PD on YAP expression and nuclear translocation in kidneys of DKD rats is similar to that of VP, but PD is superior to VP in reducing urinary protein, blood glucose, blood urea nitrogen and serum creatinine, as well as decreasing the expression of α-SMA and collagen I, ROS overproduction and renal fibrosis. Our results prove for the first time from the biomechanical point of view that PD is a potential therapeutic strategy for delaying the progression of renal fibrosis by inhibiting YAP expression and nuclear translocation.
Collapse
Affiliation(s)
- Manlin He
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Lan Feng
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Yang Chen
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Yiwei Du
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Lu Zhou
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hongbao Liu, ; Fei Li,
| | - Hongbao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
- *Correspondence: Hongbao Liu, ; Fei Li,
| |
Collapse
|
14
|
Karami A, Fakhri S, Kooshki L, Khan H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022; 27:6474. [PMID: 36235012 PMCID: PMC9572446 DOI: 10.3390/molecules27196474] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Polydatin is a natural potent stilbenoid polyphenol and a resveratrol derivative with improved bioavailability. Polydatin possesses potential biological activities predominantly through the modulation of pivotal signaling pathways involved in inflammation, oxidative stress, and apoptosis. Various imperative biological activities have been suggested for polydatin towards promising therapeutic effects, including anticancer, cardioprotective, anti-diabetic, gastroprotective, hepatoprotective, neuroprotective, anti-microbial, as well as health-promoting roles on the renal system, the respiratory system, rheumatoid diseases, the skeletal system, and women's health. In the present study, the therapeutic targets, biological activities, pharmacological mechanisms, and health benefits of polydatin are reviewed to provide new insights to researchers. The need to develop further clinical trials and novel delivery systems of polydatin is also considered to reveal new insights to researchers.
Collapse
Affiliation(s)
- Ahmad Karami
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Leila Kooshki
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
15
|
Şöhretoğlu D, Barut B, Sari S, Özel A, Kuruüzüm-Uz A, Arroo R. In Vitro and in Silico Investigation of DNA Interaction, Topoisomerase I and II Inhibitory Properties of Polydatin. Chem Biodivers 2022; 19:e202200352. [PMID: 36149030 DOI: 10.1002/cbdv.202200352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/05/2022] [Indexed: 11/11/2022]
Abstract
Polydatin or piceid, is the 3-O-glucoside of resveratrol and is found abundantly in grapes, peanuts, wine, beer, and cacao products. Although anticancer activity of polydatin was reported before, and potential antiproliferative mechanisms of polydatin have been proposed, its direct effects on DNA and inhibitory potential against topoisomerase enzymes have remained unknown. In this study we aimed to reveal the link between polydatin's effects on DNA and DNA-topoisomerases and its antiproliferative promise. For this purpose, we evaluated the effects of polydatin on DNA and DNA topoisomerase using in vitro and in silico techniques. Polydatin was found to protect DNA against Fenton reaction-induced damage while not showing any hydrolytic nuclease effect. Further, polydatin inhibited topoisomerase II but not topoisomerase I. According to molecular docking studies, polydatin preferably showed minor groove binding to DNA where the stilbene moiety was important for binding to the DNA-topoisomerase II complex. As a result, topoisomerase II inhibition might be another anticancer mechanism of polydatin.
Collapse
Affiliation(s)
- Didem Şöhretoğlu
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, Sıhhiye, Ankara, TR-06100, Ankara, Turkey
| | - Burak Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkey
| | - Suat Sari
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Sıhhiye, Ankara, TR-06100, Ankara, Turkey
| | - Arzu Özel
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkey.,Karadeniz Technical University, Drug and Pharmaceutical Technology Application and Research Center, Trabzon, Turkey
| | - Ayşe Kuruüzüm-Uz
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, Sıhhiye, Ankara, TR-06100, Ankara, Turkey
| | - Randolph Arroo
- De Montfort University, Leicester School of Pharmacy, The Gateway, Leicester, LE1 9BH, United Kingdom
| |
Collapse
|
16
|
Polydatin Attenuates Cisplatin-Induced Acute Kidney Injury via SIRT6-Mediated Autophagy Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9035547. [PMID: 36160707 PMCID: PMC9507782 DOI: 10.1155/2022/9035547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022]
Abstract
In the treatment of malignant tumors, the effectiveness of cisplatin (CP) is limited by its nephrotoxicity, leading to cisplatin-induced acute kidney injury (CP-AKI). Polydatin (PD) has been demonstrated to regulate autophagy in tumors, sepsis, and diabetes. We have recently confirmed that PD attenuated CP-AKI by inhibiting ferroptosis, but it is not clear whether PD can regulate autophagy to protect from CP-AKI. The purpose of this study was to investigate the effect of PD on autophagy in CP-treated HK-2 cells and CP-AKI mouse models, exploring the role of sirtuin 6 (SIRT6) upregulated by PD. In this study, the blocking of autophagy flux was observed in both CP-treated HK-2 cells in vitro and CP-AKI mouse models in vivo, whereas this blocking was reversed by PD, which was characterized by the increase of autophagy microtubule-associated protein light chain 3 II expression and autophagolysosome/autophagosome ratio and the decrease of p62 expression. Furthermore, PD also significantly increased the expression of SIRT6 in vivo and in vitro. The protective effect of PD manifested by the stimulating of autophagy flux, with the reducing of inflammatory response and oxidative stress, which included downregulation of tumor necrosis factor-α and interleukin-1β, decreased activity of myeloperoxidase and content of malondialdehyde, and increased activity of superoxide dismutase and level of glutathione, both in vivo and in vitro, was reversed by either inhibition of autophagy flux by chloroquine or downregulation of SIRT6 by OSS-128167. Taken together, the present findings provide the first evidence demonstrating that PD exhibited nephroprotective effects on CP-AKI by restoring SIRT6-mediated autophagy flux mechanisms.
Collapse
|
17
|
Zheng Y, Li R, Fan X. Targeting Oxidative Stress in Intracerebral Hemorrhage: Prospects of the Natural Products Approach. Antioxidants (Basel) 2022; 11:1811. [PMID: 36139885 PMCID: PMC9495708 DOI: 10.3390/antiox11091811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH), the second most common subtype of stroke, remains a significant cause of morbidity and mortality worldwide. The pathological mechanism of ICH is very complex, and it has been demonstrated that oxidative stress (OS) plays an important role in the pathogenesis of ICH. Previous studies have shown that OS is a therapeutic target after ICH, and antioxidants have also achieved some benefits in the treatment of ICH. This review aimed to explore the promise of natural products therapy to target OS in ICH. We searched PubMed using the keywords "oxidative stress in intracerebral hemorrhage" and "natural products in intracerebral hemorrhage". Numerous animal and cell studies on ICH have demonstrated the potent antioxidant properties of natural products, including polyphenols and phenolic compounds, terpenoids, alkaloids, etc. In summary, natural products such as antioxidants offer the possibility of treatment of OS after ICH. However, researchers still have a long way to go to apply these natural products for the treatment of ICH more widely in the clinic.
Collapse
Affiliation(s)
| | | | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
18
|
Li D, Zhao H, Xu P, Lin Q, Zhao T, Li C, Cui ZK, Tian G. Polydatin activates the Nrf2/HO-1 signaling pathway to protect cisplatin-induced hearing loss in guinea pigs. Front Pharmacol 2022; 13:887833. [PMID: 35991886 PMCID: PMC9386133 DOI: 10.3389/fphar.2022.887833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/11/2022] [Indexed: 12/17/2022] Open
Abstract
Irreversible sensorineural hearing loss is one of the most common side effects after cisplatin treatment. Prevention and reversal of hearing loss caused by cisplatin are of great importance for cancer patients, especially children. Oxidative stress is an important cause of hearing loss resulted from cisplatin, unfortunately, there is no drug yet available that can completely prevent and reverse the ototoxicity from cisplatin. Polydatin (PD) possesses excellent antioxidant and anti-inflammatory effects, however, its role in the cisplatin-induced hearing loss has not been investigated. Herein, we have explored the preventive and therapeutic effects of PD on cisplatin-induced hearing loss and the possible underlying mechanisms. In the in vivo setting with guinea pigs, we have demonstrated that PD can reduce the threshold shift of auditory brainstem response (ABR) caused by cisplatin, promote the nuclear translocation of Nuclear factor erythroid-2 related factor 2 (Nrf2), increase the expression of Nrf2 and heme oxygenase-1 (HO-1), and thus reduce the loss of outer hair cells (OHCs). PD can ameliorate cisplatin-induced hearing loss through activating the Nrf2/HO-1 signaling pathway. This study provides a potential strategy for preventing and improving hearing loss resulted from cisplatin treatment in clinics.
Collapse
Affiliation(s)
- Dafei Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Haiyan Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Piao Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Qiongping Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Tingting Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Chubing Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Zhong-Kai Cui
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Guangyong Tian, ; Zhong-Kai Cui,
| | - Guangyong Tian
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
- *Correspondence: Guangyong Tian, ; Zhong-Kai Cui,
| |
Collapse
|
19
|
Huang C, Jiang S, Gao S, Wang Y, Cai X, Fang J, Yan T, Craig Wan C, Cai Y. Sirtuins: Research advances on the therapeutic role in acute kidney injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154122. [PMID: 35490494 DOI: 10.1016/j.phymed.2022.154122] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Acute kidney injury (AKI), a common multidisciplinary diagnostic clinical critical illness, eventually causes end-stage renal disease (ESRD). Although many clinical measures have been taken to prevent or treat AKI, high morbidity and death rates were recorded. Therefore, in-depth pathogenesis study and search for new therapeutic targets are in demand. Interestingly, the suirtuins family showed a significant protective effect in AKI. Sirtuins (SIRT1-7) is a family of seven proteins with NAD+-dependent type III histone deacetylase activity. Sirtuins family members were involved by AKI, and regulation of sirtuins activities significantly improved AKI-induced renal injury. Therefore, the therapeutic role and molecular mechanisms of the sirtuins family in AKI has important research implications for clinical applications or basic research. PURPOSE This review summarizes recent advances in the roles and functions of the sirtuins family, discusses their therapeutic effects on AKI and related molecular mechanisms, and the mechanisms of action of small molecule specific activators or inhibitors sirtuins in the prevention and treatment of AKI were discussed. METHODS The data in this review were retrieved from various scientific databases (PubMed, Google scholar, Science Direct, and Web of Science), till December 2021. The keywords were used as follows: "Sirtuins", "Acute kidney injury", "AKI", "Sirtuins modulators" and "Histone deacetylation". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS Growing evidence indicates that members of the sirtuins family regulate the development and progression of different renal diseases, including AKI, through anti-inflammation, antioxidation, anti-apoptotic, and maintenance of mitochondrial homeostasis. The molecular mechanism of Sirtuins family on AKI mainly regulated NF-κB, JNK/ERK, and AMPK/mTOR signaling pathways, upregulated the expression of PGC-1α, HO-1, NRF2, Bcl-2, OPA1, and AMPK, and downregulated the expression of NRLP3, IL-1β, TNF-α, IL-6, ROS, MFF, Drp1, Bax, ERK, and mTOR. In addition, the active ingredients of herbs (resveratrol, thujaplicins, huperzine, and curcumin) could activate the activity of SIRT1 or SIRT3, thereby improving AKI. Meanwhile, the synthetic Sirtuins inhibitor (AK-1) inhibited SIRT2 activity, thus alleviating AKI. In the future, more specific modulators will remain needed to enhance the clinical therapeutic role of the Sirtuins family in AKI. CONCLUSION The sirtuins family is a promising type III histone deacetylase for AKI treatment. This review will provide insight into sirtuins family's therapeutic role in AKI and promote the clinical use of sirtuins modulators in AKI.
Collapse
Affiliation(s)
- Chaoming Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Shisheng Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Shuhan Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuxin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xiaoting Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Junyan Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Tingdong Yan
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PR China.
| | - Chunpeng Craig Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
20
|
Liu YJ, Xu WH, Fan LM, Zhang YQ, Xu W, Chen YP, Chen LL, Chen L, Xu W, Wang Y, Chu KD, Zhang JP. Polydatin alleviates DSS- and TNBS-induced colitis by suppressing Th17 cell differentiation via directly inhibiting STAT3. Phytother Res 2022; 36:3662-3671. [PMID: 35766233 DOI: 10.1002/ptr.7533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/25/2022] [Accepted: 06/12/2022] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease (IBD) is a non-specific chronic intestinal inflammatory disease, often presenting with abdominal pain, diarrhea, bloody stool, anorexia, and body loss. It is difficult to cure completely and a promising treatment is urgently needed. Natural compounds can offer promising chemical agents for treatment of diseases. Polydatin is a natural ingredient extracted from the dried rhizome of Polygonum cuspidatum, which has anti-inflammatory, anti-tumor, and dementia protection activities. The purpose of this study was to evaluate the therapeutic effect of polydatin on IBD and explore its possible mechanism. We found that polydatin could effectively suppress the differentiation of Th17 cells in vitro, but had no effect on the differentiation of Treg cells. Polydatin significantly alleviated colitis induced by dextran sulfate sodium (DSS) and 2, 4, 6-trinitrobenzenesulfonic acid (TNBS) in mice, and dramatically decreased the proportion of Th17 cells in spleen and mesenteric lymph nodes. Mechanism investigations revealed that polydatin specifically inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation by directly binding to STAT3, leading to Th17 cell reduction and thereby alleviating colitis. These findings provide novel insights into the anti-colitis effect of polydatin, which may be a promising drug candidate for the treatment of IBD.
Collapse
Affiliation(s)
- Yao-Jun Liu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Wei-Heng Xu
- College of Pharmacy, Second Military Medical University, Shanghai, P.R. China
| | - Li-Ming Fan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Yu-Qin Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Ya-Ping Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Lin-Lin Chen
- College of Pharmacy, Second Military Medical University, Shanghai, P.R. China
| | - Li Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Yan Wang
- College of Pharmacy, Second Military Medical University, Shanghai, P.R. China
| | - Ke-Dan Chu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Jun-Ping Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China.,College of Pharmacy, Second Military Medical University, Shanghai, P.R. China
| |
Collapse
|
21
|
Yao T, Su W, Han S, Lu Y, Xu Y, Chen M, Wang Y. Recent Advances in Traditional Chinese Medicine for Treatment of Podocyte Injury. Front Pharmacol 2022; 13:816025. [PMID: 35281899 PMCID: PMC8914202 DOI: 10.3389/fphar.2022.816025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Podocyte is also called glomerular epithelial cell, which has been considered as the final gatekeeper of glomerular filtration barrier (GFB). As a major contributor to proteinuria, podocyte injury underlies a variety of glomerular diseases and becomes the challenge to patients and their families in general. At present, the therapeutic methods of podocyte injury mainly include angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, steroid and immunosuppressive medications. Nevertheless, the higher cost and side effects seriously disturb patients with podocyte injury. Promisingly, traditional Chinese medicine (TCM) has received an increasing amount of attention from different countries in the treatment of podocyte injury by invigorating spleen and kidney, clearing heat and eliminating dampness, as well enriching qi and activating blood. Therefore, we searched articles published in peer-reviewed English-language journals through Google Scholar, PubMed, Web of Science, and Science Direct. The protective effects of active ingredients, herbs, compound prescriptions, acupuncture and moxibustion for treatment of podocyte injury were further summarized and analyzed. Meanwhile, we discussed feasible directions for future development, and analyzed existing deficiencies and shortcomings of TCM in the treatment of podocyte injury. In conclusion, this paper shows that TCM treatments can serve as promising auxiliary therapeutic methods for the treatment of podocyte injury.
Collapse
Affiliation(s)
- Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiang Su
- Department of Nephrology, The People’s Hospital of Mengzi, Mengzi, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yi Wang,
| |
Collapse
|
22
|
[Polydatin improves intestinal barrier injury after traumatic brain injury in rats by reducing oxidative stress and inflammatory response via activating SIRT1-mediated deacetylation of SOD2 and HMGB1]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:93-100. [PMID: 35249875 PMCID: PMC8901389 DOI: 10.12122/j.issn.1673-4254.2022.01.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate the protective effect against intestinal mucosal injury in rats following traumatic brain injury (TBI) and explore the underlying mechanism. METHODS SD rat models of TBI were established by fluid percussion injury (FPI), and the specimens were collected at 12, 24, 48, and 72 h after TBI. Another 15 rats were randomly divided into shamoperated group (n=5), TBI with saline treatment (TBI+NS) group (n=5), and TBI with PD treatment (TBI+PD) group (treated with 30 mg/kg PD after TBI; n=5). Body weight gain and fecal water content of the rats were recorded, and after the treatments, the histopathology of the jejunum was observed, and the levels of D-lactic acid (D-LAC), diamine oxidase (DAO), ZO-1, claudin-5, and reactive oxygen species (ROS) were detected. Lipid peroxide (LPO) and superoxide dismutase (SOD) 2 content, jejunal pro-inflammatory factors (IL-6, IL-1β, and TNF- α), Sirt1 activity, SOD2 and HMGB1 acetylation level were also determined after the treatments. RESULTS The rats showed significantly decreased body weight and fecal water content and progressively increased serum levels of D-LAC and DAO after TBI (P < 0.05) with obvious jejunal injury, significantly decreased expression levels of ZO-1 and claudin-5, lowered SOD2 and Sirt1 activity (P < 0.05), increased expression levels of LPO, ROS, and pro-inflammatory cytokines, and enhanced SOD2 and HMGB1 acetylation levels (P < 0.05). Compared with TBI+NS group, the rats in TBI+PD group showed obvious body weight regain, increased fecal water content, reduced jejunal pathologies, decreased D-LAC and DAO levels (P < 0.05), increased ZO-1, claudin-5, SOD2 expression levels and Sirt1 activity, and significantly decreased ROS, LPO, pro-inflammatory cytokines, and acetylation levels of SOD2 and HMGB1 (P < 0.05). CONCLUSION PD alleviates oxidative stress and inflammatory response by activating Sirt1-mediated deacetylation of SOD2 and HMGB1 to improve intestinal mucosal injury in TBI rats.
Collapse
|
23
|
Polydatin Attenuates Cisplatin-Induced Acute Kidney Injury by Inhibiting Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9947191. [PMID: 35075382 PMCID: PMC8783728 DOI: 10.1155/2022/9947191] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022]
Abstract
Cisplatin is widely used in the treatment of solid tumors, but its application is greatly limited due to its nephrotoxicity; thus, there is still no effective medicine for the treatment of cisplatin-induced acute kidney injury (Cis-AKI). We previously identified that polydatin (PD) exerts nephroprotective effects by antioxidative stress in AKI models. Recent evidence suggests that oxidative stress-induced molecular events overlap with the process of ferroptosis and that there are common molecular targets, such as glutathione (GSH) depletion and lipid peroxidation. Nevertheless, whether the nephroprotective effect of PD is related to anti-ferroptosis remains unclear. In this study, the inhibitory effect of PD on ferroptosis was observed in both cisplatin-treated HK-2 cells (20 μM) in vitro and a Cis-AKI mouse model (20 mg/kg, intraperitoneally) in vivo, characterized by the reversion of excessive intracellular free iron accumulation and reactive oxygen species (ROS) generation, a decrease in malondialdehyde (MDA) content and GSH depletion, and an increase in glutathione peroxidase-4 (GPx4) activity. Remarkably, PD dose-dependently alleviated cell death induced by the system Xc− inhibitor erastin (10 μM), and the effect of the 40 μM dose of PD was more obvious than that of ferrostatin-1 (1 μM) and deferoxamine (DFO, 100 μM), classical ferroptosis inhibitors. Our results provide insight into nephroprotection with PD in Cis-AKI by inhibiting ferroptosis via maintenance of the system Xc−-GSH-GPx4 axis and iron metabolism.
Collapse
|
24
|
The pro-apoptotic and cytotoxic efficacy of polydatin encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Raghu SV, Kudva AK, Rao S, Prasad K, Mudgal J, Baliga MS. Dietary agents in mitigating chemotherapy-related cognitive impairment (chemobrain or chemofog): first review addressing the benefits, gaps, challenges and ways forward. Food Funct 2021; 12:11132-11153. [PMID: 34704580 DOI: 10.1039/d1fo02391h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemobrain or chemofog is one of the important but less investigated side effects, where the cancer survivors treated with chemotherapy develop long-term cognitive impairments, affecting their quality of life. The biological mechanisms triggering the development of chemobrain are largely unknown. However, a literature study suggests the generation of free radicals, oxidative stress, inflammatory cytokines, epigenetic chromatin remodeling, decreased neurogenesis, secretion of brain-derived neurotropic factor (BDNF), dendritic branching, and neurotransmitter release to be the cumulative contributions to the ailment. Unfortunately, there is no means to prevent/mitigate the development and intensity of chemobrain. Given the lack of effective prevention strategies or treatments, preclinical studies have been underway to ascertain the usefulness of natural products in mitigating chemobrain in the recent past. Natural products used in diets have been shown to provide beneficial effects by inhibition of free radicals, oxidative stress, inflammatory processes, and/or concomitant upregulation of various cell survival proteins. For the first time, this review focuses on the published effects of astaxanthin, omega-3 fatty acids, ginsenoside, cotinine, resveratrol, polydatin, catechin, rutin, naringin, curcumin, dehydrozingerone, berberine, C-phycocyanin, the higher fungi Cordyceps militaris, thyme (Thymus vulgaris) and polyherbal formulation Mulmina™ in mitigating cognitive impairments in preclinical models of study, and also addresses their potential neuro-therapeutic mechanisms and applications in preventing/ameliorating chemobrain.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Krishna Prasad
- Medical Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | |
Collapse
|
26
|
Chen X, Huang J. Mangiferin inhibits hypoxia/reoxygenation-induced alveolar epithelial cell injury via the SIRT1/AMPK signaling pathway. Exp Ther Med 2021; 22:1220. [PMID: 34603517 PMCID: PMC8453333 DOI: 10.3892/etm.2021.10654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) is one of the complications that can occur after lung transplantation and may lead to morbidity and mortality. Mangiferin (MAF) is a naturally occurring glucosyl xanthone that has been documented to possess anti-inflammatory, immunomodulatory and potent antioxidant effects. The purpose of the present study was to investigate the effect of MAF on LIRI using a hypoxia-reoxygenation (H/R) cell model. In the present study, the viability of lung alveolar epithelial cells (A549) and H/R-A549 were detected by MTT assay. ELISA was used to evaluate the expression levels of IL-6 and IL-1β. TUNEL assay and western blotting were used to evaluate the apoptosis. In addition, H/R-A549 cells were treated with sirtinol, which is known inhibitor of sirtuin 1 (SIRT1) activity, to determine the effects of MAF on proteins associated with the SIRT1/5'AMP-activate protein kinase (AMPK) signaling pathway using western blotting. The results showed that 20 µM MAF exerted a protective effect on A549 cells against H/R mediating no clear cytotoxic effects. In terms of inflammation, MAF reduced IL-6, IL-1β, cyclooxygenase-2 and inducible nitric oxide synthase expression, which was accompanied by activation of the SIRT1/AMPK signaling pathway. In addition, compared with those in the group treated with sirtinol, expression of SIRT1, Bcl-2 and AMPK activity were elevated in MAF-treated H/R-A549 cells, whereas the expression of Bax, cleaved caspase-3 and cleaved caspase-9 was suppressed. TUNEL analysis of H/R-A549 cells treated with MAF in combination with sirtinol revealed that treatment with sirtinol blocked the SIRT1/AMPK signaling pathway and increased the apoptosis rate compared with the MAF group. Taken together, results of the present study revealed that MAF could inhibit lung H/R cell injury through the SIRT1/AMPK signaling pathway.
Collapse
Affiliation(s)
- Xianfeng Chen
- Department of Traditional Chinese Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Juanjuan Huang
- Department of Traditional Chinese Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
27
|
Chen G, Yang Z, Wen D, Guo J, Xiong Q, Li P, Zhao L, Wang J, Wu C, Dong L. Polydatin has anti-inflammatory and antioxidant effects in LPS-induced macrophages and improves DSS-induced mice colitis. Immun Inflamm Dis 2021; 9:959-970. [PMID: 34010516 PMCID: PMC8342204 DOI: 10.1002/iid3.455] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Polydatin (PD), a monocrystalline compound isolated from the root and rhizome of Polygonum cuspidatum, is widely used in inhibiting the inflammatory response and oxidative stress. PD has an anti-inflammatory effect on colitis mice; however, information regulating the mechanism by which maintains the intestinal epithelium barrier is currently scarce. Here, we assessed the anti-inflammatory and antioxidant of PD in lipopolysaccharide (LPS)-induced macrophages in vitro, and explored its effects on inhibiting intestinal inflammation and maintaining the intestinal epithelium barrier in dextran sodium sulfate (DSS)-induced colitis mice. Results showed that PD reduced the level of proinflammatory cytokines and enzymes, including tumor necrosis factor-α, interleukin-4 (IL-4), IL-6, cyclooxygenase-2, and inducible nitric oxide synthase, in LPS-induced macrophages, and improved the expression level of IL-10. PD maintained the expression of tight junction proteins in medium (LPS-induced macrophages medium)-induced MCEC cells. Additionally, PD inhibited the phosphorylation of nuclear factor-κB (NF-κB), p65, extracellular signal-regulated kinase-1/2, c-Jun N-terminal kinase, and p38 signaling pathways in LPS-induced macrophages and facilitated the phosphorylation of AKT and the nuclear translocation of Nrf2, improving the expression of HO-1 and NQO1. Furthermore, PD ameliorated the intestinal inflammatory response and improved the dysfunction of the colon epithelium barrier in DSS-induced colitis mice. Taken together, our results indicated that PD inhibited inflammation and oxidative stress, maintained the intestinal epithelium barrier, and the protective role of PD was associated with the NF-κB p65, itogen-activated protein kinases, and AKT/Nrf2/HO-1/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Guangxin Chen
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Ziyue Yang
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Da Wen
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Jian Guo
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
- Department of General Surgery, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Qiuhong Xiong
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Ping Li
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Liping Zhao
- Department of Pathology, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Junping Wang
- Department of Gastroenterology, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Changxin Wu
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Lina Dong
- Central Laboratory, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
28
|
Zhang M, Hu G, Shao N, Qin Y, Chen Q, Wang Y, Zhou P, Cai B. Thioredoxin-interacting protein (TXNIP) as a target for Alzheimer's disease: flavonoids and phenols. Inflammopharmacology 2021; 29:1317-1329. [PMID: 34350508 DOI: 10.1007/s10787-021-00861-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloid plaques and tangles that have become the fifth leading cause of death worldwide. Previous studies have found that thioredoxin interacting protein (TXNIP) expression was increased during the development of AD neurons. TXNIP separates from the TXNIP-thioredoxin complex, and the TXNIP-NLRP3 complex assembles ASC and pro-caspase-1 to form the NLRP3 inflammasome, which triggers AD inflammation and apoptosis. CB-dock was used to explore whether 21 natural flavonoids and phenols target TXNIP based on references. Docking results showed that rutin, puerarin, baicalin, luteolin and quercetin are the most potent TXNIP inhibitors, and among them, rutin as the most effective flavonoid. And rosmarinic acid is the most potent TXNIP inhibitor of phenols. These phytochemicals could be helpful to find the lead compounds in designing and developing novel agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Guanhua Hu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Nan Shao
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yunpeng Qin
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Qian Chen
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yan Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| | - Biao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| |
Collapse
|
29
|
Li X, Zhang Z, Li A, Hu Y. Propofol attenuates renal ischemia/reperfusion injury by regulating the MALAT1/miR-126-5p axis. J Gene Med 2021; 23:e3349. [PMID: 33899983 DOI: 10.1002/jgm.3349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Propofol (PPF) plays a protective role in ischemia-reperfusion (I/R) in multiple organs, including renal ischemia-reperfusion injury (RIRI). The present study aimed to investigate the underlying mechanisms by which PPF exerts its protective functions in RIRI. METHODS BALB/c mice were employed for the construction of RIRI animal model. PPF pre-treatment was carried out before I/R. An in vitro I/R model was established with HK-2 cells after hypoxia/reoxygenation (H/R) culture, and PPF was utilized to treat the cells before H/R. A quantitative-polymerase chain reaction (qPCR) was conducted to detect long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-126-5p expression levels. Flow cytometry was adopted to detect the apoptosis of HK-2 cells. Bioinformatics analysis, qPCR, a luciferase reporter gene experiment and a RNA immunoprecipitation experiment were used to determine the regulatory relationship between MALAT1 and miR-126-5p. The expression level of vascular endothelial growth factor A (VEGFA) was examined by western blotting. RESULTS MALAT1 expression was augmented and miR-126-5p was decreased in RIRI models. PPF pre-treatment remarkably reduced creatinine and urea nitrogen levels in the serum of BALB/c mice with RIRI, and diminished the apoptosis of HK-2 cells treated with H/R. In addition, PPF pre-treatment markedly restrained the expression of MALAT1 in both in vivo and in vitro models and up-regulated miR-126-5p expression. MALAT1 could adsorb miR-126-5p to repress it and up-regulate VEGFA. MALAT1 overexpression reversed the protective effects of PPF on RIRI. CONCLUSIONS PPF protects the kidney against RIRI by inhibiting MALAT1 and up-regulating miR-126-5p expression, as well as indirectly inhibiting the expression of VEGFA.
Collapse
Affiliation(s)
- Xuyang Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhan Zhang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Aipeng Li
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yubo Hu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
30
|
Polydatin Attenuates OGD/R-Induced Neuronal Injury and Spinal Cord Ischemia/Reperfusion Injury by Protecting Mitochondrial Function via Nrf2/ARE Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687212. [PMID: 33995825 PMCID: PMC8081604 DOI: 10.1155/2021/6687212] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023]
Abstract
Spinal cord ischemia/reperfusion injury (SCII) is a devastating complication of spinal or thoracic surgical procedures and can lead to paraplegia or quadriplegia. Neuronal cell damage involving mitochondrial dysfunction plays an important role in the pathogenesis of SCII. Despite the availability of various treatment options, there are currently no mitochondria-targeting drugs that have proven effective against SCII. Polydatin (PD), a glucoside of resveratrol, is known to preserve mitochondrial function in central nervous system (CNS) diseases. The aim of the present study was to explore the neuro- and mito-protective functions of PD and its underlying mechanisms. An in vitro model of SCII was established by exposing spinal cord motor neurons (SMNs) to oxygen–glucose-deprivation/reperfusion (OGD/R), and the cells were treated with different dosages of PD for varying durations. PD improved neuronal viability and protected against OGD/R-induced apoptosis and mitochondrial injury in a dose-dependent manner. In addition, PD restored the activity of neuronal mitochondria in terms of mitochondrial membrane potential (MMP), intracellular calcium levels, mitochondrial permeability transition pore (mPTP) opening, generation of reactive oxygen species (ROS), and adenosine triphosphate (ATP) levels. Mechanistically, PD downregulated Keap1 and upregulated Nrf2, NQO-1, and HO-1 in the OGD/R-treated SMNs. Likewise, PD treatment also reversed the neuronal and mitochondrial damage induced by SCII in a mouse model. Furthermore, the protective effects of PD were partially blocked by the Nrf2 inhibitor. Taken together, PD relieves mitochondrial dysfunction-induced neuronal cell damage by activating the Nrf2/ARE pathway and is a suitable therapeutic option for SCII.
Collapse
|
31
|
Huang L, He S, Cai Q, Li F, Wang S, Tao K, Xi Y, Qin H, Gao G, Feng D. Polydatin alleviates traumatic brain injury: Role of inhibiting ferroptosis. Biochem Biophys Res Commun 2021; 556:149-155. [PMID: 33839410 DOI: 10.1016/j.bbrc.2021.03.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 02/09/2023]
Abstract
Secondary injury is the main cause of high mortality and poor prognosis of TBI, which has recently been suggested to be related to ferroptosis. Polydatin, a monocrystalline compound extracted from the rhizome of Polygonum, has been shown to exert potential neuroprotective effects. However, its role and mechanism in the secondary injury of TBI has not been elucidated. In this study, the inhibition of Polydatin on ferroptosis was observed both in the hemoglobin treated Neuro2A cells in vitro and in TBI mouse model in vivo, characterized by reversion of accumulation or deposition of free Fe2+, increased content of MDA, decreased activity of key REDOX enzyme GPx4, cell death and tissues loss. Although Polydatin corrected the increased mRNA levels of ferroptosis signaling molecules GPX4, SLC7A11, PTGS2, and ATP5G3 after TBI, TBI and Polydatin treatment had no significant effect on their protein expression. Notably, Polydatin could completely reverse the decrease of GPx4 activity after TBI in vivo and in vitro, and the effect was stronger than that of the classical ferroptosis inhibitor FER-1 in vitro. Further, Polydatin has been shown to reduce the severity of acute neurological impairment and significantly improve subacute motor dysfunction in TBI mice. Our findings provided translational insight into neuroprotection with Polydatin in TBI by inhibiting ferroptosis mainly depending on the maintenance of GPx4 activity.
Collapse
Affiliation(s)
- Lu Huang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Shulei He
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Qing Cai
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Fei Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Siwei Wang
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710038, China
| | - Kai Tao
- Department of Emergency, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Ye Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710038, China
| | - Huaizhou Qin
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
32
|
Renal-Protective Effects and Potential Mechanisms of Traditional Chinese Medicine after Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5579327. [PMID: 33680054 PMCID: PMC7910071 DOI: 10.1155/2021/5579327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/21/2021] [Accepted: 01/30/2021] [Indexed: 02/05/2023]
Abstract
Renal ischemia-reperfusion (I/R) injury mainly causes acute kidney injury (AKI) after renal transplantation, trauma, sepsis, and hypovolemic shock. Patients with renal I/R injury are frequently associated with a poor prognosis. Traditional Chinese medicine (TCM) has been used for the prevention and treatment of various diseases in China and other Asian countries for centuries. Many studies have shown the protective effect of TCM on renal I/R injury, due to its diverse bioactive components. The potential mechanisms of TCMs on renal I/R injury include anti-inflammation, antioxidative effect, anti-cell death, downregulation of adhesion molecule expression, regulation of energy metabolism by restoring Na+-K+-ATPase activity, and mitochondrial fission. This review summarizes the major developments in the effects and underlying mechanisms of TCMs on the renal I/R injury.
Collapse
|
33
|
Polydatin attenuates Mycoplasma gallisepticum (HS strain)-induced inflammation injury via inhibiting the TLR6/ MyD88/NF-κB pathway. Microb Pathog 2020; 149:104552. [PMID: 33010363 DOI: 10.1016/j.micpath.2020.104552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023]
Abstract
Mycoplasma gallisepticum (MG) infection is the main cause of chronic respiratory disease (CRD) characterized by severe respiratory inflammation in chickens. Polydatin (PD) is a resveratrol glycoside isolated from Polygonum cuspidatum, which has prominent anti-inflammatory effect. The purpose of this study was to investigate the therapeutic effect of PD against MG-induced inflammation in chicken and its underlying mechanism. Histopathological analysis showed that PD treatment (15, 30, and 45 mg/kg) apparently alleviated MG-induced pathological changes of chicken embryonic lung. In chicken embryo fibroblast (DF-1) cells, PD treatment (15, 30, and 60 μg/mL) could effectively suppress MG propagation, promote MG-infected cell proliferation and cell cycle progress, and inhibit MG-induced cell apoptosis. ELISA and qPCR assays showed that PD treatment significantly suppressed the expression of interleukin-6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α) induced by MG both in vivo and in vitro. Besides, molecular studies indicated that the MG-induced levels of toll-like receptor-6 TLR6, myeloid differentiation-88 (MyD88) and nuclear factor κB (NF-κB) were significantly decreased by PD treatment. Moreover, immunofluorescence analysis showed that PD treatment restrained the MG-induced NF-κB-p65 nuclear translocation. Taken together, these results indicate the protective effects of PD against MG-induced inflammation injury in chicken were mainly by inhibiting the TLR6/MyD88/NF-κB pathway.
Collapse
|
34
|
Wu X, Liu Z, Yu XY, Xu S, Luo J. Autophagy and cardiac diseases: Therapeutic potential of natural products. Med Res Rev 2020; 41:314-341. [PMID: 32969064 DOI: 10.1002/med.21733] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
The global incidence of cardiac diseases is expected to increase in the coming years, imposing a substantial socioeconomic burden on healthcare systems. Autophagy is a tightly regulated lysosomal degradation mechanism important for cell survival, homeostasis, and function. Accumulating pieces of evidence have indicated a major role of autophagy in the regulation of cardiac homeostasis and function. It is well established that dysregulation of autophagy in cardiomyocytes is involved in cardiac hypertrophy, myocardial infarction, diabetic cardiomyopathy, and heart failure. In this sense, autophagy seems to be an attractive therapeutic target for cardiac diseases. Recently, multiple natural products/phytochemicals, such as resveratrol, berberine, and curcumin have been shown to regulate cardiomyocyte autophagy via different pathways. The autophagy-modifying capacity of these compounds should be taken into consideration for designing novel therapeutic agents. This review focuses on the role of autophagy in various cardiac diseases and the pharmacological basis and therapeutic potential of reported natural products in cardiac diseases by modifying autophagic processes.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zumei Liu
- Department of Central Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Suowen Xu
- Department of Endocrinology and Metabolism, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jiandong Luo
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|