1
|
Adardour M, Mustafa AHM, Oubahmane M, Lahcen MA, Seif EM, Ezzat MAF, Zaballos-García E, Mague JT, Hdoufane I, Cherqaoui D, Krämer OH, Sippl W, Ibrahim HS, Baouid A. Design, synthesis and molecular modeling of new Pyrazolyl-Benzimidazolone hybrids targeting breast Cancer. Bioorg Chem 2025; 157:108269. [PMID: 39978148 DOI: 10.1016/j.bioorg.2025.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
Methyl-piperidino-pyrazole (MPP) is a pyrazole derivative acting as a lead estrogen receptor (ER) antagonist and has an anti-breast cancer effect. Since some benzimidazole derivatives were reported for their inhibitory activity against breast cancer, hybrids from these reported compounds (5a-c, 6a-c, 7a-c and 8a-c) were designed to develop anti-breast cancer agents. The synthesis involved 1,3-dipolar cycloaddition of nitrilimines on the benzimidazolone derivatives 2a-b and 3a-b which occurred with chemo- and regioselectivity depending on the dipole and was confirmed by an X-ray structure of 6b. In vitro biological testing of the newly prepared compounds against the 60-cell line panel showed that 5a-c and 6a-c with a partially unsaturated pyrazole ring possessed a high GI% in the T-47D breast cancer cell line with a selectivity margin against different cell lines. Five compounds were selected for apoptotic studies in T-47D cells, of which 6a arrested cells in G1 phase and caused more apoptosis than MPP. The MTT assay revealed that compound 6a has an IC50 = 6.77 ± 0.03 μM against T-47D cells. Furthermore, 6a reduced the estrogen receptor 1 gene expression levels 3-fold in T-47D cells. Molecular dynamics simulations indicated that the complex of the active compound 6a remained stable over the last 150 ns. An analysis of the binding mode revealed that compound 6a exhibited a similar conformation compared to MPP and the co-ligand in the active site of via a specific pose involving noncovalent interactions.
Collapse
Affiliation(s)
- Mohamed Adardour
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP. 2390, 40001 Marrakech, Morocco
| | - Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; Department of Zoology, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Mehdi Oubahmane
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP. 2390, 40001 Marrakech, Morocco
| | - Marouane Ait Lahcen
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP. 2390, 40001 Marrakech, Morocco
| | - Emad M Seif
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Manal Abdel Fattah Ezzat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Elena Zaballos-García
- Departamento de Quimica Organica, Facultad de Farmacia, Universidad de Valencia, Ave. Vte. Andres Estelles s/n46100, Valencia, Spain
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Ismail Hdoufane
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP. 2390, 40001 Marrakech, Morocco.
| | - Driss Cherqaoui
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP. 2390, 40001 Marrakech, Morocco
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Hany S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt; Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Abdesselam Baouid
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP. 2390, 40001 Marrakech, Morocco
| |
Collapse
|
2
|
Ahmed AAY, Mohammed AF, Almarhoon ZM, Bräse S, Youssif BGM. Design, synthesis, and apoptotic antiproliferative action of new benzimidazole/1,2,3-triazole hybrids as EGFR inhibitors. Front Chem 2025; 12:1541846. [PMID: 39896136 PMCID: PMC11783063 DOI: 10.3389/fchem.2024.1541846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction This work outlines the design, synthesis, and biological evaluation of a new series of benzimidazole/1,2,3-triazole hybrids as apoptotic antiproliferative agents that inhibit the EGFR pathway. Methods The research assesses the antiproliferative efficacy of compounds 6a-i and 10a-i against various cancer cell lines. Results and Discussion The research emphasizing hybrids 6i and 10e for their remarkable activity, with GI50 values of 29 nM and 25 nM, respectively. The inhibitory effects of the most potent hybrids 6e, 6i, 10d, 10e, and 10g on EGFR were assessed. Compounds 6i and 10e exhibited greater potency than erlotinib as EGFR inhibitors. Compounds 6i and 10e were also examined for their apoptotic potential, revealing that these compounds promote apoptosis by activating caspase-3, caspase-8, and Bax, while down-regulating the anti-apoptotic protein Bcl-2. Molecular docking experiments are thoroughly examined to validate the binding interactions of the most active hybrids, 6i and 10e, with the EGFR active site. Furthermore, our new study examined the ADME properties of the new hybrids.
Collapse
Affiliation(s)
- Alshimaa A. Y. Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anber F. Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Abbade Y, Kisla MM, Hassan MAK, Celik I, Dogan TS, Mutlu P, Ates-Alagoz Z. Synthesis, Anticancer Activity, and In Silico Modeling of Alkylsulfonyl Benzimidazole Derivatives: Unveiling Potent Bcl-2 Inhibitors for Breast Cancer. ACS OMEGA 2024; 9:9547-9563. [PMID: 38434899 PMCID: PMC10905736 DOI: 10.1021/acsomega.3c09411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
A series of alkylsulfonyl 1H-benzo[d]imidazole derivatives were synthesized and evaluated for anticancer activity against human breast cancer cells, MCF-7 in vitro. The cytotoxic potential was determined using the xCELLigence real-time cell analysis, and expression levels of genes related to microtubule organization, tumor suppression, apoptosis, cell cycle, and proliferation were examined by quantitative real-time polymerase chain reaction. Molecular docking against Bcl-2 was carried out using AutoDock Vina, while ADME studies were performed to predict the physicochemical and drug-likeness properties of the synthesized compounds. The results revealed that compounds 23 and 27 were the most potent cytotoxic derivatives against MCF-7 cells. Gene expression analysis showed that BCL-2 was the most prominent gene studied. Treatment of MCF-7 cells with compounds 23 and 27 resulted in significant downregulation of the BCL-2 gene, with fold changes of 128 and 256, respectively. Docking analysis predicted a strong interaction between the compounds and the target protein. Interestingly, all of the compounds exhibit a higher binding affinity toward Bcl-2 than the standard drug (compound 27 vina score = -9.6 kcal/mol, vincristine = -6.7 kcal/mol). Molecular dynamics simulations of compounds 23 and 27 showed a permanent stabilization in the binding site of Bcl-2 for 200 ns. Based on Lipinski and Veber's filters, all synthesized compounds displayed drug-like characteristics. These findings suggest that compounds 23 and 27 were the most promising cytotoxic compounds and downregulated the expression of the BCL-2 gene. These derivatives could be further explored as potential candidates for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yemna Abbade
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
- Graduate
School of Health Sciences, Ankara University, 06110 Ankara, Turkey
| | - Mehmet Murat Kisla
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
- Graduate
School of Health Sciences, Ankara University, 06110 Ankara, Turkey
| | - Mohammed Al-Kassim Hassan
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
- Graduate
School of Health Sciences, Ankara University, 06110 Ankara, Turkey
- Department
of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical
Sciences, Bayero University, P.M.B 3011 Kano, Nigeria
| | - Ismail Celik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Tugba Somay Dogan
- Central
Laboratory, Molecular Biology and Biotechnology R&D Center, Middle East Technical University, 06800 Ankara, Turkey
| | - Pelin Mutlu
- Department
of Biotechnology, Biotechnology Institute, Ankara University, 06135 Ankara, Turkey
| | - Zeynep Ates-Alagoz
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
| |
Collapse
|
4
|
Wang R, Huang R, Yuan Y, Wang Z, Shen K. The anti-breast cancer potential of indole/isatin hybrids. Arch Pharm (Weinheim) 2023; 356:e2300402. [PMID: 37650315 DOI: 10.1002/ardp.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Breast cancer (BC) is one of the most prevalent malignancies and the major contributor to cancer mortality in women globally, with a high degree of heterogeneity and a dismal prognosis. As drug resistance is responsible for most BC fatalities and advanced BC is currently considered incurable, finding innovative anti-BC chemotherapeutics is urgently required. Indole and its analog isatin (indole-1H-2,3-dione) are prominent pharmacophores in the development of novel medications, and their derivatives exhibit strong anticancer activities, also against BC. In particular, indole/isatin hybrids exhibit significant potency against BC including multidrug-resistant forms and excellent selectivity by influencing a variety of biological targets associated with the disease, supplying helpful building blocks for the identification of potential new BC treatment options. This review includes articles from 2020 to the present and provides insights into the in vitro and in vivo anti-BC potential, molecular mechanisms, and structure-activity relationships (SARs) of indole/isatin hybrids that may be helpful in the development of innovative anti-BC chemotherapeutics.
Collapse
Affiliation(s)
- Ruo Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaofeng Yuan
- Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou, China
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Adardour M, Lasri M, Ait Lahcen M, Maatallah M, Idouhli R, Alanazi MM, Lahmidi S, Abouelfida A, Mague JT, Baouid A. Exploring the Efficacy of Benzimidazolone Derivative as Corrosion Inhibitors for Copper in a 3.5 wt.% NaCl Solution: A Comprehensive Experimental and Theoretical Investigation. Molecules 2023; 28:6948. [PMID: 37836791 PMCID: PMC10574370 DOI: 10.3390/molecules28196948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
This study focuses on the synthesis, theoretical analysis, and application of the corrosion inhibitor known as benzimidazolone, specifically 1-(cyclohex-1-enyl)-1,3-dihydro-2H-benzimiazol-2-one (CHBI). The structure of CHBI was determined by X-ray diffraction (XRD). The inhibitory properties of CHBI were investigated in a 3.5 wt.% NaCl solution on pure copper using various electrochemical techniques such as potentiodynamic polarization curves (PDPs) and electrochemical impedance spectroscopy (EIS), as well as scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), UV-visible spectroscopy, and theoretical calculations. The obtained results indicate that CHBI is an excellent inhibitor, exhibiting remarkable effectiveness with an inhibition rate of 86.49% at 10-3 M. To further confirm the extent of adsorption of the inhibitory molecule on the copper surface, density functional theory (DFT) and Monte Carlo (MC) simulation studies were conducted. The results of this study demonstrate the synthesis and characterization of CHBI as a corrosion inhibitor. The experimental and theoretical analyses provide valuable insights into the inhibitory performance of CHBI, indicating its strong adsorption on the copper surface.
Collapse
Affiliation(s)
- Mohamed Adardour
- Laboratory of Chemistry Molecular, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech 40001, Morocco; (M.A.L.); (M.M.); (A.B.)
| | - Mohammed Lasri
- Applied Chemistry and Biomass Laboratory, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech 40001, Morocco; (M.L.); (R.I.); (A.A.)
| | - Marouane Ait Lahcen
- Laboratory of Chemistry Molecular, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech 40001, Morocco; (M.A.L.); (M.M.); (A.B.)
| | - Mohamed Maatallah
- Laboratory of Chemistry Molecular, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech 40001, Morocco; (M.A.L.); (M.M.); (A.B.)
| | - Rachid Idouhli
- Applied Chemistry and Biomass Laboratory, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech 40001, Morocco; (M.L.); (R.I.); (A.A.)
| | - Mohamed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Sanae Lahmidi
- Laboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Abdesselam Abouelfida
- Applied Chemistry and Biomass Laboratory, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech 40001, Morocco; (M.L.); (R.I.); (A.A.)
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA;
| | - Abdesselam Baouid
- Laboratory of Chemistry Molecular, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakech 40001, Morocco; (M.A.L.); (M.M.); (A.B.)
| |
Collapse
|
6
|
Taruneshwar Jha K, Shome A, Chahat, Chawla PA. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg Chem 2023; 138:106680. [PMID: 37336103 DOI: 10.1016/j.bioorg.2023.106680] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Erratic cell proliferation is the initial symptom of cancer, which can eventually metastasize to other organs. Before cancer becomes metastatic, its spread is triggered by pro-angiogenic factors including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and Platelet Factor (PF4), all of which are part of receptor tyrosine kinase (RTK) family. Receptor tyrosine kinases (RTKs) are cell-surface proteins and aresignaling enzymes that transfer ATP-phosphate to tyrosine residue substrates. Important biological processes like proliferation, differentiation, motility, and cell-cycle regulation are all possessedby these proteins. Unusual RTK expression is typically associated with cell growth abnormalities, which is linked to tumor acquisition, angiogenesis, and cancer progression. In addition to the already available medications, numerous other heterocyclic are being studied for their potential action against a variety of cancers. In the fight against cancer, in particular, these heterocycles have been used for their dynamic core scaffold and their inherent adaptability. In this review article, we have compiled last five years research work including nitrogen containing heterocycles that have targeted RTK. Herein, the SAR and activity of various compounds containing diverse heterocyclic (pyrimidine, indole, pyridine, pyrazole, benzimidazole, and pyrrole) scaffolds are discussed, and they may prove useful in the future for designing new leads against RTKs. Our focus in this manuscript is to comprehensively review the latest research on the biological activity and structural activity relationship of nitrogen compounds as RTK inhibitors. We believe that this may be an important contribution to the field, as it can help guide future research efforts and facilitate the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Keshav Taruneshwar Jha
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Abhimannu Shome
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| |
Collapse
|
7
|
Bender O, Celik I, Dogan R, Atalay A, Shoman ME, Ali TFS, Beshr EAM, Mohamed M, Alaaeldin E, Shawky AM, Awad EM, Ahmed ASF, Younes KM, Ansari M, Anwar S. Vanillin-Based Indolin-2-one Derivative Bearing a Pyridyl Moiety as a Promising Anti-Breast Cancer Agent via Anti-Estrogenic Activity. ACS OMEGA 2023; 8:6968-6981. [PMID: 36844536 PMCID: PMC9948168 DOI: 10.1021/acsomega.2c07793] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The structure-based design introduced indoles as an essential motif in designing new selective estrogen receptor modulators employed for treating breast cancer. Therefore, here, a series of synthesized vanillin-substituted indolin-2-ones were screened against the NCI-60 cancer cell panel followed by in vivo, in vitro, and in silico studies. Physicochemical parameters were evaluated with HPLC and SwissADME tools. The compounds demonstrated promising anti-cancer activity for the MCF-7 breast cancer cell line (GI = 6-63%). The compound with the highest activity (6j) was selective for the MCF-7 breast cancer cell line (IC50 = 17.01 μM) with no effect on the MCF-12A normal breast cell line supported by real-time cell analysis. A morphological examination of the used cell lines confirmed a cytostatic effect of compound 6j. It inhibited both in vivo and in vitro estrogenic activity, triggering a 38% reduction in uterine weight induced by estrogen in an immature rat model and hindering 62% of ER-α receptors in in vitro settings. In silico molecular docking and molecular dynamics simulation studies supported the stability of the ER-α and compound 6j protein-ligand complex. Herein, we report that indolin-2-one derivative 6j is a promising lead compound for further pharmaceutical formulations as a potential anti-breast cancer drug.
Collapse
Affiliation(s)
- Onur Bender
- Biotechnology
Institute, Ankara University, 06135 Ankara, Turkey
| | - Ismail Celik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38280 Kayseri, Turkey
| | - Rumeysa Dogan
- Biotechnology
Institute, Ankara University, 06135 Ankara, Turkey
| | - Arzu Atalay
- Biotechnology
Institute, Ankara University, 06135 Ankara, Turkey
| | - Mai E. Shoman
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Taha F. S. Ali
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Eman A. M. Beshr
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Mahmoud Mohamed
- Department
of Pharmacognosy, College of Clinical Pharmacy, Al Baha University, 65528 Al Baha, Saudi Arabia
| | - Eman Alaaeldin
- Department
of Pharmaceutics, Faculty of Pharmacy, Minia
University, 61519 Minia, Egypt
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Deraya University, 61111 Minia, Egypt
| | - Ahmed M. Shawky
- Science
and Technology Unit (STU), Umm Al-Qura University, 21955 Makkah, Saudi Arabia
- Central
Laboratory for Micro-analysis, Minia University, 61519 Minia, Egypt
| | - Eman M. Awad
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Al-Shaimaa F. Ahmed
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Kareem M. Younes
- Department
of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442 Hail, Saudi Arabia
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, ET-11562 Cairo, Egypt
| | - Mukhtar Ansari
- Department
of Clinical Pharmacy, College of Pharmacy, University of Hail, 81442 Hail, Saudi Arabia
| | - Sirajudheen Anwar
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Hail, 81442 Hail, Saudi Arabia
| |
Collapse
|
8
|
Argirova M, Guncheva M, Momekov G, Cherneva E, Mihaylova R, Rangelov M, Todorova N, Denev P, Anichina K, Mavrova A, Yancheva D. Modulation Effect on Tubulin Polymerization, Cytotoxicity and Antioxidant Activity of 1H-Benzimidazole-2-Yl Hydrazones. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010291. [PMID: 36615483 PMCID: PMC9822270 DOI: 10.3390/molecules28010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
1H-benzimidazol-2-yl hydrazones with varying hydroxy and methoxy phenyl moieties were designed. Their effect on tubulin polymerization was evaluated in vitro on porcine tubulin. The compounds elongated the nucleation phase and slowed down the tubulin polymerization comparably to nocodazole. The possible binding modes of the hydrazones with tubulin were explored by molecular docking at the colchicine binding site. The anticancer activity was evaluated against human malignant cell lines MCF-7 and AR-230, as well as against normal fibroblast cells 3T3 and CCL-1. The compounds demonstrated a marked antineoplastic activity in low micromolar concentrations in both screened in vitro tumor models. The most active were the trimethoxy substituted derivative 1i and the positional isomers 1j and 1k, containing hydroxy and methoxy substituents: they showed IC50 similar to the reference podophyllotoxin in both tumor cell lines, accompanied with high selectivity towards the malignantly transformed cells. The compounds exerted moderate to high ability to scavenge peroxyl radicals and certain derivatives-1l containing metha-hydroxy and para-methoxy group, and 1b-e with di/trihydroxy phenyl moiety, revealed HORAC values high or comparable to those of well-known phenolic antioxidants. Thus the 1H-benisimidazol-2-yl hydrazones with hydroxy/methoxy phenyl fragments were recognized as new agents exhibiting promising combined antioxidant and antineoplastic action.
Collapse
Affiliation(s)
- Maria Argirova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Maya Guncheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Georgi Momekov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Emiliya Cherneva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Rositsa Mihaylova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petko Denev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kameliya Anichina
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Anelia Mavrova
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
9
|
Upadhyay R, Khalifa Z, Patel AB. Indole Fused Benzimidazole Hybrids: A Promising Combination to Fulfill Pharmacological Significance. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2140171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rachana Upadhyay
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Zebabanu Khalifa
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Amit B. Patel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| |
Collapse
|
10
|
Erol M, Celik I, Sağlık BN, Karayel A, Mellado M, Mella J. Synthesis, molecular modeling, 3D-QSAR and biological evaluation studies of new benzimidazole derivatives as potential MAO-A and MAO-B inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Mehra A, Sharma V, Verma A, Venugopal S, Mittal A, Singh G, Kaur B. Indole Derived Anticancer Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202202361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Vikas Sharma
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Anil Verma
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Sneha Venugopal
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Gurdeep Singh
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Balwinder Kaur
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| |
Collapse
|
12
|
Çevik U, Celik I, Mella J, Mellado M, Özkay Y, Kaplancıklı ZA. Design, Synthesis, and Molecular Modeling Studies of a Novel Benzimidazole as an Aromatase Inhibitor. ACS OMEGA 2022; 7:16152-16163. [PMID: 35571854 PMCID: PMC9097188 DOI: 10.1021/acsomega.2c01497] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/18/2022] [Indexed: 06/01/2023]
Abstract
In this study, a series of novel 1,3,4-oxadiazole-benzimidazole derivatives were designed and synthesized. Their cytotoxic activities against five cancer cell lines, including A549, MCF-7, C6, HepG2, and HeLa, were evaluated by the MTT assay. The compounds 5b,c showed satisfactory potencies with much higher anticancer activity in comparison to the reference drug doxorubicin against the studied cancer cell lines. In vitro, enzymatic inhibition assays of aromatase (ARO) enzymes were performed. Molecular docking, molecular dynamics simulations, and binding free energy analyses were used to better understand the structure-activity connections and mechanism of action of the aromatase inhibitors. Two types of satisfactory 3D-QSAR (CoMFA and CoMSIA) models were generated, to predict the inhibitory activities of the novel inhibitors. Molecular docking studies were also carried out to find their binding sites and types of their interactions with the aromatase enzyme. Additionally, molecular dynamics simulations were performed to explore the most likely binding modes of compounds 5b,c with CYP19A1.
Collapse
Affiliation(s)
- Ulviye
Acar Çevik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Ismail Celik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Jaime Mella
- Institute
of Chemistry and Biochemistry, Faculty of Sciences, University of Valparaíso, Av. Great Britain, 1111 Valparaíso, Chile
| | - Marco Mellado
- Institute
of Chemistry, Faculty of Sciences, Pontificia
Universidad Católica de Valparaíso. Av. Universidad 330, Curauma, 0000 Valparaíso, Chile
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
13
|
Feng LS, Su WQ, Cheng JB, Xiao T, Li HZ, Chen DA, Zhang ZL. Benzimidazole hybrids as anticancer drugs: An updated review on anticancer properties, structure-activity relationship, and mechanisms of action (2019-2021). Arch Pharm (Weinheim) 2022; 355:e2200051. [PMID: 35385159 DOI: 10.1002/ardp.202200051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
Cancer, characterized by a deregulation of the cell cycle which mainly results in a progressive loss of cellular differentiation and uncontrolled cellular growth, remains a prominent cause of death across the world. Almost all currently available anticancer agents used in clinical practice have developed multidrug resistance, creating an urgent need to develop novel chemotherapeutics. Benzimidazole derivatives could exert anticancer properties through diverse mechanisms, inclusive of the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, antiangiogenesis, and blockage of glucose transport. Moreover, several benzimidazole-based agents have already been approved for the treatment of cancers. Hence, benzimidazole derivatives are useful scaffolds for the development of novel anticancer agents. In particular, benzimidazole hybrids could exert dual or multiple antiproliferative activities and had the potential to overcome drug resistance, demonstrating the potential of benzimidazole hybrids as potential prototypes for clinical deployment in the control and eradication of cancers. The purpose of the present review article is to provide a comprehensive landscape of benzimidazole hybrids as potential anticancer agents, and the structure-activity relationship as well as mechanisms of action are also discussed to facilitate the further rational design of more effective candidates, covering articles published from 2019 to 2021.
Collapse
Affiliation(s)
- Lian-Shun Feng
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Wen-Qi Su
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Jin-Bo Cheng
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Tao Xiao
- WuXi AppTec Co., Ltd., Chengdu, People's Republic of China
| | - Hong-Ze Li
- WuXi AppTec Co., Ltd., Chengdu, People's Republic of China
| | - De-An Chen
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Zhi-Liu Zhang
- WuXi AppTec Co., Ltd., Shanghai, People's Republic of China
| |
Collapse
|
14
|
Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018‒2021). Acta Pharm Sin B 2022; 12:3006-3027. [PMID: 35865090 PMCID: PMC9293743 DOI: 10.1016/j.apsb.2022.03.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/23/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Cancer, which is the uncontrolled growth of cells, is the second leading cause of death after heart disease. Targeting drugs, especially to specific genes and proteins involved in growth and survival of cancer cells, is the prime need of research world-wide. Indole moiety, which is a combination of aromatic-heterocyclic compounds, is a constructive scaffold for the development of novel leads. Owing to its bioavailability, high unique chemical properties and significant pharmacological behaviours, indole is considered as the most inquisitive scaffold for anticancer drug research. This is illustrated by the fact that the U.S. Food and Drug Administration (FDA) has recently approved several indole-based anticancer agents such as panobinostat, alectinib, sunitinib, osimertinib, anlotinib and nintedanib for clinical use. Furthermore, hundreds of studies on the synthesis and activity of the indole ring have been published in the last three years. Taking into account the facts stated above, we have presented the most recent advances in medicinal chemistry of indole derivatives, encompassing hot articles published between 2018 and 2021 in anticancer drug research. The recent advances made towards the synthesis of promising indole-based anticancer compounds that may act via various targets such as topoisomerase, tubulin, apoptosis, aromatase, kinases, etc., have been discussed. This review also summarizes some of the recent efficient green chemical synthesis for indole rings using various catalysts for the period during 2018–2021. The review also covers the synthesis, structure‒activity relationship, and mechanism by which these leads have demonstrated improved and promising anticancer activity. Indole molecules under clinical and preclinical stages are classified into groups based on their cancer targets and presented in tabular form, along with their mechanism of action. The goal of this review article is to point the way for medicinal chemists to design and develop effective indole-based anticancer agents.
Collapse
|
15
|
Kisla MM, Ates-Alagoz Z. Benzimidazoles Against Certain Breast Cancer Drug Targets: A Review. Mini Rev Med Chem 2022; 22:2463-2477. [PMID: 35345997 DOI: 10.2174/1389557522666220328161217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzimidazoles are widely used scaffolds against various types of cancer including breast cancer. To this end, anticancer agents must be developed using the knowledge of the specific targets of BC. OBJECTIVE In this study, we aim to review the compounds used against some of the biomolecular targets of breast cancer. To this end, we present information about the various targets, with their latest innovative studies. CONCLUSION Benzimidazole ring is an important building block that can target diverse cancer scenarios since it can structurally mimic biomolecules in the human body. Additionally, many studies imply the involvement of this moiety on a plethora of pathways and enzymes related to BC. Herein, our target-based collection of benzimidazole derivatives strongly suggests the utilization of benzimidazole derivatives against BC.
Collapse
Affiliation(s)
- Mehmet Murat Kisla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
16
|
Nasri S, Bayat M, Miankooshki FR, Samet NH. Recent developments in green approaches for sustainable synthesis of indole-derived scaffolds. Mol Divers 2022; 26:3411-3445. [PMID: 35031935 DOI: 10.1007/s11030-021-10376-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/30/2021] [Indexed: 01/13/2023]
Abstract
An important issue to discover biological structures is the design of sustainable, safe, clean, cost-effective, excellent efficient synthetic reactions, and minimal energy consumption to provide structural diversity compounds with interesting biological properties. Among five-membered nitrogen-containing heterocyclic compounds, indole-containing scaffolds are heterocyclic structures found in abundance in natural products and various synthetic compounds, which have received remarkable attention in recent years due to their therapeutic and pharmaceutical properties and valuable role in the process of drug discovery. Indoles can be synthesized by various procedures although most of these procedures have their own restrictions and drawbacks such as performing the reaction in a toxic solvent, need of transition-metal catalysts, and amount of waste solvents. Due to the medicinal importance of indole and the need for green methods of drug synthesis, this review highlights the latest green synthetic methods leading to the formation of indole-containing compounds focusing on the past 4 years with typical examples. This review is divided into two sections: green solvents and green techniques that lead to the synthesis of indole-derived scaffolds.
Collapse
Affiliation(s)
- Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | | | - Narges Habibi Samet
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
17
|
Hashem HE, El Bakri Y. An overview on novel synthetic approaches and medicinal applications of benzimidazole compounds. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
18
|
Sarkar D, Amin A, Qadir T, Sharma PK. Synthesis of Medicinally Important Indole Derivatives: A Review. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2021. [DOI: 10.2174/1874104502015010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Indoles constitute a widely occurring functional group in nature and are present in an extensive number of bioactive natural products and medicinally important compounds. As a result, exponential increases in the development of novel methods for the formation of indole core along with site-specific indoles have been established. Conventional methods for the synthesis of indoles are getting replaced with green methods involving ionic liquids, water as a solvent, solid acid catalyst, microwave irradiation and the use of nanoparticles under solvent-free conditions. In addition, there are immense applications of the substituted indoles in diverse fields.
Collapse
|
19
|
Satija G, Sharma B, Madan A, Iqubal A, Shaquiquzzaman M, Akhter M, Parvez S, Khan MA, Alam MM. Benzimidazole based derivatives as anticancer agents: Structure activity relationship analysis for various targets. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Garvit Satija
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| | - Barkha Sharma
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| | - Anish Madan
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| | - Ashif Iqubal
- Department of Pharmacology School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| | - Mohammad Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| | - Suhel Parvez
- Department of Toxicology School of Chemical and Life Sciences, Jamia Hamdard New Delhi India
| | - Mohammad Ahmed Khan
- Department of Pharmacology School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi India
| |
Collapse
|
20
|
Sapijanskaitė-Banevič B, Palskys V, Vaickelionienė R, Šiugždaitė J, Kavaliauskas P, Grybaitė B, Mickevičius V. Synthesis and Antibacterial Activity of New Azole, Diazole and Triazole Derivatives Based on p-Aminobenzoic Acid. Molecules 2021; 26:molecules26092597. [PMID: 33946936 PMCID: PMC8125559 DOI: 10.3390/molecules26092597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The p-aminobenzoic acid was applied for the synthesis of substituted 1-phenyl-5-oxopyrrolidine derivatives containing benzimidazole, azole, oxadiazole, triazole, dihydrazone, and dithiosemicarbazide moieties in the structure. All the obtained compounds were evaluated for their in vitro antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Salmonella enteritidis, Escherichia coli, and Pseudomonas aeruginosa by using MIC and MBC assays. This study showed a good bactericidal activity of γ-amino acid and benzimidazoles derivatives. The antimicrobial activity of the most promising compounds was higher than ampicillin. Furthermore, two benzimidazoles demonstrated good antimicrobial activity against L. monocytogenes (MIC 15.62 µg/mL) that was four times more potent than ampicillin (MIC 65 µg/mL). Further studies are needed to better understand the mechanism of the antimicrobial activity as well as to generate antimicrobial compounds based on the 1-phenyl-5-oxopyrrolidine scaffold.
Collapse
Affiliation(s)
- Birutė Sapijanskaitė-Banevič
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (B.S.-B.); (B.G.); (V.M.)
| | - Vykintas Palskys
- Thermo Fisher Scientific, V. A. Graičiūno st. 8, LT-02241 Vilnius, Lithuania;
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (B.S.-B.); (B.G.); (V.M.)
- Correspondence: ; Tel.: +370-600-16-958
| | - Jūratė Šiugždaitė
- Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania;
| | - Povilas Kavaliauskas
- Weill Cornell Medicine of Cornell University, 527 East 68th Street, New York, NY 10065, USA;
- Institute for Genome Sciences, School of Medicine, University of Maryland, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Biological Research Center, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (B.S.-B.); (B.G.); (V.M.)
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (B.S.-B.); (B.G.); (V.M.)
| |
Collapse
|
21
|
Alzhrani ZMM, Alam MM, Nazreen S. Recent advancements on Benzimidazole: A versatile scaffold in medicinal chemistry. Mini Rev Med Chem 2021; 22:365-386. [PMID: 33797365 DOI: 10.2174/1389557521666210331163810] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/30/2020] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Benzimidazole is nitrogen containing fused heterocycle which has been extensively explored in medicinal chemistry. Benzimidizole nucleus has been found to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, antiviral, antitubercular and antidiabetic. A number of benzimidazoles such as bendamustine, pantoprazole have been approved for the treatment of various illnesses whereas galeterone and GSK461364 are in clinical trials. The present review article gives an overview about the different biological activities exhibited by the benzimidazole derivatives as well as different methods used for the synthesis of benzimidazole derivatives for the past ten years.
Collapse
Affiliation(s)
| | - Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Albaha University, Albaha. Saudi Arabia
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Albaha University, Albaha. Saudi Arabia
| |
Collapse
|
22
|
Karadayi FZ, Yaman M, Kisla MM, Konu O, Ates-Alagoz Z. Design, synthesis, anticancer activity, molecular docking and ADME studies of novel methylsulfonyl indole-benzimidazoles in comparison with ethylsulfonyl counterparts. NEW J CHEM 2021. [DOI: 10.1039/d1nj01019k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Specific sidechain modifications on the indole-benzimidazole scaffold play fundamental roles for determining molecule's affinity against ERα and its anti-cancer activity.
Collapse
Affiliation(s)
| | - Murat Yaman
- Interdisciplinary Program in Neuroscience
- Bilkent University
- Ankara
- Turkey
| | - Mehmet Murat Kisla
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
- Ankara University
- Ankara
- Turkey
| | - Ozlen Konu
- Interdisciplinary Program in Neuroscience
- Bilkent University
- Ankara
- Turkey
- Department of Molecular Biology and Genetics
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
- Ankara University
- Ankara
- Turkey
| |
Collapse
|
23
|
Wu Y, Xia L, Zhang G, Wu H, Qu Y, Zhao K, Wang C. Zinc(II) and manganese(II) complexes with 1,3-bis(1-allylbenzimidazol-2-yl)-2-oxapropane: synthesis, crystal structures, antioxidant activities and DNA-binding properties. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1843641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yancong Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Lixian Xia
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Geng Zhang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Huilu Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Yao Qu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Kun Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Cong Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| |
Collapse
|
24
|
Guo SX, He F, Dai AL, Zhang RF, Chen SH, Wu J. Synthesis and biological activities of novel trifluoromethylpyridine amide derivatives containing sulfur moieties. RSC Adv 2020; 10:35658-35670. [PMID: 35517062 PMCID: PMC9056882 DOI: 10.1039/d0ra07301f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
A series of trifluoromethylpyridine amide derivatives containing sulfur moieties (thioether, sulfone and sulfoxide) was designed and synthesized. Their antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo), Ralstonia solanacearum (R. solanacearum) and insecticidal activities against P. xylostella were evaluated. Notably, the half-maximal effective concentration (EC50) value of sulfone-containing compound F10 is 83 mg L-1 against Xoo, which is better than that of commercial thiodiazole copper (97 mg L-1) and bismerthiazol (112 mg L-1). Thioether-containing compounds E1, E3, E5, E6, E10, E11 and E13 showed much higher activities against R. solanacearum with the EC50 value from 40 to 78 mg L-1, which are much lower than that of thiodiazole copper (87 mg L-1) and bismerthiazol (124 mg L-1). Generally, most of the sulfone-containing compounds and sulfoxide-containing compounds showed higher activities against Xoo than that of the corresponding thioether-containing compound, but most of the thioether-containing compounds contributed higher antibacterial activities against R. solanacearum. Furthermore, title compounds E3, E11, E24 and G2 showed good insecticidal activities of 75%, 70%, 70% and 75%, respectively.
Collapse
Affiliation(s)
- S X Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - F He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - A L Dai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - R F Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - S H Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - J Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Huaxi District Guiyang 550025 P. R. China
| |
Collapse
|