1
|
Chen X, Ma Y, Yang Z, Shen D, Li X, Ni M, Xu X, Chen W. Characterization of naphthoquinones as inhibitors of glutathione reductase and inducers of intracellular oxidative stress. Redox Rep 2024; 29:2432830. [PMID: 39620933 PMCID: PMC11613414 DOI: 10.1080/13510002.2024.2432830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
Glutathione reductase (GR), one of the most important antioxidant enzymes in maintaining intracellular redox homeostasis, has become a novel target to suppress cancer cell growth and metastasis. In this work, we evaluated a series of naphthoquinones (NQs) as potential GR inhibitors and elucidated the mechanism of inhibition. NQ-6, one of the most potent compounds among this series, inhibited GR in vitro and in vivo and was identified as a competitive and irreversible inhibitor. The Ki and kinact values of NQ-6 were determined to be 17.30 ± 3.63 μM and 0.0136 ± 0.0005 min-1, respectively. The tandem mass spectrometric analysis revealed that the two substrate binding sites Cys61 and Cys66 of yeast GR were modified simultaneously through arylation or only Cys66 was covalently modified by NQ-6. Intracellular reactive oxygen species, collapsing of mitochondrial membrane potential and protein S-glutathionylation elevation were induced by NQ-6. NQs can be valuable compounds in GR inhibition and oxidative stress-related research.
Collapse
Affiliation(s)
- Xiaowan Chen
- Postgraduate Training base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Yan Ma
- Department of Scientific Research, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China
| | - Ziming Yang
- Postgraduate Training base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Dingjie Shen
- Postgraduate Training base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Xia Li
- Postgraduate Training base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine on Cancer, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China
| | - Maowei Ni
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China
| | - Xiaoling Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Wei Chen
- Postgraduate Training base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine on Cancer, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Li Y, Ruan P, Chen J, Chen K, Ma Z, Guo L, Lv G, Wu Y. Visible-light-induced C-H alkylation of 2-amino-1,4-naphthoquinones. Org Biomol Chem 2024; 22:6016-6021. [PMID: 39007287 DOI: 10.1039/d4ob00764f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Simple and practical strategies for visible-light-induced C-H alkylation of 2-amino-1,4-naphthoquinones with cyclobutanone oxime esters and hydroxamic acid derivatives have been developed under mild and redox-neutral conditions. These two reactions can be carried out at room temperature and obtain a variety of 2-amino-1,4-naphthoquinone derivatives with cyano and amide groups. Moreover, the cyanoalkylation reaction of 2-amino-1,4-naphthoquinones can proceed smoothly in the absence of photocatalysts.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Pingping Ruan
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Kang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Zhaohui Ma
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Guanghui Lv
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
3
|
Guo Y, Peng X, Liu F, Zhang Q, Ding L, Li G, Qiu F. Potential of natural products in inflammation: biological activities, structure-activity relationships, and mechanistic targets. Arch Pharm Res 2024; 47:377-409. [PMID: 38739203 DOI: 10.1007/s12272-024-01496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
A balance between the development and suppression of inflammation can always be found in the body. When this balance is disturbed, a strong inflammatory response can damage the body. It sometimes is necessary to use drugs with a significant anti-inflammatory effect, such as nonsteroidal anti-inflammatory drugs and steroid hormones, to control inflammation in the body. However, the existing anti-inflammatory drugs have many adverse effects, which can be deadly in severe cases, making research into new safer and more effective anti-inflammatory drugs necessary. Currently, numerous types of natural products with anti-inflammatory activity and distinct structural features are available, and these natural products have great potential for the development of novel anti-inflammatory drugs. This review summarizes 260 natural products and their derivatives with anti-inflammatory activities in the last two decades, classified by their active ingredients, and focuses on their structure-activity relationships in anti-inflammation to lay the foundation for subsequent new drug development. We also elucidate the mechanisms and pathways of natural products that exert anti-inflammatory effects via network pharmacology predictions, providing direction for identifying subsequent targets of anti-inflammatory natural products.
Collapse
Affiliation(s)
- Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Xuling Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Fanfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Qi Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Liqin Ding
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
4
|
Faria AFM, de Souza Ferreira Pereira C, Teixeira GP, Dos Santos Galvão RM, Pacheco PAF, Bello ML, de Jesus DH, Calabrese K, Gonzaga DTG, Boechat N, Faria RX. In vitro evaluation of 2-(1H-pyrazol-1-yl)-1,3,4-thiadiazole derivatives against replicative and infective stages of Trypanosoma cruzi. J Bioenerg Biomembr 2023; 55:409-421. [PMID: 37919636 DOI: 10.1007/s10863-023-09982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 11/04/2023]
Abstract
Current treatment of Chagas disease (CD) is based on two substances, nifurtimox (NT) and benzonidazole (BZ), both considered unsatisfactory mainly due to their low activities and high toxicity profile. One of the main challenges faced in CD management concerns the identification of new drugs active in the acute and chronic phases and with good pharmacokinetic profiles. In this work, we studied the bioactivity of twenty 2-(1H-pyrazol-1-yl)-1,3,4-thiadiazole derivatives against Trypanosoma cruzi epimastigotes and trypomastigotes. We identified seven derivatives with promising activity against epimastigote forms with IC50 values ranging from 6 µM to 44 µM. Most of the compounds showed no significant toxicity against murine macrophages. Our initial investigation on the mechanism of action indicates that this series of compounds may exert their anti-parasitic effect, inducing cell membrane damage. The results in trypomastigotes showed that one derivative, PDAN 78, satisfactorily inhibited metabolic alteration at all concentrations. Moreover, we used molecular modeling to understand how tridimensional and structural aspects might influence the observed bioactivities. Finally, we also used in silico approaches to assess the potential pharmacokinetic and toxicological properties of the most active compounds. Our initial results indicate that this molecular scaffold might be a valuable prototype for novel and safe trypanocidal compounds.
Collapse
Affiliation(s)
- Ana Flávia Martins Faria
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (L, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Caroline de Souza Ferreira Pereira
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (L, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Guilherme Pegas Teixeira
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (L, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Raíssa Maria Dos Santos Galvão
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (L, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Paulo Anastácio F Pacheco
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (L, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Murilo Lamim Bello
- Department of Pharmaceuticals and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daiane Hardoim de Jesus
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Kátia Calabrese
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Daniel Tadeu Gomes Gonzaga
- Department of Pharmacy, West Zone Campus, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Nubia Boechat
- Fiocruz Institute of Drug Technology, Farmanguinhos, Fiocruz, Brazil
| | - Robson Xavier Faria
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (L, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Kozlovskiy S, Pislyagin E, Menchinskaya E, Chingizova E, Kaluzhskiy L, Ivanov AS, Likhatskaya G, Agafonova I, Sabutski Y, Polonik S, Manzhulo I, Aminin D. Tetracyclic 1,4-Naphthoquinone Thioglucoside Conjugate U-556 Blocks the Purinergic P2X7 Receptor in Macrophages and Exhibits Anti-Inflammatory Activity In Vivo. Int J Mol Sci 2023; 24:12370. [PMID: 37569745 PMCID: PMC10418395 DOI: 10.3390/ijms241512370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
P2X7 receptors (P2X7Rs) are ligand-gated ion channels that play a significant role in inflammation and are considered a potential therapeutic target for some inflammatory diseases. We have previously shown that a number of synthetic 1,4-naphthoquinones are capable of blocking P2X7Rs in neuronal and macrophage cells. In the present investigation, we have demonstrated the ability of the tetracyclic quinone-thioglucoside conjugate U-556, derived from 1,4-naphthoquinone thioglucoside, to inhibit ATP-induced Ca2+ influx and YO-PRO-1 dye uptake, which indicates blocking P2X7R in RAW 264.7 macrophages. This process was accompanied by the inhibition of ATP-induced reactive oxygen species production in macrophages, as well as the macrophage survival strengthening under ATP toxic effects. Nevertheless, U-556 had no noticeable antioxidant capacity. Naphthoquinone-thioglucoside conjugate U-556 binding to the extracellular part of the P2X7R was confirmed by SPR analysis, and the kinetic characteristics of this complex formation were established. Computer modeling predicted that U-556 binds the P2X7R allosteric binding site, topographically similar to that of the specific A438079 blocker. The study of biological activity in in vivo experiments shows that tetracylic conjugate significantly reduces inflammation provoked by carrageenan. The data obtained points out that the observed physiological effects of U-556 may be due to its ability to block the functioning of the P2X7R.
Collapse
Affiliation(s)
- Sergei Kozlovskiy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Evgeny Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Ekaterina Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Leonid Kaluzhskiy
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (L.K.); (A.S.I.)
| | - Alexis S. Ivanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (L.K.); (A.S.I.)
| | - Galina Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Irina Agafonova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Yuri Sabutski
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Sergey Polonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Science, 690041 Vladivostok, Russia;
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (S.K.); (E.P.); (E.M.); (E.C.); (G.L.); (I.A.); (Y.S.); (S.P.)
| |
Collapse
|
6
|
Pacheco PAF, Faria JV, Silva AC, von Ranke NL, Silva RC, Rodrigues CR, da Rocha DR, Faria RX. In silico and pharmacological study of N,S-acetal juglone derivatives as inhibitors of the P2X7 receptor-promoted in vitro and in vivo inflammatory response. Biomed Pharmacother 2023; 162:114608. [PMID: 37003033 DOI: 10.1016/j.biopha.2023.114608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023] Open
Abstract
Purinergic receptors are transmembrane proteins responsive to extracellular nucleotides and are expressed by several cell types throughout the human body. Among all identified subtypes, the P2×7 receptor has emerged as a relevant target for the treatment of inflammatory disease. Several clinical trials have been conducted to evaluate the effectiveness of P2×7R antagonists. However, to date, no selective antagonist has reached clinical use. In this work, we report the pharmacological evaluation of eleven N, S-acetal juglone derivatives as P2×7R inhibitors. Using in vitro assays and in vivo experimental models, we identified one derivative with promising inhibitory activity and low toxicity. Our in silico studies indicate that the 1,4-naphthoquinone moiety might be a valuable molecular scaffold for the development of novel P2×7R antagonists, as suggested by our previous studies.
Collapse
|
7
|
Pacheco PAF, Gonzaga DTG, von Ranke NL, Rodrigues CR, da Rocha DR, da Silva FDC, Ferreira VF, Faria RX. Synthesis, Biological Evaluation and Molecular Modeling Studies of Naphthoquinone Sulfonamides and Sulfonate Ester Derivatives as P2X7 Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020590. [PMID: 36677652 PMCID: PMC9866630 DOI: 10.3390/molecules28020590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023]
Abstract
ATP acts in the extracellular environment as an important signal, activating a family of receptors called purinergic receptors. In recent years, interest in the potential therapeutics of purinergic components, including agonists and antagonists of receptors, has increased. Currently, many observations have indicated that ATP acts as an important mediator of inflammatory responses and, when found in high concentrations in the extracellular space, is related to the activation of the P2X7 purinergic receptor. In this sense, the search for new inhibitors for this receptor has attracted a great deal of attention in recent years. Sulfonamide derivatives have been reported to be potent inhibitors of P2X receptors. In this study, ten naphthoquinone sulfonamide derivatives and five naphthoquinone sulfonate ester derivatives were tested for their inhibitory activity on the P2X7 receptor expressed in peritoneal macrophages. Some compounds showed promising results, displaying IC50 values lower than that of A740003. Molecular docking and dynamic studies also indicated that the active compounds bind to an allosteric site on P2X7R. The binding free energy indicates that sulfonamides have an affinity for the P2X7 receptor similar to A740003. Therefore, the compounds studied herein present potential P2X7R inhibition.
Collapse
Affiliation(s)
| | - Daniel Tadeu Gomes Gonzaga
- Departament of Pharmacy, West Zone Campus, State University of Rio de Janeiro, Rio de Janeiro 23070-200, Brazil
| | - Natalia Lidmar von Ranke
- Department of Pharmaceuticals and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | - Carlos Rangel Rodrigues
- Department of Pharmaceuticals and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | - David Rodrigues da Rocha
- Department of Organic Chemistry, Institute of Chemistry, Federal Fluminense University, Niterói 24020-141, Brazil
| | | | - Vitor Francisco Ferreira
- Department of Organic Chemistry, Institute of Chemistry, Federal Fluminense University, Niterói 24020-141, Brazil
| | - Robson Xavier Faria
- Evaluation and Promotion of the Ambiental Health Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- Postgraduate Program in Sciences and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói 24210-130, Brazil
- Correspondence:
| |
Collapse
|
8
|
Kozlovskiy SA, Pislyagin EA, Menchinskaya ES, Chingizova EA, Sabutski YE, Polonik SG, Likhatskaya GN, Aminin DL. Anti-Inflammatory Activity of 1,4-Naphthoquinones Blocking P2X7 Purinergic Receptors in RAW 264.7 Macrophage Cells. Toxins (Basel) 2023; 15:47. [PMID: 36668867 PMCID: PMC9864473 DOI: 10.3390/toxins15010047] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
P2X7 receptors are ligand-gated ion channels activated by ATP and play a significant role in cellular immunity. These receptors are considered as a potential therapeutic target for the treatment of multiple inflammatory diseases. In the present work, using spectrofluorimetry, spectrophotometry, Western blotting and ELISA approaches, the ability of 1,4-naphthoquinone thioglucoside derivatives, compounds U-286 and U-548, to inhibit inflammation induced by ATP/LPS in RAW 264.7 cells via P2X7 receptors was demonstrated. It has been established that the selected compounds were able to inhibit ATP-induced calcium influx and the production of reactive oxygen species, and they also exhibited pronounced antioxidant activity in mouse brain homogenate. In addition, compounds U-286 and U-548 decreased the LPS-induced activity of the COX-2 enzyme, the release of pro-inflammatory cytokines TNF-α and IL-1β in RAW 264.7 cells, and significantly protected macrophage cells against the toxic effects of ATP and LPS. This study highlights the use of 1,4-naphthoquinones as promising purinergic P2X7 receptor antagonists with anti-inflammatory activity. Based on the data obtained, studied synthetic 1,4-NQs can be considered as potential scaffolds for the development of new anti-inflammatory and analgesic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dmitry L. Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
9
|
Synthesis, biological evaluation and molecular modeling studies of novel 1,2,3-triazole-linked menadione-furan derivatives as P2X7 inhibitors. J Bioenerg Biomembr 2022; 54:227-239. [PMID: 36070071 DOI: 10.1007/s10863-022-09947-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
The P2X7 receptor (P2X7R) is an ion channel that promotes the passage of ions through the membrane through brief stimulation once activated by ATP, its endogenous opener. However, prolonged stimulation with ATP, which occurs in pathological processes, opens a nonselective pore in the plasma membrane, allowing the passage of large molecules and leading to cytokine release or even cell death. In this sense, the search for new inhibitors for this receptor has attracted a great deal of attention in recent years. Considering the booming of biomass upgrading reactions in recent years and the continued efforts to synthesize biologically active molecules containing the 1,2,3-triazole ring, in the present work, we aimed to investigate whether triazole-linked menadione-furan derivatives could present P2X7R inhibitory activity. The novel compounds were tested for their inhibitory activity on ATP-induced dye uptake in peritoneal macrophages. Some have shown promising results, having displayed IC50 values lower than that of the P2X7R inhibitor BBG. Molecular docking studies also indicated that the active compounds bind to an allosteric site on P2X7R, presenting potential P2X7R inhibition.
Collapse
|
10
|
Hsu MJ, Chen HK, Lien JC, Huang YH, Huang SW. Suppressing VEGF-A/VEGFR-2 Signaling Contributes to the Anti-Angiogenic Effects of PPE8, a Novel Naphthoquinone-Based Compound. Cells 2022; 11:cells11132114. [PMID: 35805198 PMCID: PMC9266117 DOI: 10.3390/cells11132114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Natural naphthoquinones and their derivatives exhibit a broad spectrum of pharmacological activities and have thus attracted much attention in modern drug discovery. However, it remains unclear whether naphthoquinones are potential drug candidates for anti-angiogenic agents. The aim of this study was to evaluate the anti-angiogenic properties of a novel naphthoquinone derivative, PPE8, and explore its underlying mechanisms. Determined by various assays including BrdU, migration, invasion, and tube formation analyses, PPE8 treatment resulted in the reduction of VEGF-A-induced proliferation, migration, and invasion, as well as tube formation in human umbilical vein endothelial cells (HUVECs). We also used an aorta ring sprouting assay, Matrigel plug assay, and immunoblotting analysis to examine PPE8’s ex vivo and in vivo anti-angiogenic activities and its actions on VEGF-A signaling. It has been revealed that PPE8 inhibited VEGF-A-induced micro vessel sprouting and was capable of suppressing angiogenesis in in vivo models. In addition, PPE8 inhibited VEGF receptor (VEGFR)-2, Src, FAK, ERK1/2, or AKT phosphorylation in HUVECs exposed to VEGF-A, and it also showed significant decline in xenograft tumor growth in vivo. Taken together, these observations indicated that PPE8 may target VEGF-A–VEGFR-2 signaling to reduce angiogenesis. It also supports the role of PPE8 as a potential drug candidate for the development of therapeutic agents in the treatment of angiogenesis-related diseases including cancer.
Collapse
Affiliation(s)
- Ming-Jen Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Kun Chen
- Department of General Surgery, Chi Mei Medical Center, Tainan 71067, Taiwan;
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan;
- Department of Medical Research, Hospital of China Medical University, Taichung 40402, Taiwan
| | - Yu-Han Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Shiu-Wen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Research Center of Thoracic Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 3198)
| |
Collapse
|
11
|
Sun B, Shi X, Zhuang X, Huang P, Shi R, Zhu R, Jin C. Photoinduced EDA Complexes Enabled Radical Tandem Cyclization/Arylation of Unactivated Alkene with 2-Amino-1,4-naphthoquinones. Org Lett 2021; 23:1862-1867. [DOI: 10.1021/acs.orglett.1c00268] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiayue Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Panyi Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Rongcheng Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Rui Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
12
|
Synthetic 1,4-Naphthoquinones inhibit P2X7 receptors in murine neuroblastoma cells. Bioorg Med Chem 2021; 31:115975. [PMID: 33401207 DOI: 10.1016/j.bmc.2020.115975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated ion channel and potential therapeutic target for new drug development. In this study, we synthesized a series of new 1,4-naphthoquinone (1,4-NQ) derivatives and investigated their antagonistic effects against mouse P2X7R. We explored the ability of the tested substances to block ATP-induced Ca2+ influx into mouse Neuro-2a cells and selected the four most effective substances: the 1,4-naphthoquinone thioglucosides U-548 and U-557 and their tetracyclic conjugates U-286 and U-556. Biological analysis of these compounds revealed significant in vitro inhibition of murine P2X7R. This inhibition resulted in marked blockade of ethidium bromide (EtBr) and YO-PRO-1 fluorescent dye uptake, pronounced decreases in ROS and NO production and protection of neuronal cell viability against the toxic action of high ATP concentrations. In silico analysis indicated favorable molecular docking results of these 1,4-NQs, pointing to their potential to bind in an allosteric site located in the extracellular region of P2X7R. These findings suggest compounds U-286, U-548, U-556 and U-557 as potential scaffolds for the design of new P2X7R blockers and drugs effective against neuropathic pain and neurodegenerative diseases.
Collapse
|