1
|
Majhi S. Recent Advances in Nanocatalyzed One-Pot Sustainable Synthesis of Bioactive N, N-Heterocycles with Anticancer Activities: An Outlook of Medicinal Chemistry. Curr Top Med Chem 2025; 25:63-95. [PMID: 39225202 DOI: 10.2174/0115680266311149240822111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
N-heterocycles represent a predominant and unique class of organic chemistry. They have received a lot of attention due to their important chemical, biomedical, and industrial uses. Food and Drug Administration (FDA) approved about 75% of drugs containing N-based heterocycles, which are currently available in the market. N-Heterocyclic compounds exist as the backbone of numerous natural products and act as crucial intermediates for the construction of pharmaceuticals, veterinary items, and agrochemicals frequently. Among N-based heterocyclic compounds, bioactive N,N-heterocycles constitute a broad spectrum of applications in modern drug discovery and development processes. Cefozopran (antibiotic), omeprazole (antiulcer), enviradine (antiviral), liarozole (anticancer), etc., are important drugs containing N,N-heterocycles. The synthesis of N,N-heterocyclic compounds under sustainable conditions is one of the most active fields because of their significant physiological and biological properties as well as synthetic utility. Current research is demanding the development of greener, cheaper, and milder protocols for the synthesis of N,N-heterocyclic compounds to save mother nature by avoiding toxic metal catalysts, extensive application of energy, and the excessive use of hazardous materials. Nanocatalysts play a profound role in sustainable synthesis because of their larger surface area, tiny size, and minimum energy; they are eco-friendly and safe, and they provide higher yields with selectivity in comparison to conventional catalysts. It is increasingly demanding research to design and synthesize novel bioactive compounds that may help to combat cancer since the major causes of death worldwide are due to cancer. Hence, the important uses of nanocatalysts for the one-pot synthesis of biologically potent N,N-heterocycles with anticancer activities have been presented in this review.
Collapse
Affiliation(s)
- Sasadhar Majhi
- Department of Chemistry (UG & PG Dept.), Triveni Devi Bhalotia College, Kazi Nazrul University, Raniganj, West Bengal, 713347, India
| |
Collapse
|
2
|
Shaldam MA, Mousa MHA, Tawfik HO, El-Dessouki AM, Sharaky M, Saleh MM, Alzahrani AYA, Moussa SB, Al-Karmalawy AA. Muti-target rationale design of novel substituted N-phenyl-2-((6-phenylpyridazin-3-yl)thio)acetamide candidates as telomerase/JAK1/STAT3/TLR4 inhibitors: In vitro and in vivo investigations. Bioorg Chem 2024; 153:107843. [PMID: 39332072 DOI: 10.1016/j.bioorg.2024.107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
In this work, additional effort was applied to design new BIBR1532-based analogues with potential inhibitory activity against telomerase and acting as multitarget antitumor candidates to overcome the resistance problem. Therefore, novel substituted N-phenyl-2-((6-phenylpyridazin-3-yl)thio)acetamide candidates (4a-n) were synthesized. Applying the lead optimization strategy of the previously designed compound 8e; compound 4l showed an improved telomerase inhibition of 64.95 % and a superior growth inhibition of 79 % suggesting its potential use as a successful "multitarget-directed drug" for cancer therapy. Accordingly, compound 4l was further selected to evaluate its additional JAK1/STAT3/TLR4 inhibitory potentials. Compound 4l represented a very promising JAK1 inhibitory potential with a 0.46-fold change, compared to that of pacritinib reference standard (0.33-fold change). Besides, it showed a superior STAT3-inhibitory potential with a 0.22-fold change compared to sorafenib (0.33-fold change). Additionally, compound 4l downregulated TLR4 protein expression by 0.81-fold change compared to that of resatorvid (0.29-fold change). Also, molecular docking was performed to investigate the binding mode and affinity of the superior candidate 4l towards the four target receptors (telomerase, JAK1, STAT3, and TLR4). Furthermore, the therapeutic potential of compound 4l as an antitumor agent was additionally explored through in vivo studies involving female mice implanted with Solid Ehrlich Carcinoma (SEC). Remarkably, compound 4l led to prominent reductions in tumor size and mass. Concurrent enhancements in biochemical, hematologic, histopathologic, and immunohistochemical parameters further confirmed the suppression of angiogenesis and inflammation, elucidating additional mechanisms by which compound 4l exerts its anticancer effects.
Collapse
Affiliation(s)
- Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| | - Mohamed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | | | - Sana Ben Moussa
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir 61421, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Mashreq, Baghdad 10023, Iraq; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.
| |
Collapse
|
3
|
Hosamani KR, K H, Pal R, Matada GSP, B K, I A, Aishwarya NVSS. Pyrazole, Pyrazoline, and Fused Pyrazole Derivatives: New Horizons in EGFR-Targeted Anticancer Agents. Chem Biodivers 2024; 21:e202400880. [PMID: 39056888 DOI: 10.1002/cbdv.202400880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Pyrazole and its derivatives remain popular heterocycles in drug research, design, and development. Several drugs include the pyrazole scaffold, such as ramifenazone, ibipinabant, antipyrine, and axitinib, etc. They have been extensively studied by the scientific community and are said to have a wide range of biological activity, especially anticancer agents targeting EGFR. Overexpression of EGFR signalling promotes tumor growth by inhibiting apoptosis. EGFR dysfunction has been described in multiple cancers, including colon, head and neck, NSCLC, colon, liver, breast, and ovarian cancer. As a result, EGFR represents a prospective target for cancer treatment. Several anti-EGFR drugs are thriving, notably dacomitinib, afatinib, erlotinib, gefitinib, and osimertinib. However, almost all currently available anti-EGFR drugs have limited therapeutic effectiveness due to a lack of selectivity as well as substantial side effects. Furthermore, aberrant EGFR signalling across numerous human malignancies/carcinomas is impeded by gene amplification, protein overexpression, mutations, or in-frame deletions, making EGFR-induced cancer treatment challenging. To overcome such, novel therapeutic anti-EGFR drugs with high efficacy and minimal toxicity are required. To battle cancer and therapeutic resistance to EGFR inhibitors, pyrazole, pyrazoline, and their derivatives have been investigated as a viable pharmacophore for the development of new drugs with better potency, lesser toxicity, and favourable pharmacokinetic characteristics. The present investigation covers the examination of progress toward anti-cancer therapies targeting EGFR via pyrazole, pyrazoline, and fused pyrazole-based compounds. The current study also represents inclusive data on pyrazole-based marketed drugs as well as therapeutic candidates undergoing preclinical and clinical development. Lastly, we have discussed recent advances in the medicinal chemistry of pyrazole-based derivatives with their anti-EGFR significance for the eradication of various cancers and provide the direction toward structure-activity relationship (SAR), including mechanistic studies.
Collapse
Affiliation(s)
- Ketan R Hosamani
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Hemalatha K
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Kumaraswamy B
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Aayishamma I
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | | |
Collapse
|
4
|
Liu ZQ, Zhang Q, Liu YL, Yu XQ, Chui RH, Zhang LL, Zhao B, Ma LY. Recent contributions of pyridazine as a privileged scaffold of anticancer agents in medicinal chemistry: An updated review. Bioorg Med Chem 2024; 111:117847. [PMID: 39121679 DOI: 10.1016/j.bmc.2024.117847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Pyridazine, as a privileged scaffold, has been extensively utilized in drug development due to its multiple biological activities. Especially around its distinctive anticancer property, a massive number of pyridazine-containing compounds have been synthesized and evaluated that target a diverse array of biological processes involved in cancer onset and progression. These include glutaminase 1 (GLS1) inhibitors, tropomyosin receptor kinase (TRK) inhibitors, and bromodomain containing protein (BRD) inhibitors, targeting aberrant tumor metabolism, cell signal transduction and epigenetic modifications, respectively. Pyridazine moieties functioned as either core frameworks or warheads in the above agents, exhibiting promising potential in cancer treatment. Therefore, the review aims to summarize the recent contributions of pyridazine derivatives as potent anticancer agents between 2020 and 2024, focusing mainly on their structure-activity relationships (SARs) and development strategies, with a view to show that the application of the pyridazine scaffold by different medicinal chemists provides new insights into the rational design of anticancer drugs.
Collapse
Affiliation(s)
- Zi-Qiang Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Qian Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yu-Lin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xiao-Qian Yu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Rui-Hao Chui
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Lin-Lin Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Bing Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China; China Meheco Topfond Pharmaceutical Co., Key Laboratory of Cardio-cerebrovascular Drug, Zhumadian 463000, PR China.
| |
Collapse
|
5
|
Atmaca H, Ilhan S, Çamli Pulat Ç, Dundar BA, Zora M. Evaluation of Novel Spiro-pyrrolopyridazine Derivatives as Anticancer Compounds: In Vitro Selective Cytotoxicity, Induction of Apoptosis, EGFR Inhibitory Activity, and Molecular Docking Analysis. ACS OMEGA 2024; 9:23713-23723. [PMID: 38854531 PMCID: PMC11154717 DOI: 10.1021/acsomega.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
Cancer, characterized by uncontrolled cell proliferation, remains a global health challenge. Despite advancements in cancer treatment, drug resistance and adverse effects on normal cells remain challenging. The epidermal growth factor receptor (EGFR), a transmembrane tyrosine kinase protein, is crucial in controlling cell proliferation and is implicated in various cancers. Here, the cytotoxic and apoptotic potential of 21 newly synthesized spiro-pyrrolopyridazine (SPP) derivatives was investigated on breast (MCF-7), lung (H69AR), and prostate (PC-3) cancer cells. XTT assay was used for cytotoxicity assessment. Flow cytometry and western blot (WB) analyses were conducted for apoptosis detection. Additionally, the EGFR inhibitory potential of these derivatives was evaluated via a homogeneous time-resolved fluorescence (HTRF) assay, and WB and molecular docking studies were conducted to analyze the binding affinities of SPP10 with EGFR. SPPs, especially SPP10, exhibit significant cytotoxicity across MCF-7, H69AR, and PC-3 cancer cells with IC50 values of 2.31 ± 0.3, 3.16 ± 0.8, and 4.2 ± 0.2 μM, respectively. Notably, SPP10 demonstrates selective cytotoxicity against cancer cells with a low impact on nontumorigenic cells (IC50 value: 26.8 ± 0.4 μM). Flow cytometric analysis demonstrated the potent induction of apoptotic cell death by SPP10 in all of the tested cancer cells. Western blot analysis revealed the involvement of key apoptotic proteins, with SPP10 notably inhibiting antiapoptotic Bcl-2 while inducing pro-apoptotic Bax and cytochrome c. SPP10 exhibited significant EGFR kinase inhibitory activity, surpassing the efficacy of the reference drug erlotinib. Molecular docking studies support these findings, revealing strong binding affinities of SPP10 with both wild-type and mutated EGFR. The study underscores the significance of heterocyclic compounds, particularly spiro-class heterocyclic molecules, in advancing cancer research. Overall, SPP10 emerges as a promising candidate for further investigations in cancer treatment, combining potent cytotoxicity, apoptotic induction, and targeted EGFR inhibition.
Collapse
Affiliation(s)
- Harika Atmaca
- Department
of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Manisa 45140, Turkey
| | - Suleyman Ilhan
- Department
of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Manisa 45140, Turkey
| | - Çisil Çamli Pulat
- Applied
Science Research Center, Manisa Celal Bayar
University, Manisa 45140, Turkey
| | - Buse Aysen Dundar
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Metin Zora
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
6
|
Tawfik HO, Saleh MM, Ammara A, Khaleel EF, Badi R, Khater YTT, Rasheed RA, Attia AA, Hefny SM, Elkaeed EB, Nocentini A, Supuran CT, Eldehna WM, Shaldam MA. Discovery of Novel Pyridazine-Tethered Sulfonamides as Carbonic Anhydrase II Inhibitors for the Management of Glaucoma. J Med Chem 2024; 67:1611-1623. [PMID: 38207099 DOI: 10.1021/acs.jmedchem.3c02279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
As a progressive neuropathic condition, glaucoma can cause lifelong blindness if left untreated. Novel phenylpyridazine-tethered sulfonamides were designed as selective inhibitors for carbonic anhydrase (CA) isoform II to find effective therapeutic agents for glaucoma. Subsequently, the target inhibitors were synthesized and assessed for their inhibitory action against cytosolic CA I and II. Interestingly, the synthesized molecules poorly inhibited CA I while exhibiting low subnanomolar potency against CA II. Compound 7c disclosed the most potent activity (IC50 = 0.63 nM) with high selectivity against CA II (605-fold than acetazolamide selectivity). Moreover, compound 7c also showed significant in vivo IOP-reducing properties in the in vivo model of glaucoma. Furthermore, the binding of compound 7c to CA II was assessed at the molecular level, exploiting the molecular docking approach.
Collapse
Affiliation(s)
- Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Andrea Ammara
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino 50019, Firenze, Italy
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Rehab Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Yomna T T Khater
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rabab A Rasheed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt
| | - Ahmed A Attia
- Mansoura Ophthalmic Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Salma M Hefny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino 50019, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino 50019, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh 33516, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh 33516, Egypt
| |
Collapse
|
7
|
Rana M, Ansari I, Twala C, Khan S, Mandal A, Rahisuddin. Novel dihydrobenzofuran derivatives: design, synthesis, cytotoxic activity, apoptosis, molecular modelling and DNA binding studies. J Biomol Struct Dyn 2023; 42:12742-12760. [PMID: 39612190 DOI: 10.1080/07391102.2023.2273431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/14/2023] [Indexed: 11/30/2024]
Abstract
Pyrazoline derivatives (3a-3e) and (4a-4e) were designed and synthesized through chalcones (2a-2e) cyclization with NH2NH2/HCOOH and NH2CSNHNH2/CH3COOH, respectively. The molecular structures were elucidated by using various techniques such as UV-visible, FT-IR, 1H, 13C NMR spectroscopy and mass spectrometry. The purity of all synthesized compounds was checked by the liquid chromatography-mass spectrometry (LC-MS). Single X-ray crystallography was confirmed the molecular structure of analogs (2d, 3e and 4e). Anticancer activity of the all derivatives was screened against human cancer cell MCF-7 and HepG2 cell lines by MTT assay. The results of anticancer activity of novel analogs 2b, 3b and 3e exhibited promising activity against MCF-7 but low toxic against the HepG2 normal cell line. By using a flow cytometry-based technique, the anticancer effectiveness of potent compounds against the MCF-7 cancer cell line was further validated. DNA binding interactions of the novel analogs 3b and 3e were carried out with calf thymus DNA (Ct-DNA) using absorption, fluorescence, circular dichroism and cyclic voltammetry. In silico molecular modelling of pyrazoline derivatives were also studied using Schrödinger-Maestro v2021-2 against tyrosine kinase receptor with PDB ID: 1M17 to explore their best hits. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical was used to measure the antioxidant capacity of active pyrazoline derivatives. Using Swiss ADMET software, the ADMET characteristics of pyrazoline derivatives were also investigated.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manish Rana
- Molecular and Biophysical Research Lab (MBRL), Department of Chemistry, Jamia Millia Islamia, New Delhi, India
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, India
| | - Imran Ansari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Charmy Twala
- Department of Life and Consumer Science, University of South Africa, Florida, South Africa
| | - Sumbul Khan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Anupam Mandal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rahisuddin
- Molecular and Biophysical Research Lab (MBRL), Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
8
|
Hashem HE, Amr AEGE, Almehizia AA, Naglah AM, Kariuki BM, Eassa HA, Nossier ES. Nanoparticles of a Pyrazolo-Pyridazine Derivative as Potential EGFR and CDK-2 Inhibitors: Design, Structure Determination, Anticancer Evaluation and In Silico Studies. Molecules 2023; 28:7252. [PMID: 37959672 PMCID: PMC10648062 DOI: 10.3390/molecules28217252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
The strategic planning of this study is based upon using the nanoformulation method to prepare nanoparticles 4-SLNs and 4-LPHNPs of the previously prepared 4,5-diphenyl-1H-pyrazolo[3,4-c]pyridazin-3-amine (4) after confirming its structure with single crystal X-ray analysis. These nanoparticles exhibited promising cytotoxic activity against HepG-2, HCT-116 and MCF-7 cancer cell lines in comparison with the reference doxorubicin and the original derivative 4. Moreover, their inhibitory assessment against EGFR and CDK-2/cyclin A2 displayed improved and more favorable impact than the parent 4 and the references. Detection of their influence upon cancer biomarkers revealed upregulation of Bax, p53 and caspase-3 levels and downregulation of Bcl-2 levels. The docking simulation demonstrated that the presence of the pyrazolo[3,4-c]pyridazin-3-amine scaffold is amenable to enclosure and binding well within EGFR and CDK-2 receptors through different hydrophilic interactions. The pharmacokinetic and physicochemical properties of target 4 were also assessed with ADME investigation, and the outcome indicated good drug-like characteristics.
Collapse
Affiliation(s)
- Heba E. Hashem
- Department of Chemistry, Faculty of Women, Ain Shams University, Cairo 11757, Egypt
| | - Abd El-Galil E. Amr
- Applied Organic Chemistry Department, National Research Center, Cairo 12622, Egypt
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed M. Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Heba A. Eassa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
- Department of Pharmaceutical Sciences, School of Pharmacy and Physician Assistant Studies, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo 11516, Egypt
| |
Collapse
|
9
|
Chen S, Zhang M, Feng S, Gong C, Zhou Y, Xing L, He B, Wu Y, Xue W. Design, synthesis and biological activity of chalcone derivatives containing pyridazine. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
10
|
Al-Karmalawy AA, Nafie MS, Shaldam MA, Elmaaty AA, Antar SA, El-Hamaky AA, Saleh MA, Elkamhawy A, Tawfik HO. Ligand-Based Design on the Dog-Bone-Shaped BIBR1532 Pharmacophoric Features and Synthesis of Novel Analogues as Promising Telomerase Inhibitors with In Vitro and In Vivo Evaluations. J Med Chem 2023; 66:777-792. [PMID: 36525642 DOI: 10.1021/acs.jmedchem.2c01668] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Telomerase is an outstanding biological target for cancer treatment. BIBR1532 is a non-nucleoside selective telomerase inhibitor; however, it experiences ineligible pharmacokinetics. Herein, we aimed to design new BIBR1532-based analogues as promising telomerase inhibitors. Therefore, two novel series of pyridazine-linked to cyclopenta[b]thiophene (8a-f) and tetrahydro-1-benzothiophene (9a-f) were synthesized. A quantitative real-time polymerase chain reaction was utilized to investigate the telomerase inhibitory activity of candidates. Notably, 8e and 9e exhibited the best inhibition profiles. Moreover, 8e showed strong antitumor effects against both MCF-7 and A549 cancer cell lines. The effects of 8e on the cell cycle and apoptosis were measured. Besides, 8e was evaluated for its in vivo antitumor activity using solid Ehrlich carcinoma. The reduction in both the tumor weight and volume was greater than doxorubicin. Also, molecular docking and ADME studies were performed. Finally, a SAR study was conducted to gain further insights into the different telomerase inhibition potentials upon variable structural modifications.
Collapse
Affiliation(s)
- Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Samar A Antar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt.,Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, Virginia 24016, United States
| | - Anwar A El-Hamaky
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed A Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, The United Arab Emirates.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
11
|
Ahmed MF, Santali EY, Alsantali RI. Design, Synthesis, and Anticancer Activity of New Quinazoline Derivatives as VEGFR-2 Inhibitors and Apoptosis Inducers. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s107036322210019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Ahmed MF, Khalifa AS, Eed EM. Discovery of New Quinazoline-Based Anticancer Agents as VEGFR-2 Inhibitors and Apoptosis Inducers. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wu X, Zhang Y, Liu S, Liu C, Tang G, Cao X, Lei X, Peng J. Research applications of “linkers” in small molecule drugs design in fragment-based. Bioorg Chem 2022; 127:105921. [DOI: 10.1016/j.bioorg.2022.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/12/2022] [Accepted: 05/28/2022] [Indexed: 11/02/2022]
|
14
|
Hashem HE, Amr AEGE, Nossier ES, Anwar MM, Azmy EM. New Benzimidazole-, 1,2,4-Triazole-, and 1,3,5-Triazine-Based Derivatives as Potential EGFR WT and EGFR T790M Inhibitors: Microwave-Assisted Synthesis, Anticancer Evaluation, and Molecular Docking Study. ACS OMEGA 2022; 7:7155-7171. [PMID: 35252706 PMCID: PMC8892849 DOI: 10.1021/acsomega.1c06836] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 06/12/2023]
Abstract
A new series of benzimidazole, 1,2,4-triazole, and 1,3,5-triazine derivatives were designed and synthesized using a microwave irradiation synthetic approach utilizing 2-phenylacetyl isothiocyanate (1) as a key starting material. All the new analogues were evaluated as anticancer agents against a panel of cancer cell lines utilizing doxorubicin as a standard drug. Most of the tested derivatives exhibited selective cytotoxic activity against MCF-7 and A-549 cancer cell lines. Furthermore, the new target compounds 5, 6, and 7 as the most potent antiproliferative agents have been assessed as in vitro EGFRWT and EGFRT790M inhibitors compared to the reference drugs erlotinib and AZD9291. They represented more potent suppression activity against the mutated EGFRT790M than the wild-type EGFRWT. Moreover, the compounds 5, 6, and 7 down-regulated the oncogenic parameter p53 ubiquitination. A docking simulation of compound 6b was carried out to correlate its molecular structure with its significant EGFR inhibition potency and its possible binding interactions within the active site of EGFRWT and the mutant EGFRT790M.
Collapse
Affiliation(s)
- Heba E. Hashem
- Department
of Chemistry, Faculty of Women, Ain Shams
University, Heliopolis, Cairo 11757, Egypt
| | - Abd El-Galil E. Amr
- Pharmaceutical
Chemistry Department, Drug Exploration & Development Chair (DEDC),
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Applied
Organic Chemistry Department, National Research
Center, Dokki, Cairo 12622, Egypt
| | - Eman S. Nossier
- Pharmaceutical
Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy
(Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Manal M. Anwar
- Department
of Therapeutic Chemistry, National Research
Centre, Dokki, Cairo 12622, Egypt
| | - Eman M. Azmy
- Department
of Chemistry, Faculty of Women, Ain Shams
University, Heliopolis, Cairo 11757, Egypt
| |
Collapse
|
15
|
Synthesis and inverse virtual screening of new bi-cyclic structures towards cancer-relevant cellular targets. Struct Chem 2022. [DOI: 10.1007/s11224-022-01889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractWe report here synthetic approaches to access new classes of small molecules based on three heterocyclic scaffolds, i.e. 3,7-dihydropyrimido[4,5-d]pyridazine-4,8-dione, 1,8-naphthyridin-4(1H)-one and 4H-pyrido[1,2-a]pyrimidin-4-one. The bi-cyclic structure 3,7-dihydropyrimido[4,5-d]pyridazine-4,8-dione is a new heterocycle, described here for the first time. In silico methodologies of inverse virtual screening have been used to preliminary analyse the molecules, in order to explore their potential as hits for chemical biology investigations. Our computational study has been conducted with 43 synthetically accessible small molecules towards 31 cellular proteins involved in cancer pathogenesis. Binding energies were quantified using molecular docking calculations, allowing to define the relative affinities of the ligands for the cellular targets. Through this methodology, 16 proteins displayed effective interactions with distinct small molecules within the matrix. In addition, 23 ligands have demonstrated high affinity for at least one cellular protein, using as reference the co-crystallised ligand in the X-ray structure. The evaluation of ADME and drug score for selected hits also highlights that these new molecular series can serve as sources of lead candidates for further structure optimisation and biological studies.
Collapse
|
16
|
Tok F, Baltaş N, Tatar G, Koçyiğit-Kaymakçıoğlu B. Synthesis, biological evaluation and in silico studies of new pyrazoline derivatives bearing benzo[d]thiazol-2(3H)-one moiety as potential urease inhibitors. Chem Biodivers 2022; 19:e202100826. [PMID: 35018718 DOI: 10.1002/cbdv.202100826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/11/2022] [Indexed: 11/09/2022]
Abstract
Novel pyrazoline derivatives containing benzo[d]thiazol-2(3H)-one moiety were synthesized and screened for their inhibitory properties against to urease, a clinically important metabolic enzyme. In vitro enzyme inhibition studies revealed that all pyrazolines (7.21-87.77 µM) were more potent than the standard inhibitor acetohydroxamic acid (251.74 µM) against the urease enzyme. Most notably, compound 2m , which is more active than the other compounds in in vitro and molecular docking studies, showed a significant inhibition potential and efficient IC 50 values (7.21±0.09 µM) and in silico inhibition constant (0.11 µM). Furthermore, molecular dynamics (MD) simulation analysis suggests that the binding stability of urease enzyme and compound 2m were stably maintained during the 100 ns simulation time. Compound 2m also exhibited good physicochemical and pharmacokinetic parameters. The overall results of urease inhibition have indicated that these pyrazoline derivative compounds can be further optimized and developed for the discovery of novel urease inhibitors.
Collapse
Affiliation(s)
- Fatih Tok
- Marmara Universitesi Eczacilik Fakultesi, Pharmaceutical Chemistry, Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry,, 34854 4/A, Istanbul, TURKEY
| | - Nimet Baltaş
- Recep Tayyip Erdogan University Faculty of Arts and Sciences: Recep Tayyip Erdogan Universitesi Fen Edebiyat Fakultesi, Chemistry, Department of Chemistry, Faculty of Arts and Sciences, Rize, TURKEY
| | - Gizem Tatar
- Karadeniz Technical University: Karadeniz Teknik Universitesi, Bioistatistics and Medical Informatics, Department of Biostatistics and Medical Informatics, Faculty of Medicine, Trabzon, TURKEY
| | - Bedia Koçyiğit-Kaymakçıoğlu
- Marmara University: Marmara Universitesi, Pharmaceutical Chemistry, Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry,, Türkiye, 34854 4/A, Istanbul, TURKEY
| |
Collapse
|
17
|
Discovery of pyridine- sulfonamide hybrids as a new scaffold for the development of potential VEGFR-2 inhibitors and apoptosis inducers. Bioorg Chem 2021; 111:104842. [PMID: 33798847 DOI: 10.1016/j.bioorg.2021.104842] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022]
Abstract
New sulfonamide derivatives have been synthesized and tested as antitumor agents. All newly synthesized compounds were tested in vitro against 60 lines of human cancer cells. Compound VIIb shows broad-spectrum activity with a mean inhibition value of 91.67% against all cell lines. It exhibited potent anticancer activity with GI50 values of 1.06-8.92 μM relative to most of the tested cancer cell lines. Compound VIIb has been tested for enzyme inhibition activity toward vascular endothelial growth factor receptor 2, where VEGFR-2 was potently inhibited at a lower IC50 value of 3.6 μM, compared with sorafenib (IC50 = 4.8 μM). Hybrid VIIb was also able to induce cell cycle disturbance and apoptosis in Renal UO-31 cells, as shown by DNA flow cytometry and Annexin V-FITC/PI assays. It has also revealed lower Bcl-2 protein expression anti-apoptotic levels and higher BAX, p53, and caspases 3 expression levels.
Collapse
|