1
|
Tao W, Zhang J, Meng X, Han X, Wang Q, Lin Y, Cheng L, Liu M, Da D, Zhang H, Fan J, Zhang L, Liu S, Li S, Gao F, Ren Y. Development and clinical evaluation of [ 68Ga]Ga-NODAGA-ADAPT6 as a novel HER2-targeted PET radiotracer for breast cancer imaging and treatment monitoring. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07286-z. [PMID: 40257612 DOI: 10.1007/s00259-025-07286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025]
Abstract
PURPOSE Accurate assessment of human epidermal growth factor receptor type 2 (HER2) expression is crucial for diagnosis, treatment planning, and monitoring of breast cancer patients. A 68Ga-labeled tracer based on the albumin-binding domain-derived affinity protein 6 (ADAPT6) was developed to evaluate HER2 expression in breast cancer. METHODS The gene encoding ADAPT6 was modified with N-terminal (GHEHEHEDANS) and C-terminal (GSSC) extensions to enhance its functionality. The precursor was synthesized, purified, and characterized, followed by radiolabeling with 68Ga to produce [68Ga]Ga-NODAGA-ADAPT6. In vivo metabolism and biodistribution studies were performed in HCC1954 (HER2-positive) and MDA-MB-468 (HER2-negative) tumor-bearing mice. Additionally, with ethical approval and informed consent, 22 breast cancer patients underwent [68Ga]Ga-NODAGA-ADAPT6 PET imaging to assess HER2 expression in primary and metastatic lesions. RESULTS The tracer was prepared with a radiochemical purity exceeding 99% and demonstrated high stability in vivo. Micro-PET/CT imaging revealed significant accumulation of the radiotracer in HCC1954 tumors, which was markedly reduced after HER2 blockade with trastuzumab. In contrast, MDA-MB-468 tumors showed minimal uptake. In the clinical study, [68Ga]Ga-NODAGA-ADAPT6 PET images displayed varying levels of radiotracer uptake in primary and metastatic lesions, which correlated well with the HER2 expression status determined by pathological analysis. CONCLUSION [68Ga]Ga-NODAGA-ADAPT6 exhibited excellent pharmacokinetic properties and high specificity for HER2-expressing lesions in PET imaging. These findings highlight its potential as a promising tool for distinguishing different levels of HER2 expression in breast cancer, aiding in personalized treatment strategies.
Collapse
Affiliation(s)
- Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China.
| | - Jinglin Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xin Meng
- Department of Breast and Thyroid Surgery, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, 223300, Jiangsu, China
| | - Xuedong Han
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Qiuhu Wang
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Yixiang Lin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Luyi Cheng
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Minmin Liu
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Dongzhu Da
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Huai Zhang
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Junfu Fan
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Lianmei Zhang
- Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Shuangyue Liu
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Shuo Li
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yi Ren
- Department of Breast and Thyroid Surgery, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, 223300, Jiangsu, China.
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China.
| |
Collapse
|
2
|
Toàn NM. Novel Molecular Classification of Breast Cancer with PET Imaging. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2099. [PMID: 39768978 PMCID: PMC11678748 DOI: 10.3390/medicina60122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Breast cancer is a heterogeneous disease characterized by a wide range of biomarker expressions, resulting in varied progression, behavior, and prognosis. While traditional biopsy-based molecular classification is the gold standard, it is invasive and limited in capturing tumor heterogeneity, especially in deep or metastatic lesions. Molecular imaging, particularly positron emission tomography (PET) imaging, offering a non-invasive alternative, potentially plays a crucial role in the classification and management of breast cancer by providing detailed information about tumor location, heterogeneity, and progression. This narrative review, which focuses on both clinical patients and preclinical studies, explores the latest advancements in PET imaging for breast cancer, emphasizing the development of new tracers targeting hormone receptors such as the estrogen alpha receptor, progesterone receptor, androgen receptor, estrogen beta receptor, as well as the ErbB family of receptors, VEGF/VEGFR, PARP1, PD-L1, and markers for indirectly assessing Ki-67. These innovative radiopharmaceuticals have the potential to guide personalized treatment approaches based on the unique tumor profiles of individual patients. Additionally, they may improve the assessment of treatment efficacy, ultimately leading to better outcomes for those diagnosed with breast cancer.
Collapse
Affiliation(s)
- Ngô Minh Toàn
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
- Medical Imaging Clinic, Clinical Centre, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
3
|
Sun Y, Zhai L, Ma L, Zhang W. Preclinical research progress in HER2-targeted small-molecule probes for breast cancer. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:47-53. [PMID: 39039211 PMCID: PMC11602795 DOI: 10.1007/s00117-024-01338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 07/24/2024]
Abstract
Breast cancer is a malignant tumor that has the highest morbidity and mortality in women worldwide. Human epidermal growth factor receptor 2 (HER2) is a key driver of breast cancer development. Therefore, accurate assessment of HER2 expression in cancer patients and timely initiation or termination of anti-HER2 treatment are crucial for the prognosis of breast cancer patients. The emergence of radiolabeled molecular probes targeting HER2 makes this assessment possible. This article describes different types of small-molecule probes that target HER2 and are used in current preclinical applications and summarizes their advantages and disadvantages.
Collapse
Affiliation(s)
- Yefan Sun
- Department of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, China
| | - Luoping Zhai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Le Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Wanchun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, 030032, Taiyuan, China.
| |
Collapse
|
4
|
Ebrahimi F, Zargari NR, Akhlaghi M, Asghari SM, Abdi K, Balalaie S, Asadi M, Beiki D. Synthesis, Radiolabeling, and Biodistribution Study of a Novel DOTA-Peptide for Targeting Vascular Endothelial Growth Factor Receptors in the Molecular Imaging of Breast Cancer. Pharmaceutics 2024; 16:899. [PMID: 39065596 PMCID: PMC11279866 DOI: 10.3390/pharmaceutics16070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 07/28/2024] Open
Abstract
As angiogenesis plays a pivotal role in tumor progression and metastasis, leading to more cancer-related deaths, the angiogenic process can be considered as a target for diagnostic and therapeutic applications. The vascular endothelial growth factor receptor-1 (VEGR-1) and VEGFR-2 have high expression on breast cancer cells and contribute to angiogenesis and tumor development. Thus, early diagnosis through VEGFR-1/2 detection is an excellent strategy that can significantly increase a patient's chance of survival. In this study, the VEGFR1/2-targeting peptide VGB3 was conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), using 6-aminohexanoic acid (Ahx) as a spacer to prevent steric hindrance in binding. DOTA-Ahx-VGB3 was radiolabeled with Gallium-68 (68Ga) efficiently. An in vitro cell binding assay was assessed in the 4T1 cell line. The tumor-targeting potential of [68Ga]Ga-DOTA-Ahx-VGB3 was conducted for 4T1 tumor-bearing mice. Consequently, high radiochemical purity [68Ga]Ga-DOTA-Ahx-VGB3 (RCP = 98%) was prepared and stabilized in different buffer systems. Approximately 17% of the radiopeptide was internalized after 2 h incubation and receptor binding as characterized by the IC50 value being about 867 nM. The biodistribution and PET/CT studies revealed that [68Ga]Ga-DOTA-Ahx-VGB3 reached the tumor site and was excreted rapidly by the renal system. These features convey [68Ga]Ga-DOTA-Ahx-VGB3 as a suitable agent for the noninvasive visualization of VEGFR-1/2 expression.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | | | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| | - S. Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614335, Iran;
| | - Khosrou Abdi
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran 158754416, Iran
| | - Mahboobeh Asadi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| | - Davood Beiki
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| |
Collapse
|
5
|
Kheshti J, Ahmadyousefi M, Soleimani M. Novel engineered HER2 specific recombinant protein nanocages for targeted drug delivery. Mol Biol Rep 2024; 51:773. [PMID: 38904710 DOI: 10.1007/s11033-024-09636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
Protein nanocages resemble natural biomimetic carriers and can be engineered to act as targeted delivery systems, making them an attractive option for various drug delivery and biomedical applications. Our research investigated the genetic link of a specific anti-HER2 peptide (LTVSPWY) to the exposed N-terminal region of the maize (Zea mays) ferritin 1 (ZmFer1) protein nanocage, employing either a 7-amino acid (for LTVS-ZmFer1) or 16-amino acid (for LTVS-L-ZmFer1) linker. We utilized a heat treatment method to load the chemotherapeutic drug doxorubicin into the protein nanocage. The construct with the longer linker (LTVS-L) produced a greater amount of soluble protein nanocage and was selected for further experiments. The average size, polydispersity index, and zeta potential of the engineered protein nanocage were 19.01 nm, 0.168, and - 2.13 mV, respectively. The LTVS-L-ZmFer1 protein nanocage exhibited excellent thermal stability, withstanding temperatures up to 100 °C with only partial denaturation. Furthermore, we observed that cellular uptake of the LTVS-L-ZmFer1 protein nanocages in HER2-positive breast cancer cells was significantly higher compared to ZmFer1 after labeling with FITC (fluorescein isothiocyanate) (P-value = 0.0001). In addition, we observed a significant decrease in the viability of SKBR3 cells when treated with DOX-loaded LTVS-L-ZmFer1 protein nanocages compared to cells treated with DOX-loaded ZmFer1 protein nanocages. Therefore, this new treatment strategy may prove to be an effective way to reduce both the side effects and toxicity associated with conventional cancer treatments in patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Javad Kheshti
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
6
|
Gao F, Liu F, Wang J, Bi J, Zhai L, Li D. Molecular probes targeting HER2 PET/CT and their application in advanced breast cancer. J Cancer Res Clin Oncol 2024; 150:118. [PMID: 38466436 PMCID: PMC10927773 DOI: 10.1007/s00432-023-05519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/12/2023] [Indexed: 03/13/2024]
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2)-positive breast cancer cases are among the most aggressive breast tumor subtypes. Accurately assessing HER2 expression status is vital to determining whether patients will benefit from targeted anti-HER2 treatment. HER2-targeted positron emission tomography (PET/CT) is noninvasive, enabling the real-time evaluation of breast cancer patient HER2 status with accuracy. METHODS We summarize the research progress of PET/CT targeting HER2 in breast cancer, focusing on PET/CT molecular probes targeting HER2 and their clinical application in the management of advanced breast cancer. RESULTS At present, a variety of different HER2 targeted molecular probes for PET/CT imaging have been developed, including nucleolin-labeled antibodies, antibody fragments, nanobodies, and peptides of various affinities, among others. HER2-targeted PET/CT can relatively accurately evaluate HER2 expression status in advanced breast cancer patients. It has good performance in the early detection of small HER2-positive lesions, evaluation of HER2 status in lesions that cannot be readily biopsied, evaluation of the heterogeneity of multiple metastases, identification of lesions with altered HER2 status, and evaluation of the efficacy of anti-HER2 drugs. CONCLUSION HER2-targeted PET/CT offers a promising noninvasive approach for real-time assessment of HER2 status,which can be guide targeted treatment for HER2-positive breast cancer patients. Future prospective clinical studies will be invaluable for fully evaluating the importance of HER2-targeted molecular imaging in the management of breast cancer.
Collapse
Affiliation(s)
- Fang Gao
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Fengxu Liu
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Jun Wang
- Department of Anesthesia, Armed Police Corps Hospital in Shanxi Province, Xiaodian District, Taiyuan, Shanxi, People's Republic of China
| | - Junfang Bi
- Department of Combined Traditional Chinese Medicine and West Medicine, Traditional Chinese Medicine Hospital of Shijiazhuang City, 233 Zhongshan West Road, Qiaoxi District, Shijiazhuang, Hebei, China
| | - Luoping Zhai
- Department of Nuclear Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.
| | - Dong Li
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.
- Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
7
|
Zhao L, Xing Y, Liu C, Ma S, Huang W, Cheng Z, Zhao J. Detection of HER2 expression using 99mTc-NM-02 nanobody in patients with breast cancer: a non-randomized, non-blinded clinical trial. Breast Cancer Res 2024; 26:40. [PMID: 38459598 PMCID: PMC10924314 DOI: 10.1186/s13058-024-01803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/03/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND 99mTc radiolabeled nanobody NM-02 (99mTc-NM-02) is a novel single photon emission computed tomography (SPECT) probe with a high affinity and specificity for human epidermal growth factor receptor 2 (HER2). In this study, a clinical imaging trial was conducted to investigate the relationship between 99mTc-NM-02 uptake and HER2 expression in patients with breast cancer. METHODS Thirty patients with pathologically confirmed breast cancer were recruited and imaged with both 99mTc-NM-02 SPECT/computed tomography (CT) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT. According to the treatment conditions before recruitment, patients were divided into two groups, the newly diagnosed group (n = 24) and the treated group (n = 6). The maximal standard uptake value (SUVmax) of 18F-FDG and SUVmax and mean SUV (SUVmean) of 99mTc-NM-02 in the lesions were determined to analyze the relationship with HER2 expression. RESULTS No meaningful relationship was observed between 18F-FDG uptake and HER2 expression in 30 patients with breast cancer. 99mTc-NM-02 uptake was positively correlated with HER2 expression in the newly diagnosed group, but no correlation was observed in the treated group. 99mTc-NM-02 uptake in HER2-positive lesions was lower in those with effective HER2-targeted therapy compared with the newly diagnosed group. 99mTc-NM-02 SPECT/CT detected brain and bone metastases of breast cancer with a different imaging pattern from 18F-FDG PET/CT. 99mTc-NM-02 showed no non-specific uptake in inflamed tissues and revealed intra- and intertumoral HER2 heterogeneity by SPECT/CT imaging in 9 of the 30 patients with breast cancer. CONCLUSIONS 99mTc-NM-02 SPECT/CT has the potential for visualizing whole-body HER2 overexpression in untreated patients, making it a promising method for HER2 assessment in patients with breast cancer. TRIAL REGISTRATION NCT04674722, Date of registration: December 19, 2020.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Shaofei Ma
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Wenhua Huang
- Nanomab Technology Limited, No. 333, North Chengdu Road, Jingan District, Shanghai, 200041, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555, Zuchongzhi Road, Pudong New District, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, No. 198, Binhai East Road, High-Tech District, Yantai, 264000, Shandong, China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
8
|
Ducharme M, Mansur A, Sligh L, Ulaner GA, Lapi SE, Sorace AG. Human Epidermal Growth Factor Receptor 2/Human Epidermal Growth Factor Receptor 3 PET Imaging: Challenges and Opportunities. PET Clin 2023; 18:543-555. [PMID: 37339919 DOI: 10.1016/j.cpet.2023.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) and HER3 provide actionable targets for both therapy and imaging in breast cancer. Further, clinical trials have shown the prognostic impact of receptor status discordance in breast cancer. Intra- and intertumoral heterogeneity of both HER and hormone receptor expression contributes to inherent errors in tissue sampling, and single biopsies are incapable of identifying discordance in biomarker expression. Numerous PET radiopharmaceuticals have been developed to evaluate (or target for therapy) HER2 and HER3 expression. This review seeks to inform on challenges and opportunities in HER2 and HER3 PET imaging in both clinical and preclinical settings.
Collapse
Affiliation(s)
- Maxwell Ducharme
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ameer Mansur
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luke Sligh
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Irvine, CA, USA; Department of Radiology and Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Cavallaro PA, De Santo M, Belsito EL, Longobucco C, Curcio M, Morelli C, Pasqua L, Leggio A. Peptides Targeting HER2-Positive Breast Cancer Cells and Applications in Tumor Imaging and Delivery of Chemotherapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2476. [PMID: 37686984 PMCID: PMC10490457 DOI: 10.3390/nano13172476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Breast cancer represents the most common cancer type and one of the major leading causes of death in the female worldwide population. Overexpression of HER2, a transmembrane glycoprotein related to the epidermal growth factor receptor, results in a biologically and clinically aggressive breast cancer subtype. It is also the primary driver for tumor detection and progression and, in addition to being an important prognostic factor in women diagnosed with breast cancer, HER2 is a widely known therapeutic target for drug development. The aim of this review is to provide an updated overview of the main approaches for the diagnosis and treatment of HER2-positive breast cancer proposed in the literature over the past decade. We focused on the different targeting strategies involving antibodies and peptides that have been explored with their relative outcomes and current limitations that need to be improved. The review also encompasses a discussion on targeted peptides acting as probes for molecular imaging. By using different types of HER2-targeting strategies, nanotechnology promises to overcome some of the current clinical challenges by developing novel HER2-guided nanosystems suitable as powerful tools in breast cancer imaging, targeting, and therapy.
Collapse
Affiliation(s)
- Palmira Alessia Cavallaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Emilia Lucia Belsito
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Camilla Longobucco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Luigi Pasqua
- Department of Environmental Engineering, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| |
Collapse
|
10
|
Molavipordanjani S, Mousavi T, Khorramimoghaddam A, Talebpour Amiri F, Abedi SM, Hosseinimehr SJ. The preclinical study of 177Lu-DOTA-LTVSPWY as a potential therapeutic agent against HER2 overexpressed cancer. Ann Nucl Med 2023:10.1007/s12149-023-01839-8. [PMID: 37115407 DOI: 10.1007/s12149-023-01839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Peptide receptor radionuclide therapy (PRRT) has evolved in cancer therapy and diagnosis. LTVSPWY, as a peptide, can target HER2 receptor; on the other hand, 177Lu emits β- which is helpful for cancer therapy. The radiolabeling of LTVSPWY with 177Lu results in a therapeutic agent (177Lu-DOTA-LTVSPWY) capable of cancer treatment. METHODS 177Lu-DOTA-LTVSPWY was prepared with high radiochemical purity (RCP). The stability was investigated in saline and human serum. The radiotracer affinity toward the SKOV-3 cell line with overexpression of the HER2 receptor was evaluated. Then the impact of the radiotracer on the colony formation of the SKOV-3 cell line was investigated with colony assay. Moreover, the biodistribution of this radiotracer in SKOV-3 xenograft tumor-bearing nude mice were also studied to determine the radiotracer accumulation in the tumor site. The mice were treated with 177Lu-DOTA-LTVSPWY and subjected to histopathological evaluation. RESULTS The RCP of 177Lu-DOTA-LTVSPWY after radiolabeling and stability tests was more than 97.7%. The radiotracer displayed high affinity toward the SKOV-3 cell line (KD = 6.6 ± 3.2 nM). Treatment of the SKOV-3 cell line with the radiotracer reduces the SKOV-3 colony survival to less than 3% for 5 MBq of the radiotracer. Tumor-to-muscle (T/M) ratio is the highest at 48 h and 1 h post-injection (2.3 and 4.75, respectively). The histopathological study also confirms the cellular damage to the tumor tissue. CONCLUSIONS 177Lu-DOTA-LTVSPWY can recognize HER2 receptors in vivo and in vitro; hence, it can serve as a therapeutic agent.
Collapse
Affiliation(s)
- Sajjad Molavipordanjani
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tahoora Mousavi
- Molecular and Cell Biology Research Center (MCBRC), Hemoglobinopathy Institute, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Khorramimoghaddam
- Department of Radiology, Faculty of Allied Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Molecular and Cell Biology Research, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
11
|
Biabani Ardakani J, Abedi SM, Mardanshahi A, Shojaee L, Zaboli E, Khorramimoghaddam A, Nosrati A, Sabahno H, Banimostafavi ES, Hosseinimehr SJ. Molecular Imaging of HER2 Expression in Breast Cancer patients Using the [ 99mTc] Tc-Labeled Small Peptide. Clin Breast Cancer 2023; 23:219-230. [PMID: 36581518 DOI: 10.1016/j.clbc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE The accurate determination of human epidermal growth factor receptor 2 (HER2) status can predict response to treatment with HER2-targeted therapy for HER2-positive breast cancer patients. [99mTc]Tc-HYNIC-(Ser)3-LTVPWY ([99mTc]Tc-HYNIC-LY) is a small synthetic peptide molecule targeting of the HER2 receptor. This clinical study evaluated the pharmacokinetic, dosimetry, and efficacy of [99mTc]Tc-HYNIC-LY for determining the HER2 status in primary breast cancer patients. MATERIALS AND METHODS In total, 24 women with suspected primary breast cancer received an intravenous injection of approximately 20 µg (∼740 MBq) of [99mTc]Tc-HYNIC-LY. In the first 3 patients, blood levels of radioactivity were analyzed for pharmacokinetic evaluation and planar gamma camera imaging was conducted at 30 min and 1, 2, 4, and 24 hour after injection for dosimetry assessment. In the last 21 patients, planar imaging was performed at the baseline, as well as 1, 2, 3, and 4 hour, followed by single-photon emission computed tomography (SPECT) imaging after 4 hour to evaluate the tumor-targeting potential in primary lesions. RESULTS Injection of [99mTc]Tc-HYNIC-LY was safe and well tolerated. Fast blood clearance provided high-contrast HER2 imaging within 1 to 4 hour. The highest absorbed radiation dose was found for kidneys (6.78E-03 ± 2.62E-04 mSv/MBq), followed by the heart (3.73E-03 ± 1.98E-04 mSv/MBq). The [99mTc]Tc-HYNIC-LY peptide was able to detect HER2 status in primary tumors at an acceptable level. CONCLUSION The findings of this study indicated that [99mTc]Tc-HYNIC-LY SPECT is safe and feasible for the identification of HER2-positive lesions in primary breast cancer patients, and may provide an accurate and non-invasive modality for guiding HER2 targeted therapy.
Collapse
Affiliation(s)
- Javad Biabani Ardakani
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leyla Shojaee
- Department of Surgery, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Zaboli
- Department of Oncology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Khorramimoghaddam
- Department of Radiology, Faculty of Allied Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anahita Nosrati
- Department of Pathology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamideh Sabahno
- Parsisotope Laboratory, Radioisotope Institute, Tehran, Iran
| | - Elahm Sadat Banimostafavi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
12
|
Evaluation of 68Ga-Radiolabeled Peptides for HER2 PET Imaging. Diagnostics (Basel) 2022; 12:diagnostics12112710. [PMID: 36359554 PMCID: PMC9689602 DOI: 10.3390/diagnostics12112710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
One in eight women will be diagnosed with breast cancer in their lifetime and approximately 25% of those cases will be HER2-positive. Current methods for diagnosing HER2-positive breast cancer involve using IHC and FISH from suspected cancer biopsies to quantify HER2 expression. HER2 PET imaging could potentially increase accuracy and improve the diagnosis of lesions that are not available for biopsies. Using two previously discovered HER2-targeting peptides, we modified each peptide with the chelator DOTA and a PEG2 linker resulting in DOTA-PEG2-GSGKCCYSL (P5) and DOTA-PEG2-DTFPYLGWWNPNEYRY (P6). Each peptide was labeled with 68Ga and was evaluated for HER2 binding using in vitro cell studies and in vivo tumor xenograft models. Both [68Ga]P5 and [68Ga]P6 showed significant binding to HER2-positive BT474 cells versus HER2-negative MDA-MB-231 cells ([68Ga]P5; 0.68 ± 0.20 versus 0.47 ± 0.05 p < 0.05 and [68Ga]P6; 0.55 ± 0.21 versus 0.34 ± 0.12 p < 0.01). [68Ga]P5 showed a higher percent injected dose per gram (%ID/g) binding to HER2-positive tumors two hours post-injection compared to HER2-negative tumors (0.24 ± 0.04 versus 0.12 ± 0.06; p < 0.05), while the [68Ga]P6 peptide showed significant binding (0.98 ± 0.22 versus 0.51 ± 0.08; p < 0.05) one hour post-injection. These results lay the groundwork for the use of peptides to image HER2-positive breast cancer.
Collapse
|
13
|
Ebrahimi F, Noaparast Z, Abedi SM, Hosseinimehr SJ. Homodimer 99mTc-HYNIC-E(SSSLTVPWY) 2 peptide improved HER2-overexpressed tumor targeting and imaging. Med Oncol 2022; 39:204. [PMID: 36175805 DOI: 10.1007/s12032-022-01798-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
We hypothesized that a novel design of the LTVPWY (LY) peptide might exhibit a great potential for improving binding affinity and targeting HER2-overexpressed tumors. Hence, new dimer construction of 99mTc-labeled LY [99mTc-HYNIC-E(SSSLTVPWY)2] (99mTc-DLY) was introduced. Afterward, a head-to-head comparison of in vitro and in vivo experiments was performed between 99mTc-DLY and 99mTc-HYNIC-SSSLTVPWY as the monomer analog. The blocking dosage of trastuzumab reduced the uptake of the dimer about 20% more efficiently than the monomer in the SKOV-3 cell line. A twofold increase in competitive binding affinity and biological half-life was observed for 99mTc-DLY. The ovarian-tumor-bearing mice were detected with high contrast where the tumor-to-muscle ratio of 99mTc-DLY was notably increased about 40% using a gamma camera. The biodistribution experiment revealed an approximately 10% enhancement in tumor/blood, tumor/muscle, and tumor/bone ratios for the dimer. More rapid blood clearance was another achievement of the homodimer design. Overall, 99mTc-DLY successfully affected the pharmacokinetics and consequently the visualization of HER2-overexpressing tumors.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Noaparast
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
14
|
Sharma AK, Sharma R, Vats K, Sarma HD, Mukherjee A, Das T, Satpati D. Synthesis and comparative evaluation of 177Lu-labeled PEG and non-PEG variant peptides as HER2-targeting probes. Sci Rep 2022; 12:15720. [PMID: 36127494 PMCID: PMC9489682 DOI: 10.1038/s41598-022-19201-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Highest global cancer incidence of female breast cancer is a matter of great concern. HER2-positive breast cancers have high mortality rate hence detection at an early stage is vital for successful treatment, improved cancer care and survival rate. Radiolabeled peptides have emerged as new alternatives to radiolabeled antibodies to overcome the limitations of slow clearance and uptake in non-target tissues. Herein, DOTA-A9 peptide and its pegylated variant were constructed on solid phase and radiolabeled with [177Lu]LuCl3. [177Lu]DOTA-A9 and [177Lu]DOTA-PEG4-A9 displayed high binding affinity (Kd = 48.4 ± 1.4 and 55.7 ± 12.3 nM respectively) in human breast carcinoma SKBR3 cells. Two radiopeptides exhibited renal excretion and rapid clearance from normal organs. Uptake in SKBR3 tumor and tumor-to-background ratios were significantly higher (p < 0.05) for [177Lu]DOTA-PEG4-A9 at the three time points investigated. Xenografts could be clearly visualized by [177Lu]DOTA-PEG4-A9 in SPECT images at 3, 24 and 48 h p.i. indicating the potential for further exploration as HER2-targeting probe. The encouraging in vivo profile of PEG construct, [177Lu]DOTA-PEG4-A9 incentivizes future studies for clinical applications.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Kusum Vats
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
15
|
Ranjbar V, Molavipordanjani S, Biabani Ardakani J, Akhlaghi M, Nikkholgh B, Hosseinimehr SJ. Initial preclinical evaluation of 68 Ga-DOTA-(Ser) 3 -LTVSPWY peptide as a PET radiotracer for glioblastoma targeting and imaging. Nucl Med Commun 2022; 43:945-951. [PMID: 35754162 DOI: 10.1097/mnm.0000000000001590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Imaging of glioblastoma multiform (GBM) tumor using 68 -Galium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaceticacid-Ser-Ser-Ser-Leu-Thr-Val-Ser-Pro-Trp-Tyr ( 68 Ga-DOTA-(Ser)3-LTVSPWY) as a PET radiotracer for HER2 receptor due to fact that this receptor plays a pivotal role in the tumorigenesis and tumor progression in a wide range of cancer. METHODS 68 Ga-DOTA-(Ser) 3 -LTVSPWY was produced with high radiochemical purity. The affinity and specificity of this radiotracer toward HER2 receptor on the surface of glioma glioblastoma (U-87 MG) cell line were evaluated. Furthermore, the biodistribution and PET imaging of this radiolabeled peptide were investigated on xenografted U-87 MG tumor-bearing mice. RESULTS The in-vitro specific binding study revealed that the 68 Ga-DOTA-(Ser) 3 -LTVSPWY binds to different cell lines with respect to their level of HER2 expression. The calculated K D and B max of radiolabeled peptide toward U-87 MG cell line were 5.5 ± 2.4 nmol/l and (2.4 ± 0.3) × 10 5 receptors per cell, respectively. The highest tumor uptake was observed at 30-min postinjection, whereas the tumor-to-muscle ratio was about four-fold. The acquired PET images distinctively show tumor site, which was blocked with excess nonlabeled peptide that revealed specific in-vivo targeting of 68 Ga-DOTA-(Ser) 3 -LTVSPWY for glioma. CONCLUSION 68 Ga-DOTA-(Ser) 3 -LTVSPWY specifically recognizes HER2 receptors and could be a potential candidate for GBM imaging.
Collapse
Affiliation(s)
- Venousheh Ranjbar
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences
| | - Sajjad Molavipordanjani
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari
| | - Javad Biabani Ardakani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd
| | - Mehdi Akhlaghi
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd
| | - Babak Nikkholgh
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences
| | | |
Collapse
|
16
|
Dong K, Zhang W, Cheng S, Shu W, Zhao R, Wang H. The Progress of the Specific and Rapid Genetic Detection Methods for Ovarian Cancer Diagnosis and Treatment. Technol Cancer Res Treat 2022; 21:15330338221114497. [PMID: 36062718 PMCID: PMC9446467 DOI: 10.1177/15330338221114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer is a public health problem that threatens human health. Due to the lack of
specific and rapid diagnosis and treatment methods, the 5-year survival rate of
patients has not been effectively improved in the past 10 years. Abnormal gene
expression is closely related to the occurrence and development of cancer.
Cancer diagnosis and treatment methods based on genetic testing have received
extensive attention in recent years. It is essential to explore specific and
rapid cancer genetic testing methods. Taking ovarian cancer as an example, we
reviewed the progress of specific and rapid nucleic acid detection methods
related to cancer risk assessment, low-abundance mutation detection, and
methylation detection, to provide new strategies and ideas for related
research.
Collapse
Affiliation(s)
- Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, China
| | - Shuangshuang Cheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, China
| | - Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Review: Radionuclide Molecular Imaging Targeting HER2 in Breast Cancer with a Focus on Molecular Probes into Clinical Trials and Small Peptides. Molecules 2021; 26:molecules26216482. [PMID: 34770887 PMCID: PMC8588233 DOI: 10.3390/molecules26216482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
As the most frequently occurring cancer worldwide, breast cancer (BC) is the leading cause of cancer-related death in women. The overexpression of HER2 (human epidermal growth factor receptor 2) is found in about 15% of BC patients, and it is often associated with a poor prognosis due to the effect on cell proliferation, migration, invasion, and survival. As a result of the heterogeneity of BC, molecular imaging with HER2 probes can non-invasively, in real time, and quantitatively reflect the expression status of HER2 in tumors. This will provide a new approach for patients to choose treatment options and monitor treatment response. Furthermore, radionuclide molecular imaging has the potential of repetitive measurements, and it can help solve the problem of heterogeneous expression and conversion of HER2 status during disease progression or treatment. Different imaging probes of targeting proteins, such as monoclonal antibodies, antibody fragments, nanobodies, and affibodies, are currently in preclinical and clinical development. Moreover, in recent years, HER2-specific peptides have been widely developed for molecular imaging techniques for HER2-positive cancers. This article summarized different types of molecular probes targeting HER2 used in current clinical applications and the developmental trend of some HER2-specific peptides.
Collapse
|
18
|
Liu Z, Liang G, Zhan W. In situ Activatable Peptide-based Nanoprobes for Tumor Imaging. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Rinne SS, Orlova A, Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int J Mol Sci 2021; 22:ijms22073663. [PMID: 33915894 PMCID: PMC8036874 DOI: 10.3390/ijms22073663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence: ; Tel.: +46-704-250-782
| |
Collapse
|