1
|
Ni X, Luo X, Jiang X, Chen W, Bai R. Small-Molecule Tyrosinase Inhibitors for Treatment of Hyperpigmentation. Molecules 2025; 30:788. [PMID: 40005101 PMCID: PMC11858095 DOI: 10.3390/molecules30040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Increasing attention is being focused on skin health currently, especially the excessive deposition of melanin in the skin. Tyrosinase, the rate-limiting enzyme in melanin biosynthesis, is a crucial enzyme in melanin synthesis. However, existing tyrosinase inhibitors pose some degree of toxicity to humans. Therefore, the development of more efficient and low-toxicity tyrosinase inhibitors is urgently needed. This review briefly depicts the melanin biosynthesis process and the crystal structure and catalytic mechanism of tyrosinase. The latest research progress regarding small-molecule tyrosinase inhibitors is also reviewed. Moreover, the structure-function relationships are analyzed and summarized. This is expected to provide new and more scientific insights to enable researchers to explore safer and more potent tyrosinase inhibitors.
Collapse
Affiliation(s)
- Xinhua Ni
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
2
|
Aljuhani A, Nafie MS, Albujuq NR, Alsehli M, Bardaweel SK, Darwish KM, Alraqa SY, Aouad MR, Rezki N. Discovery of new benzothiazole-1,2,3-triazole hybrid-based hydrazone/thiosemicarbazone derivatives as potent EGFR inhibitors with cytotoxicity against cancer. RSC Adv 2025; 15:3570-3591. [PMID: 39906636 PMCID: PMC11792500 DOI: 10.1039/d4ra07540d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
Considering the widespread availability of certain medicines, there is still a critical need for potent anti-cancer agents. It is owing to numerous negative impacts and non-functionality of current drugs, particularly during the late stages of illness. To accomplish this, the new array of 1,2,3-triazole-benzothiazole molecular conjugates tethering hydrazone/thiosemicarbazone linkage 8a-l have been successfully synthesized via the efficient copper-catalyzed 1,3-dipolar cycloaddition of the appropriate un/substituted benzothiazole azides 4a-c with several O-propargylated benzylidene derivatives 7a-d. The newly established 1,2,3-triazole structural hybrids were thoroughly characterized using appropriate spectroscopic techniques (IR, 1H, 13C-NMR & CHN analysis). The cytotoxic features of the investigated triazole hybrids were assessed against three human cancer cell lines, A549, T47-D, and HCT-116 cancer cells, using the MTT assay. Based on the findings, the breast cancer cell line T47D displayed promising results with IC50 values of 13, 17, and 19 μM for the synthesized molecules 8a-c, respectively. Furthermore, the safety assessment of these compounds on normal cell lines revealed a relatively low risk to normal cells, as indicated by their IC50 values exceeding 500 μM, suggesting a reasonable safety margin. Interestingly, the most relevant derivatives 8a, 8b, and 8c, exhibited IC50 values of 0.69, 1.16, and 4.82 μM, respectively, causing inhibition of 98.5%, 96.8%, and 92.3%, compared to Erlotinib (IC50 = 1.3 μM, 98.2% inhibition). Molecular docking results exhibited a good binding affinity of compounds 8a and 8b towards the EGFR active site. Accordingly, these compounds can be further developed as target-oriented EGFR chemotherapeutics against cancer.
Collapse
Affiliation(s)
- Ateyatallah Aljuhani
- Chemistry Department, College of Sciences, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P.O. 27272 Sharjah United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University P.O. 41522 Ismailia Egypt
| | - Nader R Albujuq
- Department of Chemistry, School of Science, The University of Jordan Amman 11942 Jordan
| | - Mosa Alsehli
- Chemistry Department, College of Sciences, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan Amman 11942 Jordan
| | - Khaled M Darwish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43511 Egypt
| | - Shaya Y Alraqa
- Chemistry Department, College of Sciences, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohamed Reda Aouad
- Chemistry Department, College of Sciences, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Nadjet Rezki
- Chemistry Department, College of Sciences, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| |
Collapse
|
3
|
Moghadam Farid S, Moradi Dehaghi S, Iraji A, Mahdavi M, Saeedi M. Synthesis, biological evaluations, and in silico assessments of phenylamino quinazolinones as tyrosinase inhibitors. Sci Rep 2025; 15:846. [PMID: 39755701 PMCID: PMC11700089 DOI: 10.1038/s41598-024-81328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025] Open
Abstract
A series of novel phenylamino quinazolinone derivatives were designed and synthesized as potential tyrosinase inhibitors. Among these compounds, 9r emerged as the most potent derivative, exhibiting IC50 values of 17.02 ± 1.66 µM, compared to kojic acid as the positive control with an IC50 value of 27.56 ± 1.27 µM. Antioxidant assessment of 9r compounds showed 24.67% inhibition at 100 µM. Molecular docking studies of these derivatives were conducted, revealing their proper fitting within the enzyme's active site. Additionally, density functional theory analysis was performed on the potent derivatives, indicating their stability and reactivity. Notably, the highest values of the energy gap were observed in 9r and 9s derivatives, underscoring their potential efficacy. Further kinetic studies of compound 9r, identified as the most potent derivative, demonstrated a competitive mode of inhibition with a Ki value of 14.87 µM. Molecular dynamics simulations of the 9r-tyrosinase complex revealed stability over time, with a reduction in critical residual fluctuation during the simulation. Overall, these findings contribute to a deeper understanding of the potential therapeutic value of these derivatives as tyrosinase inhibitors.
Collapse
Affiliation(s)
- Sara Moghadam Farid
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Aida Iraji
- Department of Persian Medicine, Research Center for Traditional Medicine and History of Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdavi
- Department of Persian Medicine, Research Center for Traditional Medicine and History of Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute (EMRI), Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Camargo-Ayala L, Prent-Peñaloza L, Osorio E, Camargo-Ayala PA, Jimenez CA, Zúñiga-Arbalti F, Brito I, Delgado GE, Gutiérrez M, Polo-Cuadrado E. Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease. Bioorg Chem 2024; 153:107896. [PMID: 39454497 DOI: 10.1016/j.bioorg.2024.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
This study presents the synthesis and characterization of a series of 13 novel acetamides. These were subjected to Ellman's assay to determine the efficacy of the AChE and BChE inhibitors. Finally, we report their antioxidant activity as an alternative approach for the search for drugs to treat AD. These studies revealed that compounds 1a-1k and 2l-2m were obtained in moderate yield. Four amides (1h, 1j, 1k, and 2l) were selective for one of the enzymes (BChE); thus, those that inhibited BChE were more active than the positive control (galantamine) and showed better IC50 values (3.30-5.03 µM). The theoretical free binding energies calculated by MM-GBSA indicated that all inhibitors were more stable than rivastigmine, and the inhibition mechanisms involved the entire active site: peripheral anionic site, oxyanion hole, acyl-binding pockets, and catalytic site. We examined the cytotoxicity of compounds 1h, 1j, 1k, and 2l in human dermal cells and found that they did not exhibit any toxic effects under the tested conditions. Additionally, these compounds, which also inhibited BChE, displayed mixed inhibition and did not exhibit hemolytic effects on human erythrocytes. Furthermore, the ABTS and DPPH assays indicated that, although none of the compounds showed activity in the DPPH assay, the EC50 values for radical trapping by the ABTS method showed that compounds 1a, 1d, 1e, and 1g had EC50 values lower than 10 µg/mL, indicating their strong radical scavenging capacity. We also report the crystal structures of compounds 1c, 1d, 1f, and 1g, which are found in monoclinic crystal systems.
Collapse
Affiliation(s)
- Lorena Camargo-Ayala
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica, Universidad de Talca, Casilla 747, Talca 3460000, Chile.
| | - Luis Prent-Peñaloza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota 980, Viña del Mar, Chile
| | - Edison Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué 730001, Colombia
| | - Paola Andrea Camargo-Ayala
- Doctorado en Ciencias Biomédicas, Laboratorio de Patología Molecular, Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile
| | - Claudio A Jimenez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4130000, Chile
| | - Felipe Zúñiga-Arbalti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Universidad de Antofagasta, Campus Coloso, Antofagasta 02800, Chile
| | - Gerzon E Delgado
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Universidad de Antofagasta, Campus Coloso, Antofagasta 02800, Chile; Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Margarita Gutiérrez
- Laboratorio de Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Universidad de Talca, Casilla 747, Talca 3460000, Chile.
| | - Efraín Polo-Cuadrado
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4130000, Chile.
| |
Collapse
|
5
|
Shaldam MA, Mousa MHA, Tawfik HO, El-Dessouki AM, Sharaky M, Saleh MM, Alzahrani AYA, Moussa SB, Al-Karmalawy AA. Muti-target rationale design of novel substituted N-phenyl-2-((6-phenylpyridazin-3-yl)thio)acetamide candidates as telomerase/JAK1/STAT3/TLR4 inhibitors: In vitro and in vivo investigations. Bioorg Chem 2024; 153:107843. [PMID: 39332072 DOI: 10.1016/j.bioorg.2024.107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
In this work, additional effort was applied to design new BIBR1532-based analogues with potential inhibitory activity against telomerase and acting as multitarget antitumor candidates to overcome the resistance problem. Therefore, novel substituted N-phenyl-2-((6-phenylpyridazin-3-yl)thio)acetamide candidates (4a-n) were synthesized. Applying the lead optimization strategy of the previously designed compound 8e; compound 4l showed an improved telomerase inhibition of 64.95 % and a superior growth inhibition of 79 % suggesting its potential use as a successful "multitarget-directed drug" for cancer therapy. Accordingly, compound 4l was further selected to evaluate its additional JAK1/STAT3/TLR4 inhibitory potentials. Compound 4l represented a very promising JAK1 inhibitory potential with a 0.46-fold change, compared to that of pacritinib reference standard (0.33-fold change). Besides, it showed a superior STAT3-inhibitory potential with a 0.22-fold change compared to sorafenib (0.33-fold change). Additionally, compound 4l downregulated TLR4 protein expression by 0.81-fold change compared to that of resatorvid (0.29-fold change). Also, molecular docking was performed to investigate the binding mode and affinity of the superior candidate 4l towards the four target receptors (telomerase, JAK1, STAT3, and TLR4). Furthermore, the therapeutic potential of compound 4l as an antitumor agent was additionally explored through in vivo studies involving female mice implanted with Solid Ehrlich Carcinoma (SEC). Remarkably, compound 4l led to prominent reductions in tumor size and mass. Concurrent enhancements in biochemical, hematologic, histopathologic, and immunohistochemical parameters further confirmed the suppression of angiogenesis and inflammation, elucidating additional mechanisms by which compound 4l exerts its anticancer effects.
Collapse
Affiliation(s)
- Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| | - Mohamed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | | | - Sana Ben Moussa
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir 61421, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Mashreq, Baghdad 10023, Iraq; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.
| |
Collapse
|
6
|
Masuri S, Era B, Pintus F, Floris S, Meloni F, Pettinau F, Podda E, Cabiddu MG, Fais A, Pivetta T. Design, Synthesis, Structural Insights, Tyrosinase Inhibition, and Sun Protection Factor of New Thiosemicarbazone Derivatives. Molecules 2024; 29:5629. [PMID: 39683787 DOI: 10.3390/molecules29235629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Tyrosinase, a key protein in the biosynthesis of melanin pigments, is crucial in determining skin pigmentation. Inhibiting tyrosinase activity is a promising approach for treating conditions related to excessive pigmentation. For the synthesis of more potent tyrosinase inhibitors, we combined two approaches, para-substitution and lipophilicity, to enhance the inhibitory properties of (E)-2-(4-hydroxybenzylidene)hydrazine-1-carbotiamide, whose enzyme inhibitory properties have been previously demonstrated. The newly synthesized compounds showed potent inhibition activity against tyrosinase in the micromolar concentration range. The synthesised compounds were up to 41 times more effective than kojic acid. In addition to this biological activity, all molecules were evaluated for their sun protection factor to determine their photoprotective effects. All the compounds showed higher efficacy than reference compounds, used as sunscreens in photoprotective preparations. All compounds were noncytotoxic at the concentration required to inhibit tyrosinase activity. With the aim of defining the potential binding modes and the kind of interactions between the studied molecules and the catalytic site of mushroom tyrosinase, molecular docking simulations were also performed.
Collapse
Affiliation(s)
- Sebastiano Masuri
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Francesca Meloni
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Francesca Pettinau
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Enrico Podda
- Centre for Research University Services (CeSAR), University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Maria Grazia Cabiddu
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Tiziana Pivetta
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
7
|
Kumar S, Mitra R, Ayyannan SR. Design, synthesis and evaluation of benzothiazole-derived phenyl thioacetamides as dual inhibitors of monoamine oxidases and cholinesterases. Mol Divers 2024:10.1007/s11030-024-11031-3. [PMID: 39520616 DOI: 10.1007/s11030-024-11031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
A series of rationally designed benzothiazole-derived thioacetamides was synthesized and investigated for monoamine oxidases (MAO-A and MAO-B) and cholinesterases (AChE and BChE) inhibition properties. The tested compounds 18-31 inhibited MAO-A and MAO-B in the micromolar to nanomolar range and AChE in the submicromolar range. Compound 28 was identified as the most potent MAO-A inhibitor with an IC50 = 0.030 ± 0.008 µM, whereas compound 30 showed the highest potency towards MAO-B and AChE with IC50 values of 0.015 ± 0.007 µM and 0.114 ± 0.003 µM, respectively. Further, compound 30 inhibited BChE at an IC50 value of 4.125 ± 0.143 µM. Among all screened molecules, compound 30 emerged as the lead dual MAO-B and AChE inhibitor that blocked these enzymes in a competitive-reversible and mixed-reversible mode, respectively. Selected compounds have displayed iron-chelation and antioxidant properties. Further, computational assessment of ligand binding affinity and pharmacokinetic parameters of all new compounds and molecular dynamic simulation of compound 30 with MAO-B and AChE were carried out to understand ligand efficiency, pharmacokinetic, and virtual molecular interaction profile, respectively. The in silico ADMET prediction studies revealed a few undesired pharmacokinetic attributes of our compounds. The attempted virtual lead-based library synthesis and subsequent biological investigation produced a new benzothiazole-bearing dual MAO-B and AChE inhibitor as a prospective MTDL candidate for treating neurological disorders.
Collapse
Affiliation(s)
- Sandeep Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Rangan Mitra
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
8
|
Azimi F, Mahdavi M, Khoshneviszadeh M, Shafiee F, Azimi M, Hassanzadeh F, Haji Ashrafee F. Kinetic studies, molecular docking, and antioxidant activity of novel 1,3-diphenyl pyrazole-thiosemicarbazone with anti-tyrosinase and anti-melanogenesis properties. Bioorg Chem 2024; 152:107722. [PMID: 39213796 DOI: 10.1016/j.bioorg.2024.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This study reports the Design Hypothesis of a novel series of 1,3-diphenyl pyrazole-thiosemicarbazone as novel tyrosinase inhibitors (TYRI). The designed compounds were prepared and their TYRI activity and mechanisms were studied. The results showed that the selected compounds exhibited potent tyrosinase inhibitory activities greater than that of kojic acid (KA). Lead candidates, denoted as 6g and 6n, with a para-hydroxyphenyl group attached to the 3-position of the pyrazole ring demonstrated IC50 values of 2.09 and 3.18 µM, respectively. The potency of these compounds was approximately 5-8 times higher than that of KA. The in vitro melanin content of 6g or 6n-treated melanoma cells resulted in significant efficacy in melanin reduction. The DPPH assay result revealed that the tyrosinase inhibition mechanism for these derivatives was independent of a redox effect and corresponded to the interaction with tyrosinase. According to the Lineweaver-Burk plot, the most potent compounds, 6g and 6n, exhibit a mixed type of inhibition, primarily noncompetitive inhibition. In silico molecular docking studies were employed to determine the binding mode and explore the Design Hypothesis in detail. The results suggested that these compounds could be considered promising leads for the further development of novel inhibitors to treat disorders related to tyrosinase.
Collapse
Affiliation(s)
- Fateme Azimi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Shafiee
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran
| | - Mahin Azimi
- Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Farshid Hassanzadeh
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran
| | | |
Collapse
|
9
|
Azimi M, Najafi Z, Bahmani A, Chehardoli G, Iraji A. Synthesis and biological assessment of novel 4H-chromene-3-carbonitrile derivatives as tyrosinase inhibitors. BMC Chem 2024; 18:187. [PMID: 39342248 PMCID: PMC11439338 DOI: 10.1186/s13065-024-01305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Excessive activity of the tyrosinase enzyme during melanogenesis results in hyperpigmentation in the skin. To address this issue, there is a need to develop effective tyrosinase inhibitors as a treatment for hyperpigmentation. In this study, we synthesized some novel 4H-chromene-3-carbonitrile compounds (6a-o) and assessed their inhibitory activities against tyrosinase, comparing them with kojic acid, which is known as a positive control. Compound 6f emerged as the most effective inhibitor, with an IC50 of 35.38 ± 2.12 µM. Kinetic studies of 6f exhibited competitive inhibition, with Ki = 16.15 µM. Molecular docking studies highlighted the importance of π-π stacking and hydrogen bonding interactions within the binding site. Molecular dynamics simulations showed that the R-enantiomer 6f exhibited superior binding stability compared to the S-enantiomer, with a lower standard deviation of RMSD and more persistent interactions with the key active site residues. These findings underscore the potential of the R-enantiomer of compound 6f as a potent tyrosinase inhibitor and provide insights for developing effective treatments for hyperpigmentation and related skin conditions.
Collapse
Affiliation(s)
- Mohammad Azimi
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Asrin Bahmani
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamabbas Chehardoli
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Aida Iraji
- Department of Persian Medicine, School of Medicine, Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Bonardi A, Gratteri P. Computational studies of tyrosinase inhibitors. Enzymes 2024; 56:191-229. [PMID: 39304287 DOI: 10.1016/bs.enz.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Computational studies have significantly advanced the understanding of tyrosinase (TYR) function, mechanism, and inhibition, accelerating the development of more effective and selective inhibitors. This chapter provides an overview of in silico studies on TYR inhibitors, emphasizing key inhibitory chemotypes and the main residues involved in ligand-target interactions. The chapter discusses tools applied in the context of TYR inhibitor development, e.g., structure-based virtual screening, molecular docking, artificial intelligence, and machine learning algorithms.
Collapse
Affiliation(s)
- Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
11
|
Afzal M, Mehmood R, Mughal EU, Naeem N, Ashraf Z, Nazir Y, Shalaby FM, El-Sayed Abd El Hady A, Sadiq A. Elucidating bis-pyrimidines as new and efficient mushroom tyrosinase inhibitors: synthesis, SAR, kinetics and computational studies. RSC Adv 2024; 14:22769-22780. [PMID: 39035128 PMCID: PMC11258615 DOI: 10.1039/d4ra04652h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024] Open
Abstract
In this study, a series of novel bis-pyrimidine derivatives (1P-8P) were designed, synthesized, characterized, and investigated for their in vitro inhibitory activity against mushroom tyrosinase, an enzyme critical in melanin biosynthesis and implicated in various hyperpigmentation disorders. To the best of our knowledge, the bispyrimidine scaffold has been evaluated for the first time for its tyrosinase inhibitory activity. Their inhibitory activities were assessed, revealing inhibition with IC50 values in the micromolar range. Additionally, this series of compounds were found to inhibit tyrosinase activity in a mixed-type manner, with IC50 values ranging from 12.36 ± 1.24 to 86.67 ± 3.08 μM. To further elucidate the binding interactions, molecular docking simulations were performed, identifying key residues in the active site responsible for binding affinity. Furthermore, molecular dynamics (MD) simulations were conducted to assess the dynamic behavior, stability, and binding affinity of the most potent inhibitor, compound 6P. Quantitative Structure-Activity Relationship (QSAR) models were developed to correlate the structural features of the bis-pyrimidines with their inhibitory activity, providing insights into the structure-activity relationships (SAR) that govern their potency. The experimental and theoretical findings demonstrated excellent agreement. These findings pave the way for the development of novel bis-pyrimidine-based therapeutic agents for treating hyperpigmentation and related conditions.
Collapse
Affiliation(s)
- Manazza Afzal
- Department of Chemistry, Govt College Women University Sialkot-51300 Pakistan
| | - Rabia Mehmood
- Department of Chemistry, Govt College Women University Sialkot-51300 Pakistan
| | | | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Zaman Ashraf
- Department of Chemistry, Rawalpindi Women University Rawalpindi-46300 Pakistan
| | - Yasir Nazir
- Department of Chemistry, University of Sialkot Sialkot-51300 Pakistan
| | - Fatma Mohsen Shalaby
- King Khalid University, Faculty of Sciences, Biology Department Abha Kingdom of Saudi Arabia
| | - Amal El-Sayed Abd El Hady
- Department of Biology, Faculty of Science, Majmaah University Al Majma'ah 15341 Kingdom of Saudi Arabia
| | - Amina Sadiq
- Department of Chemistry, Govt College Women University Sialkot-51300 Pakistan
| |
Collapse
|
12
|
Saeed S, Saif MJ, Zahoor AF, Tabassum H, Kamal S, Faisal S, Ashraf R, Khan SG, Nazeer U, Irfan A, Bhat MA. Discovery of novel 1,2,4-triazole tethered β-hydroxy sulfides as bacterial tyrosinase inhibitors: synthesis and biophysical evaluation through in vitro and in silico approaches. RSC Adv 2024; 14:15419-15430. [PMID: 38741974 PMCID: PMC11089527 DOI: 10.1039/d4ra01252f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
In this study, a series of 1,2,4-triazole-tethered β-hydroxy sulfide scaffolds 11a-h was synthesized in good to remarkable yields (69-90%) through the thiolysis of oxiranes by the thiols in aqueous basic catalytic conditions. The synthesized 1,2,4-triazole-tethered β-hydroxy sulfides were screened against bacterial tyrosinase enzyme, and Gram-positive and Gram-negative bacterial cultures i.e., (S. aureus) Staphylococcus aureus & (E. coli) Escherichia coli. Among the synthesized derivatives, the molecules 11a (IC50 = 7.67 ± 1.00 μM), 11c (IC50 = 4.52 ± 0.09 μM), 11d (IC50 = 6.60 ± 1.25 μM), and 11f (IC50 = 5.93 ± 0.50 μM) displayed the better tyrosinase inhibitory activity in comparison to reference drugs ascorbic acid (IC50 = 11.5 ± 1.00 μM) and kojic acid (IC50 = 30.34 ± 0.75 μM). The molecule benzofuran-triazol-propan-2-ol 11c proved to be the most potent bacterial tyrosinase inhibitory agent with a minimum IC50 of 4.52 ± 0.09 μM, as compared to other synthesized counterparts and both standards (kojic acid and ascorbic acid). The compound diphenyl-triazol-propan-2-ol 11a and benzofuran-triazole-propan-2-ol 11c showed comparable anti-bacterial chemotherapeutic efficacy with minimum inhibitory concentrations (MIC = 2.0 ± 2.25 mg mL-1 and 2.5 ± 0.00 mg mL-1, respectively) against S. aureus bacterial strain in comparison with standard antibiotic penicillin (MIC = 2.2 ± 1.15 mg mL-1). Furthermore, among the synthesized derivatives, only compound 11c demonstrated better anti-bacterial activity (MIC = 10 ± 0.40 mg mL-1) against E. coli, which was slightly less than the standard antibiotic i.e., penicillin (MIC = 2.4 ± 1.00 mg mL-1). The compound 11c demonstrated a better binding score (-7.08 kcal mol-1) than ascorbic acid (-5.59 kcal mol-1) and kojic acid (-5.78 kcal mol-1). Molecular docking studies also validate the in vitro anti-tyrosinase assay results; therefore, the molecule 11c can be the lead bacterial tyrosinase inhibitor as well as the antibacterial agent against both types of bacterial strains after suitable structural modifications.
Collapse
Affiliation(s)
- Sadaf Saeed
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Hina Tabassum
- London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Shagufta Kamal
- Department of Biochemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar Peshawar 25120 Pakistan
| | - Rabia Ashraf
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
13
|
Najafi Z, Zandi Haramabadi M, Chehardoli G, Ebadi A, Iraji A. Design, synthesis, and molecular dynamics simulation studies of some novel kojic acid fused 2-amino-3-cyano-4H-pyran derivatives as tyrosinase inhibitors. BMC Chem 2024; 18:41. [PMID: 38388934 PMCID: PMC10885651 DOI: 10.1186/s13065-024-01134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
A novel series of kojic acid fused 2-amino-3-cyano-4H-pyran derivatives were synthesized via a multicomponent reaction involving kojic acid, benzyloxy benzaldehyde, and malonitrile as tyrosinase inhibitors. Subsequently, the structures of the compounds were characterized using FT-IR, 1H-, and 13C-NMR spectroscopic analyses. The designed compounds fall into three series: (1) 4-benzyloxy-phenyl kojopyran 6a-e, (2) 3-benzyloxy- phenyl kojopyran derivatives 6f-j, and (3) 4-benzyloxy-3-methoxy-phenyl kojopyran derivative 6 k-o. The assessment of tyrosinase inhibition activity was conducted using L-Dopa as the substrate. Among synthesized compounds, 2-amino-4-(4-((4-fluorobenzyl)oxy)phenyl)-6-(hydroxymethyl)-8-oxo-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile (6b) demonstrated the highest antityrosinase activity with a competitive inhibition pattern (IC50 = 7.69 ± 1.99 μM) as compared to the control agent kojic acid (IC50 = 23.64 ± 2.56 µM). Since compound 6b was synthesized as a racemic mixture, in silico studies were performed for both R and S enantiomers. The R- enantiomer showed critical interactions compared with the S-enantiomer. Specifically, it established hydrogen bonds and hydrophobic interactions with crucial and highly conserved amino acids within the enzyme's binding site in the target protein. Moreover, the molecular dynamics simulations revealed that compound 6b demonstrated significant interactions with essential residues of the binding site, resulting in a stable complex throughout the entire simulation run. The drug-like and ADMET properties predictions showed an acceptable profile for compound 6b. Thus, it can serve as a drug candidate to develop more potent antityrosinase agents due to its low toxicity and its high inhibition activity.
Collapse
Affiliation(s)
- Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Maryam Zandi Haramabadi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamabbas Chehardoli
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Ebadi
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Bagheri A, Moradi S, Iraji A, Mahdavi M. Structure-based development of 3,5-dihydroxybenzoyl-hydrazineylidene as tyrosinase inhibitor; in vitro and in silico study. Sci Rep 2024; 14:1540. [PMID: 38233558 PMCID: PMC10794188 DOI: 10.1038/s41598-024-52022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
A series of new analogs of 3,5-dihydroxybenzoyl-hydrazineylidene conjugated to different methoxyphenyl triazole (11a-n) synthesized using click reaction. The structures of all synthesized compounds were characterized by FTIR, 1H, 13C-NMR spectroscopy, and CHO analysis. The tyrosinase inhibitory potential of the synthesized compounds was studied. The newly synthesized scaffolds were found to illustrate the variable degree of the inhibitory profile, and the most potent analog of this series was that one bearing 4-methoxyphenyl moiety, and exhibited an IC50 value of 55.39 ± 4.93 µM. The kinetic study of the most potent derivative reveals a competitive mode of inhibition. Next, molecular docking studies were performed to understand the potent inhibitor's binding mode within the enzyme's binding site. Molecular dynamics simulations were accomplished to further investigate the orientation and binding interaction over time and the stability of the 11m-tyrosinase complex.
Collapse
Affiliation(s)
- Azzam Bagheri
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Shahram Moradi
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Zengin Kurt B, Altundağ Ö, Tokgöz MN, Öztürk Civelek D, Tuncay FO, Cakmak U, Kolcuoğlu Y, Akdemir A, Sönmez F. Synthesis of flurbiprofen thiadiazole urea derivatives and assessment of biological activities and molecular docking studies. Chem Biol Drug Des 2023; 102:1458-1468. [PMID: 37653693 DOI: 10.1111/cbdd.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Totally 15 novel flurbiprofen urea derivatives were synthesized bearing the thiadiazole ring. Their inhibition effects on tyrosinase were determined. 3c was found to be the strongest inhibitor with the IC50 value of 68.0 μM against tyrosinase. The enzyme inhibition types of the synthesized compounds were determined by examining the kinetic parameters. The inhibition type of 3c was determined as uncompetitive and the Ki value was calculated as 36.3 μM. Moreover, their cytotoxic effects on hepatocellular carcinoma (HepG2), colorectal carcinoma (HT-29), and melanoma (B16F10) cell lines were evaluated. According to the cytotoxicity results, 3l (IC50 = 14.11 μM) showed the highest cytotoxicity on the HT-29 cells, while 3o (IC50 = 4.22 μM) exhibited the strongest cytotoxic effect on HepG2 cell lines. Also, 3j (IC50 = 7.55 μM strongly affected B16F10. The effects of synthesized compounds on the healthy cell line were evaluated on the CCD-986Sk cell line. Molecular modelling studies have indicated the potential binding interactions of the uncompetitive inhibitor 3c with the enzyme-substrate complex.
Collapse
Affiliation(s)
- Belma Zengin Kurt
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, Istanbul, Türkiye
| | - Özlem Altundağ
- Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Türkiye
| | - Merve Nur Tokgöz
- Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Türkiye
| | - Dilek Öztürk Civelek
- Faculty of Pharmacy, Department of Pharmacology, Bezmialem Vakif University, Istanbul, Türkiye
| | - Fulya Oz Tuncay
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Türkiye
| | - Ummuhan Cakmak
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Türkiye
| | - Yakup Kolcuoğlu
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Türkiye
| | - Atilla Akdemir
- Faculty of Pharmacy, Department of Pharmacology, Istinye University, Istanbul, Türkiye
| | - Fatih Sönmez
- Pamukova Vocational School, Sakarya University of Applied Sciences, Sakarya, Türkiye
| |
Collapse
|
16
|
Mermer A, Demirci S. Recent advances in triazoles as tyrosinase inhibitors. Eur J Med Chem 2023; 259:115655. [PMID: 37482020 DOI: 10.1016/j.ejmech.2023.115655] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The tyrosinase enzyme, which is widely found in microorganisms, animals and plants, has a significant position in melanogenesis, plays an important role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Therefore, with the wide potential application fields of tyrosinase in food, agriculture, cosmetics and pharmaceutical industries, which has become the target enzyme for the development of therapeutic agents such as antibrowning, anticancer, antibacterial, skin whitening, insecticides, etc., a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. The triazole ring, which has a broad spectrum of biological action, is of increasing interest in the synthesis of new tyrosinase inhibitors. In this review, tyrosinase inhibition effects, structure-activity relationships, enzyme inhibition kinetics and mechanisms of action of 1,2,3- or 1,2,4-triazole derivatives were investigated. The data gathered is anticipated to supply rational guidance and an influential strategy for the development of novel, potent and safe tyrosinase inhibitors for better practical application in the future.
Collapse
Affiliation(s)
- Arif Mermer
- Experimental Medicine Application & Research Center, Validebağ Research Park, University of Health Sciences, İstanbul, Turkiye; Department of Biotechnology, University of Health Sciences, İstanbul, Turkiye.
| | - Serpil Demirci
- Department of Medical Services and Techniques, Vocational High School of Health Services, Giresun University, Giresun, Turkiye
| |
Collapse
|
17
|
Rezapour Niri D, Sayahi MH, Behrouz S, Moazzam A, Rasekh F, Tanideh N, Irajie C, Seif Nezhad M, Larijani B, Iraji A, Mahdavi M. Design, synthesis, in vitro, and in silico evaluations of kojic acid derivatives linked to amino pyridine moiety as potent tyrosinase inhibitors. Heliyon 2023; 9:e22009. [PMID: 38034733 PMCID: PMC10682633 DOI: 10.1016/j.heliyon.2023.e22009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
In the present study, novel series of kojic acid derivatives conjugated to amino pyridine moiety were designed and synthesized to explore their inhibitory activity against tyrosinase. To this end, the structure of all derivatives was characterized by 1H NMR, 13C NMR, FT-IR, and elemental analysis. Next, all derivatives were evaluated against tyrosinase compared to the kojic acid as positive control and exhibited different inhibitory potencies. Furthermore, the antioxidant potential of all derivatives was determined. The kinetic analysis of the most active agent revealed that 3-hydroxy-6-(hydroxymethyl)-2-((3-nitrophenyl)(pyridin-2-ylamino)methyl)-4H-pyran-4-one (4h) binds to the enzyme in the uncompetitive mode of action. The docking analysis and molecular dynamic simulations showed considerable binding affinity and significant interactions with tyrosinase enzyme to target the melanogenesis pathway, proposing them as potent candidates to control hyperpigmentation in the future.
Collapse
Affiliation(s)
- Davood Rezapour Niri
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Somayeh Behrouz
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran, Iran
| | - Fatemeh Rasekh
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Seif Nezhad
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran, Iran
| |
Collapse
|
18
|
Hossan A. Microwave-assisted solvent-free synthesis of some novel thiazole-substituted thiosemicarbazone analogues: antimicrobial and anticancer studies. LUMINESCENCE 2023; 38:1955-1967. [PMID: 37650446 DOI: 10.1002/bio.4587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
The increased resistance to antibiotics has compelled researchers to devise novel active compounds targeting multidrug-resistant pathogenic microorganisms. A series of thiosemicarbazone derivatives was synthesized by reacting thiosemicarbazide with 2-aryl-4-formylthiazole, 2-aryl-5-formyl-4-methylthiazole, and/or 5-acetyl-2-aryl-4-methylthiazole compounds. These thiosemicarbazone-based thiazole adducts were evaluated for their inhibitory activities against tuberculosis H37Ra and Bovis BCG mycobacteria. Their cytotoxicity was assessed against two cancer cell lines: colonic carcinoma (HCT-116) and cervical cancer (HeLa). Notably, these thiosemicarbazones exhibited minimal cytotoxic effects on these cell lines even at their highest concentrations. Furthermore, the prepared thiosemicarbazone derivatives demonstrated significant antimicrobial efficacy against Bacillus subtilis and Staphylococcus aureus (Gram-positive bacterial pathogens) as well as Escherichia coli and Pseudomonas fluorescens (Gram-negative bacterial pathogens). While most of the prepared thiosemicarbazone derivatives exhibited moderate activity against Candida albicans (a fungal strain), their performance was notable. The thiosemicarbazone-based thiazole adducts were also successfully synthesized using a solvent-free approach under microwave irradiation. Compared with conventional reflux methods, the microwave-assisted technique yielded high thiazole yields within just 5 min, obviating the need for catalysis. This study signifies significant strides toward the rational design of more potent antimycobacterial agents.
Collapse
Affiliation(s)
- Aisha Hossan
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
19
|
Hashemi A, Noori M, Dastyafteh N, Sadat-Ebrahimi SE, Fazelzadeh Haghighi N, Mehrpour K, Sattarinezhad E, Jalali Zafrei F, Irajie C, Daneshmehr MA, Heydari M, Larijani B, Iraji A, Mahdavi M. Synthesis and tyrosinase inhibitory activities of novel isopropylquinazolinones. BMC Chem 2023; 17:65. [PMID: 37353836 DOI: 10.1186/s13065-023-00978-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 06/01/2023] [Indexed: 06/25/2023] Open
Abstract
To find new anti-browning and whitening agents in this study, new series of isopropylquinazolinone derivatives were designed and synthesized. All derivatives were evaluated as possible tyrosinase inhibitors and compound 9q bearing 4-fluorobenzyl moieties at the R position exhibited the best potencies with an IC50 value of 34.67 ± 3.68 µM. The kinetic evaluations of 9q as the most potent derivatives recorded mix-type inhibition. Compounds 9o and 9q also exhibited potent antioxidant capacity with IC50 values of 38.81 and 40.73 µM, respectively confirming their antioxidant potential. Molecular docking studies of 9q as the most potent derivative were exacuated and it was shown that quinazolinone and acetamide moieties of compound 9q participated in interaction with critical His residues of the binding site. The obtained results demonstrated that the 9q can be considered a suitable pharmacophore to develop potent tyrosinase inhibitors.
Collapse
Affiliation(s)
- Arshia Hashemi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Esmaeil Sadat-Ebrahimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Fazelzadeh Haghighi
- Molecular Dermatology Research Center and Department of Dermatology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katayoun Mehrpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Sattarinezhad
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Jalali Zafrei
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Daneshmehr
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Heydari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Vittorio S, Dank C, Ielo L. Heterocyclic Compounds as Synthetic Tyrosinase Inhibitors: Recent Advances. Int J Mol Sci 2023; 24:ijms24109097. [PMID: 37240442 DOI: 10.3390/ijms24109097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Tyrosinase is a copper-containing enzyme which is widely distributed in nature (e.g., bacteria, mammals, fungi) and involved in two consecutive steps of melanin biosynthesis. In humans, an excessive production of melanin can determine hyperpigmentation disorders as well as neurodegenerative processes in Parkinson's disease. The development of molecules able to inhibit the high activity of the enzyme remain a current topic in medicinal chemistry, because the inhibitors reported so far present several side effects. Heterocycle-bearing molecules are largely diffuse in this sense. Due to their importance as biologically active compounds, we decided to report a comprehensive review of synthetic tyrosinase inhibitors possessing heterocyclic moieties reported within the last five years. For the reader's convenience, we classified them as inhibitors of mushroom tyrosinase (Agaricus bisporus) and human tyrosinase.
Collapse
Affiliation(s)
- Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, 20133 Milano, Italy
| | - Christian Dank
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Laura Ielo
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
21
|
Singh G, Devi A, Malik P, Khurana S, Stanzin J, Sharma D. Bis-triazole linked organosilane based sensing platform for Cu 2+ ions and insilico tyrosinase inhibitor activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122854. [PMID: 37196553 DOI: 10.1016/j.saa.2023.122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
The development of a ligand for their selective and sensitive detection is required due to the widespread use of Cu2+ in many industrial processes and the potential threat to human health. Herein, we report a bis-triazole linked organosilane (5) derived from the Cu(I) catalyzed azide-alkyne cycloaddition reaction. The synthesized compound 5 was characterized by (1H and 13C) NMR spectroscopic and mass spectrometry techniques. The UV-Visible and Fluorescence experiments of the designed compound 5 were performed with various metal ions, revealing its high selectivity and sensitivity to Cu2+ ions in MeOH: H2O (8:2, v/v, pH = 7.0, PBS buffer) solution. The selective fluorescence quenching upon addition of Cu2+ to the compound 5 is due to Photo-induced electron transfer process (PET). The limit of detection of compound 5 to Cu2+ was calculated as 2.56 × 10-6 M and 4.36 × 10-7 M through UV-Visible and Fluorescence titration data, respectively. The possible mechanism of 1:1 binding of 5 with Cu2+ could be affirmed by the density functional theory (DFT). Further, it was found that compound 5 showed a reversible behavior towards Cu2+ ions by the accumulation of sodium salt of CH3COO- which can be used in the construction of molecular logic gate where Cu2+ and CH3COO- are considered as inputs and the absorbance at 260 nm as output. Moreover, the molecular docking studies provide useful information about compound 5's interaction with the tyrosinase enzyme (PDB ID- 2Y9X).
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Anita Devi
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Pooja Malik
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Sumesh Khurana
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Jigmat Stanzin
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Devina Sharma
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
22
|
Sharma MK, Parashar S, Sharma D, Jakhar K, Lal K, Pandya NU, Om H. Synthesis, characterization, docking and antimicrobial studies of binol based amide linked symmetrical bistriazoles. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
23
|
Divar M, Tadayyon S, Khoshneviszadeh M, Pirhadi S, Attarroshan M, Mobaraki K, Damghani T, Mirfazli S, Edraki N. Benzyl‐Triazole Derivatives of Hydrazinecarbothiamide Derivatives as Potent Tyrosinase Inhibitors: Synthesis, Biological Evaluation, Structure‐Activity Relationship and Docking Study. ChemistrySelect 2023. [DOI: 10.1002/slct.202203382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Masoumeh Divar
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Somayeh Tadayyon
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences 7146864685 Shiraz Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences 7146864685 Shiraz Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Mahshid Attarroshan
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Kourosh Mobaraki
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences 7146864685 Shiraz Iran
| | - Tahereh Damghani
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Sara Mirfazli
- Department of Medicinal Chemistry School of Pharmacy Iran University of Medical Sciences 1475886671 Tehran Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| |
Collapse
|
24
|
Noori M, Sabourian R, Tasharoie A, Safavi M, Iraji A, Khalili Ghomi M, Dastyafteh N, Irajie C, Zarenezhad E, Mostafavi Pour SM, Rasekh F, Larijani B, Amini M, Hajimahmoodi M, Mahdavi M. Thioquinoline derivatives conjugated to thiosemicarbazide as potent tyrosinase inhibitors with anti-melanogenesis properties. Sci Rep 2023; 13:2578. [PMID: 36782003 PMCID: PMC9925432 DOI: 10.1038/s41598-023-28852-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
In the present study, a series of aryl-substituted thioqunoline conjugated to thiosemicarbazide were rationally designed and synthesized. The formation of target compounds was confirmed by spectral characterization techniques such as IR, 1H-NMR, 13C-NMR, ESI-MS, and elemental analysis. Among the synthesized derivatives, compound 10g bearing para-chlorophenyl moiety was proved to be the most potent tyrosinase inhibitor with an IC50 value of 25.75 ± 0.19 µM. Compound 10g as the most potent derivative exhibited a noncompetitive inhibition pattern against tyrosinase in the kinetic study. Furthermore, the in silico cavity detection, as well as the molecular docking assessments, were performed to follow the behavior of 10g within the proposed binding site. Besides, the toxicity of 10g and its potency to reduce the melanin content on A375 cell lines were also measured. Consequently, aryl-substituted thioqunolines conjugated to thiosemicarbazide might be a promising candidate in the cosmetics, medicine, and food industry as tyrosinase inhibitors.
Collapse
Affiliation(s)
- Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Sabourian
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Tasharoie
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Minoo Khalili Ghomi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Zarenezhad
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fatemeh Rasekh
- Department of Biology, Payame Noor University(PNU), Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mannan Hajimahmoodi
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Yousefnejad F, Iraji A, Sabourian R, Moazzam A, Tasharoie S, Sara Mirfazli S, Zomorodian K, Alireza Akhlagh S, Hosseini S, Larijani B, Tehrani MB, Hajimahmoodi M, Mahdavi M. Ugi Bis-Amide Derivatives as Tyrosinase Inhibitor; Synthesis, Biology Assessment, and in Silico Analysis. Chem Biodivers 2023; 20:e202200607. [PMID: 36538729 DOI: 10.1002/cbdv.202200607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Herein, a straightforward synthetic strategy mediated by Ugi reaction was developed to synthesize novel series of compounds as tyrosinase inhibitors. The structures of all compounds were confirmed by FT-IR, 1 H-NMR, 13 C-NMR, and CHNOS techniques. The tyrosinase inhibitory activities of all synthesized derivatives 5a-m were determined against mushroom tyrosinase and it was found that derivative 5c possesses the best inhibition with an IC50 value of 69.53±0.042 μM compared to the rest of the synthesized derivatives. Structure-activity relationships (SARs) showed that the presence of 4-MeO or 4-NO2 at the R2 position plays a key role in tyrosinase inhibitory activities. The enzyme kinetics studies showed that compound 5c is an noncompetitive inhibitor. For in silico study, the allosteric site detection was first applied to find the appropriate binding site and then molecular docking and molecular dynamic studies were performed to reveal the position and interactions of 5c as the most potent inhibitor within the tyrosinase active site. The results showed that 5c bind well with the proposed binding site and formed a stable complex with the target protein.
Collapse
Affiliation(s)
- Faeze Yousefnejad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reyhaneh Sabourian
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tasharoie
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Kamiar Zomorodian
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Samensadst Hosseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mannan Hajimahmoodi
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Design, synthesis, spectroscopic characterization, in vitro tyrosinase inhibition, antioxidant evaluation, in silico and kinetic studies of substituted indole-carbohydrazides. Bioorg Chem 2022; 129:106140. [PMID: 36150231 DOI: 10.1016/j.bioorg.2022.106140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
In the current study, twenty-five indole-carbohydrazide derivatives linked to different aryl substitutions were rationally designed and synthesized. The structures of all derivatives were confirmed using different spectroscopic techniques including 1H NMR, 13C NMR, Mass spectrometry, and elemental analysis. The tyrosinase inhibitory activities of all synthetic compounds exhibited IC50 values in the range of 0.070 to > 100 μM. Structure-activity relationships showed that compounds 4f (R = 4-OH, IC50 = 0.070 μM), 8f (R = 4-OH, IC50 = 0.072 μM), and 19e (IC50 = 0.19 μM) with para-OH substituent at the R position was found to be the most active members of all three tested series. Kinetic studies exhibited that compounds 4f, 8f, and 19e are mixed-type inhibitors. Furthermore, toxicity and cell-based anti-melanogenesis assessments were performed on the most potent derivatives and it was shown that 4f, 8f, and 19e had no toxicity at 8 µM and reduced the percent of melanin content to 68.43, 72.61, 73.47 at 8 μM, respectively. In silico analyses of absorption, distribution, metabolism, and excretion (ADME) profile of synthesized compounds showed that these molecules followed drug-likeness rules and acceptable predictive ADMET features. Results of the docking study were almost in line with biological results with ChemPLP values of 53.56 to 79.33. Also, the docking study showed the critical interactions of potent inhibitors with the active site of the enzyme which affects the potency of the synthesized hybrids. Based on molecular dynamic simulations, compound 4f exhibited pronounced interaction with the critical residues of the tyrosinase active site so that the indole ring participated in H-bond interaction with Gly281 and 4-hydroxy benzylidene recorded another H-bond interaction with Asp289 plus hydrophobic interactions with Phe292. Hydrazide linker also exhibited three H-bond interactions with His263 and Gly281.
Collapse
|
27
|
Design, synthesis, in vitro, and in silico studies of novel benzylidene 6-methoxy-1-tetralone linked to benzyloxy and benzyl -1,2,3- triazole rings as potential tyrosinase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Pedrood K, Rezaei Z, Khavaninzadeh K, Larijani B, Iraji A, Hosseini S, Mojtabavi S, Dianatpour M, Rastegar H, Faramarzi MA, Hamedifar H, Hajimiri MH, Mahdavi M. Design, synthesis, and molecular docking studies of diphenylquinoxaline-6-carbohydrazide hybrids as potent α-glucosidase inhibitors. BMC Chem 2022; 16:57. [PMID: 35909126 PMCID: PMC9341091 DOI: 10.1186/s13065-022-00848-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 03/19/2024] Open
Abstract
A novel series of diphenylquinoxaline-6-carbohydrazide hybrids 7a-o were rationally designed and synthesized as anti-diabetic agents. All synthesized compounds 7a-o were screened as possible α-glucosidase inhibitors and exhibited good inhibitory activity with IC50 values in the range of 110.6 ± 6.0 to 453.0 ± 4.7 µM in comparison with acarbose as the positive control (750.0 ± 10.5 µM). An exception in this trend came back to a compound 7k with IC50 value > 750 µM. Furthermore, the most potent derivative 7e bearing 3-fluorophenyl moiety was further explored by kinetic studies and showed the competitive type of inhibition. Additionally, the molecular docking of all derivatives was performed to get an insight into the binding mode of these derivatives within the active site of the enzyme. In silico assessments exhibited that 7e was well occupied in the binding pocket of the enzyme through favorable interactions with residues, correlating to the experimental results.
Collapse
Affiliation(s)
- Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Khavaninzadeh
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samanesadat Hosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mir Hamed Hajimiri
- Nano Alvand Company, Tehran University of Medical Sciences, Avicenna Tech Park, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Moghadam Farid S, Seifinoferest B, Gholamhosseyni M, Larijani B, Mahdavi M. Modern metal-catalyzed and organocatalytic methods for synthesis of coumarin derivatives: a review. Org Biomol Chem 2022; 20:4846-4883. [PMID: 35642609 DOI: 10.1039/d2ob00491g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coumarin is an important pharmaceutical structural motif, abundantly found in numerous commonly used drugs. Compounds containing this core show a broad spectrum of medicinal properties and biological activities. The increasing importance and wide usages of coumarin derivatives have drawn attention to its synthetic methods, among which metal-catalyzed and organocatalytic methods have proved the most effective. Several metal-catalyzed and/or organocatalytic synthetic strategies for coumarin have been investigated and reported in recent decades. This review focuses on more recent reports on catalysis methods for synthesizing coumarin and coumarin-like structures (including light-mediated methods and nano-catalysts), exploring the mechanistic aspects, simplicity, efficiency, repeatability, and other advantages and disadvantages of these methods.
Collapse
Affiliation(s)
- Sara Moghadam Farid
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Behnoush Seifinoferest
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maral Gholamhosseyni
- Department of Chemistry, College of Chemistry, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Ghani U. Azole inhibitors of mushroom and human tyrosinases: Current advances and prospects of drug development for melanogenic dermatological disorders. Eur J Med Chem 2022; 239:114525. [PMID: 35717871 DOI: 10.1016/j.ejmech.2022.114525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Azoles are a famous and promising class of drugs for treatment of a range of ailments especially fungal infections. A wide variety of azole derivatives are also known to exhibit tyrosinase inhibition, some of which possess promising activity with potential for treatment of dermatological disorders such as post-inflammatory hyperpigmentation, nevus, flecks, melasma, and melanoma. Recently, thiazolyl-resorcinol derivatives have demonstrated potent human tyrosinase inhibition with a safe and effective therapeutic profile for treatment of skin hyperpigmentation in humans, which are currently under clinical trials. If approved these derivatives would be the first azole drugs to be used for treatment of skin hyperpigmentation. Although the scientific literature has been witnessing general reviews on tyrosinase inhibitors to date, there is none that specifically and comprehensively discusses azole inhibitors of tyrosinase. Appreciating such potential of azoles, this focused review highlights a wide range of their derivatives with promising mushroom and human tyrosinase inhibitory activities and clinical potential for treatment of melanogenic dermatological disorders. Presently, these disorders have been treated with kojic acid, hydroquinone and other drugs, the design and development of which are based on their ability to inhibit mushroom tyrosinase. The active sites of mushroom and human tyrosinases carry structural differences which affect substrate or inhibitor binding. For this reason, kojic acid and other drugs pose efficacy and safety issues since they were originally developed using mushroom tyrosinase and have been clinically used on human tyrosinase. Design and development of tyrosinase inhibitors should be based on human tyrosinase, however, there are challenges in obtaining the human enzyme and understanding its structure and function. The review discusses these challenges that encompass structural and functional differences between mushroom and human tyrosinases and the manner in which they are inhibited. The review also gauges promising azole derivatives with potential for development of drugs against skin hyperpigmentation by analyzing and comparing their tyrosinase inhibitory activities against mushroom and human tyrosinases, computational data, and clinical profile where available. It aims to lay groundwork for development of new azole drugs for treatment of skin hyperpigmentation, melanoma, and related dermatological disorders.
Collapse
Affiliation(s)
- Usman Ghani
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, 12372, Saudi Arabia.
| |
Collapse
|
31
|
Hajimiri M, Khosravikia M, Khoshneviszadeh M, Pedrood K, Hosseini SZ, Asgari MS, Pirhadi S, Attarroshan M, Mobaraki K, Hosseini S, Behnammanesh H, Biglar M, Karimian S, Rastegar H, Hamedifar H, Larijani B, Mahdavi M, Iraji A. Rational Design, Synthesis, in Vitro, and in Silico Studies of Chlorophenylquinazolin-4(3H)-One Containing Different Aryl Acetohydrazides as Tyrosinase Inhibitors. Chem Biodivers 2022; 19:e202100964. [PMID: 35675562 DOI: 10.1002/cbdv.202100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/18/2022] [Indexed: 11/07/2022]
Abstract
Tyrosinase plays a pivotal role in the hyperpigmentation and enzymatic browning of fruit and vegetable. Therefore, tyrosinase inhibitors can be of interest in industries as depigmentation compounds as well as anti-browning agents. In the present study, a series of chlorophenylquinazolin-4(3H)-one derivative were rationally designed and synthesized. The formation of target compounds was confirmed by spectral characterization techniques such as IR, 1 H-NMR, 13 C-NMR, and elemental analysis. Among the synthesized derivatives, compound 8l was proved to be the most potent inhibitor with an IC50 value of 25.48±1.19 μM. Furthermore, the results of the molecular docking study showed that this compound fitted well in the active site of tyrosinase with the binding score of -10.72.
Collapse
Affiliation(s)
- Mirhamed Hajimiri
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Khosravikia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Hosseini
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Somayeh Pirhadi
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Attarroshan
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Koroush Mobaraki
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Samanesadat Hosseini
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Behnammanesh
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Karimian
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Evaluating the effects of disubstituted 3-hydroxy-1H-pyrrol-2(5H)-one analog as novel tyrosinase inhibitors. Bioorg Chem 2022; 126:105876. [DOI: 10.1016/j.bioorg.2022.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
|
33
|
Sepehri N, Khoshneviszadeh M, Farid SM, Moayedi SS, Asgari MS, Moazzam A, Hosseini S, Adibi H, Larijani B, Pirhadi S, Attarroshan M, Sakhteman A, Kabiri M, Hamedifar H, Iraji A, Mahdavi M. Design, synthesis, biological evaluation, and molecular docking study of thioxo-2,3-dihydroquinazolinone derivative as tyrosinase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Karimian S, Shekouhy M, Pirhadi S, Iraji A, Attarroshan M, Edraki N, Khoshneviszadeh M. Synthesis and biological evaluation of benzimidazoles/1,3,5-triazine-2,4-diamine hybrid compounds: a new class of multifunctional alzheimer targeting agents. NEW J CHEM 2022. [DOI: 10.1039/d2nj00371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Twelve novel benzimidazole/1,3,5-triazine-2,4-diamine hybrids were synthesized and biologically studied as multifunctional Alzheimer-controlling agents.
Collapse
Affiliation(s)
- Somaye Karimian
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Shekouhy
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Attarroshan
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Sim J, Lanka S, Jo JW, Chaudhary CL, Vishwanath M, Jung CH, Lee YH, Kim EY, Kim YS, Hyun SS, Lee HS, Lee K, Seo SY, Viji M, Jung JK. Inhibitory Effect of Chlorogenic Acid Analogues Comprising Pyridine and Pyrimidine on α-MSH-Stimulated Melanogenesis and Stability of Acyl Analogues in Methanol. Pharmaceuticals (Basel) 2021; 14:1176. [PMID: 34832958 PMCID: PMC8622415 DOI: 10.3390/ph14111176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
In continuation of studies for α-MSH stimulated melanogenesis inhibitors, we have evaluated the design, synthesis, and activity of a new series of chlorogenic acid (CGA) analogues comprising pyridine, pyrimidine, and diacyl derivatives. Among nineteen synthesized compounds, most of them (fifteen) exhibited better inhibitions of melanin formation in B16 melanoma cells. The results illustrated that a pyridine analogue 6f and a diacyl derivative 13a of CGA showed superior inhibition profiles (IC50: 2.5 ± 0.7 μM and 1.1 ± 0.1 μM, respectively) of α-MSH activities than positive controls, kojic acid and arbutin (IC50: 54 ± 1.5 μM and 380 ± 9.5 μM, respectively). The SAR studies showed that both -CF3 and -Cl groups exhibited better inhibition at the meta position on benzylamine than their ortho and para positions. In addition, the stability of diacyl analogues of CGA in methanol monitored by HPLC for 28 days indicated the steric bulkiness of acyl substituents as a key factor in their stability.
Collapse
Affiliation(s)
- Jaeuk Sim
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Srinu Lanka
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Jeong-Woong Jo
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Chhabi Lal Chaudhary
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Manjunatha Vishwanath
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Chan-Hyun Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Young-Hee Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
- Samjin Central Research Institute, Samjin Pharma Co., Ltd., Cheongju 28158, Korea
| | - Eun-Yeong Kim
- College of Pharmacy, Korea University, Sejong 30019, Korea; (E.-Y.K.); (K.L.)
| | - Young-Soo Kim
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Soon-Sil Hyun
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Hee-Soon Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Kiho Lee
- College of Pharmacy, Korea University, Sejong 30019, Korea; (E.-Y.K.); (K.L.)
| | - Seung-Yong Seo
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea;
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| |
Collapse
|