1
|
Chahat, Nainwal N, Murti Y, Yadav S, Rawat P, Dhiman S, Kumar B. Advancements in targeting tumor suppressor genes (p53 and BRCA 1/2) in breast cancer therapy. Mol Divers 2025; 29:2691-2716. [PMID: 39152355 DOI: 10.1007/s11030-024-10964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Globally, among numerous cancer subtypes, breast cancer (BC) is one of the most prevalent forms of cancer affecting the female population. A female's family history significantly increases her risk of developing breast cancer. BC is caused by aberrant breast cells that proliferate and develop into tumors. It is estimated that 5-10% of breast carcinomas are inherited and involve genetic mutations that ensure the survival and prognosis of breast cancer cells. The most common genetic variations are responsible for hereditary breast cancer but are not limited to p53, BRCA1, and BRCA2. BRCA1 and BRCA2 are involved in genomic recombination, cell cycle monitoring, programmed cell death, and transcriptional regulation. When BRCA1 and 2 genetic variations are present in breast carcinoma, p53 irregularities become more prevalent. Both BRCA1/2 and p53 genes are involved in cell cycle monitoring. The present article discusses the current status of breast cancer research, spotlighting the tumor suppressor genes (BRCA1/2 and p53) along with structural activity relationship studies, FDA-approved drugs, and several therapy modalities for treating BC. Breast cancer drugs, accessible today in the market, have different side effects including anemia, pneumonitis, nausea, lethargy, and vomiting. Thus, the development of novel p53 and BRCA1/2 inhibitors with minimal possible side effects is crucial. We have covered compounds that have been examined subsequently (2020 onwards) in this overview which may be utilized as lead compounds. Further, we have covered mechanistic pathways to showcase the critical druggable targets and clinical and post-clinical drugs targeting them for their utility in BC.
Collapse
Affiliation(s)
- Chahat
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, 246174, Uttarakhand, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premanagar, Dehradun, 248007, Uttarakhand, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Savita Yadav
- IES Institute of Technology and Management, IES University, Bhopal, 462044, Madhya Pradesh, India
| | - Pramod Rawat
- Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University Clement Town, Dehradun, 248002, India
| | - Sonia Dhiman
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, 246174, Uttarakhand, India.
| |
Collapse
|
2
|
Sun J, Ran Y, Wang Y, Lv C, Zheng L. Synthesis of bioisosteres of caffeic acid phenethyl ester: 1,3,4-oxadiazole derivatives containing a catechol fragment with anti-inflammatory activities in vitro and in vivo. Bioorg Chem 2025; 155:108123. [PMID: 39756202 DOI: 10.1016/j.bioorg.2025.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Aimed to enhance the anti-inflammatory activity of caffeic acid phenethyl ester (CAPE), the oxadiazole derivatives were synthesized by substituting its ester group. The structure-activity relationships revealed that the electron-withdrawing group in the phenethyl moiety enhanced anti-inflammatory activity. The order of activity potency was F ≥ CF3 > Cl > NO2 > CN. The most potent compound 2d suppressed the secretions of inflammatory cytokines (NO, IL-6, IL-1β and TNF-α), inhibited inducible nitric oxide synthase (iNOS) expression, upregulated the antioxidant gene HO-1 expression and antioxidant enzyme SOD level, together with decreasing reactive oxygen species (ROS) amount and oxidative stress marker MDA level. In vivo, 2d significantly attenuated the carrageenan-induced paw edema in rats more than CAPE. In liposaccharide (LPS)-induced acute lung injury model, 2d also exerted a therapeutic effect similar to dexamethasone. Moreover, 2d suppressed the NLRP3 inflammasome activation in THP-1 cells, as evidenced by decreasing the expressions of inflammasome signaling pathway-associated proteins (NLRP3, ASC, caspase-1, and pro-IL-1β), leading to down-regulation of IL-1β secretion. Molecular docking analysis also confirmed that 2d could bind to NLRP3, ASC and caspase-1protein. Therefore, this study suggested that synthesis of oxadiazole derivatives of CAPE could be a promising strategy to discover the anti-inflammation drugs.
Collapse
Affiliation(s)
- Jing Sun
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yichuan Ran
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yongfu Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chunwei Lv
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Lifang Zheng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Singh A, Bhutani C, Khanna P, Talwar S, Singh SK, Khanna L. Recent report on indoles as a privileged anti-viral scaffold in drug discovery. Eur J Med Chem 2025; 281:117017. [PMID: 39509946 DOI: 10.1016/j.ejmech.2024.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
In recent years, viral infections such as COVID-19, Zika virus, Nipah virus, Ebola, Influenza, Monkeypox, and Dengue have substantially impacted global health. These outbreaks have led to heightened global health initiatives and collaborative efforts to address and mitigate these significant threats effectively. Thus, developing antiviral treatments and research in this field has become highly important. Heterocycles, particularly indole motifs, have been a valuable resource in drug discovery, as they can be used as treatments or inspire the synthesis of new potent candidates. Indole-containing drugs, such as enfuvirtide (T-20), arbidol, and delavirdine, have demonstrated significant efficacy in treating viral diseases. This review aims to comprehensively assess the latest research and developments in novel indoles as potential scaffolds for antiviral activity. We have compiled detailed information about indoles as potential antivirals by conducting a thorough literature survey from the past ten years. The review includes discussions on synthetic protocols, inhibitory concentrations, SAR study, and computational study. This review shall identify new antiviral indoles that may help to combat new viral threats in the future.
Collapse
Affiliation(s)
- Asmita Singh
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India
| | - Charu Bhutani
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India; Synthesis & In-Silico Drug Design Laboratory, Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110 019, India
| | - Pankaj Khanna
- Synthesis & In-Silico Drug Design Laboratory, Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110 019, India
| | - Sangeeta Talwar
- Department of Chemistry, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Sandeep Kumar Singh
- Jindal Global Business School, O.P. Jindal Global University, Sonipat 131001, India
| | - Leena Khanna
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
4
|
Alkorbi F, Alshareef SA, Abdelaziz MA, Omer N, Jame R, Alatawi IS, Ali AM, Omran OA, Bakr RB. Multicomponent reaction for synthesis, molecular docking, and anti-inflammatory evaluation of novel indole-thiazole hybrid derivatives. Mol Divers 2024:10.1007/s11030-024-10969-8. [PMID: 39143406 DOI: 10.1007/s11030-024-10969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
In this article, novel thiazol-indolin-2-one derivatives 4a-f have been synthesized via treatment of thiosemicarbazide (1) with some isatin derivative 2a-f and N-(4-(2-bromoacetyl)phenyl)-4-tolyl-sulfonamide (3) under reflux in ethanol in the presence of triethyl amine (TEA). The structures of new products were elucidated by elemental and spectral analyses. Moreover, all compounds were investigated for their in vivo anti-inflammatory activity using celecoxib as a reference drug. The target compound 4b was the most active anti-inflammatory candidate and exhibited higher edema inhibition (EI = 38.50%) than that recorded by celecoxib (EI = 34.58%) after 3 h. Furthermore, the most active compounds 4b and 4f were subjected to a molecular docking study inside COX-2 enzyme to show their binding interactions. Both compounds 4b and 4f showed good fitting into COX-2 binding site with docking energy scores - 11.45 kcal/mol and - 10.48 kcal/mol, respectively which indicated that compound 4b revealed the most promising and effective anti-inflammatory potential.
Collapse
Affiliation(s)
- Faeza Alkorbi
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, 68342, Sharurah, Saudi Arabia
| | - Shareefa Ahmed Alshareef
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Noha Omer
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Rasha Jame
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Ibrahim Saleem Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Ali M Ali
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Omran A Omran
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Rania B Bakr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
5
|
Gür Maz T, Dahlke P, Gizem Ergül A, Olğaç A, Jordan PM, Çalışkan B, Werz O, Banoglu E. Novel 1,3,4-oxadiazole derivatives as highly potent microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitors. Bioorg Chem 2024; 147:107383. [PMID: 38653151 DOI: 10.1016/j.bioorg.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Selective inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) is implicated as a new therapeutic modality for the development of new-generation anti-inflammatory drugs. Here, we present the discovery of new and potent inhibitors of human mPGES-1, i.e., compounds 13, 15-25, 29-30 with IC50 values in the range of 5.6-82.3 nM in a cell-free assay of prostaglandin (PG)E2 formation. We also demonstrate that 20 (TG554, IC50 = 5.6 nM) suppresses leukotriene (LT) biosynthesis at low µM concentrations, providing a benchmark compound that dually intervenes with inflammatory PGE2 and LT biosynthesis. Comprehensive lipid mediator (LM) metabololipidomics with activated human monocyte-derived macrophages showed that TG554 selectively inhibits inflammatory PGE2 formation over all cyclooxygenase (COX)-derived prostanoids, does not cause substrate shunting towards 5-lipoxygenase (5-LOX) pathway, and does not interfere with the biosynthesis of the specialized pro-resolving mediators as observed with COX inhibitors, providing a new chemotype for effective and safer anti-inflammatory drug development.
Collapse
Affiliation(s)
- Tuğçe Gür Maz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Philipp Dahlke
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany
| | - Azize Gizem Ergül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Abdurrahman Olğaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey.
| |
Collapse
|
6
|
Mehta V, Dwivedi AR, Ludhiadch A, Rana V, Goel KK, Uniyal P, Joshi G, Kumar A, Kumar B. A decade of USFDA-approved small molecules as anti-inflammatory agents: Recent trends and Commentaries on the "industrial" perspective. Eur J Med Chem 2024; 263:115942. [PMID: 38000212 DOI: 10.1016/j.ejmech.2023.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Inflammation is the human body's defence process against various pathogens, toxic substances, irradiation, and physically injured cells that have been damaged. Inflammation is characterized by swelling, pain, redness, heat, as well as diminished tissue function. Multiple important inflammatory markers determine the prognosis of inflammatory processes, which include likes of pro-inflammatory cytokines which are controlled by nuclear factor kappa-B (NF-kB), mitogen-activated protein kinase (MAPK), Janus kinase signal transducer and activator of transcription (JAK-STAT) pathway, all of which are activated in response to the stimulation of specific receptors. Besides these, the cyclooxygenase (COX) enzyme family also plays a significant role in inflammation. The current review is kept forth to compile a summary of small molecules-based drugs approved by the USFDA during the study period of 2013-2023. A thorough discussion has also been made to focus on biologics, macromolecules, and small chemical entities approved during this study period and their greener synthetic routes with a brief discussion on the chemical spacing parameters of anti-inflammatory drugs. The compilation is expected to assist the medicinal chemist and the scientist actively engaged in drug discovery and development of anti-inflammatory agents from newer perspectives during the current years.
Collapse
Affiliation(s)
- Vikrant Mehta
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | | | - Abhilash Ludhiadch
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, 10032, USA
| | - Vikas Rana
- School of Pharmacy, Graphic Era Hill University, Clement town, Dehradun, 248002, Uttarakhand, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Clement town, Dehradun, 248002, Uttarakhand, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Garhwal, Srinagar, Uttarakhand, 246174, India; Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, Uttarakhand, India.
| | - Asim Kumar
- Amity Institute of Pharmacy (AIP), Amity University Haryana, Panchgaon, Manesar, 122413, India.
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Garhwal, Srinagar, Uttarakhand, 246174, India.
| |
Collapse
|
7
|
Saeed K, Rafiq M, Khalid M, Hussain A, Siddique F, Hanif M, Hussain S, Mahmood K, Ameer N, Ahmed MM, Ali Khan M, Yaqub M, Jabeen M. Synthesis, characterization, computational assay and anti-inflammatory activity of thiosemicarbazone derivatives: Highly potent and efficacious for COX inhibitors. Int Immunopharmacol 2024; 126:111259. [PMID: 37992446 DOI: 10.1016/j.intimp.2023.111259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Multiple studies in the literature have demonstrated that synthetic compounds containing heterocyclic rings possess a reparative potential against acute and chronic inflammation. In the present study, two novel thiosemicarbazone derivatives based on l-ethyl-6-(thiophen-2-yl)indoline-2,3-dione with different phenyl substituted thiosemicarbazides were synthesized by condensation reaction and the structures of proposed target compounds (KP-2 and KP-5) were confirmed by UV-VIS, FTIR, 1H-NMR and 13C-NMR. In-vitro anti-inflammatory behavior of KP-2 and KP-5 was confirmed by bovine serum albumin (BSA) and ovine serum albumin (OSA) analysis. Acute and chronic anti-inflammatory potential of synthesized compounds were evaluated by using carrageenan and complete Freund's adjuvant (CFA) as inflammation-inducing agents, respectively. Inhibition of pro-inflammatory mediators and prevention of protein denaturation owing to synchronization of more electronegative flouro-groups substituted on phenyl rings along with heterocyclic indoline ring provides anti-inflammatory effects and are corroborated by radiological, histopathological analysis. Additional support was provided through density functional theory (DFT) and molecular docking. KP-5 exhibited excellent lead-likeness based on its physicochemical parameters, making it a viable drug candidate. The synthesized compounds also showed promising ADMET properties, enhancing their potential as therapeutic agents. These findings emphasize the pivotal role of new compounds for drug design and development.
Collapse
Affiliation(s)
- Kinza Saeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Rafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Saghir Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mehreen Jabeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| |
Collapse
|
8
|
Chaudhary T, Upadhyay PK. A Bird's Eye Review of Recent Reports on 1,3,4-oxadiazoles' Anti-inflammatory Insights Perspectives. Curr Org Synth 2024; 21:595-606. [PMID: 37157211 DOI: 10.2174/1570179420666230508124847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 05/10/2023]
Abstract
Anti-inflammatory agents suppress inflammatory mediators such as prostaglandins, prostacyclins, cytokines, thromboxane, histamine, bradykinins, COX-I and COX-II, 5-LOX, and other substances. These inflammatory chemicals create inflammatory responses when tissue is injured by trauma, bacteria, heat, toxins, or other factors. These inflammatory reactions may result in fluid flow from the blood vessels into the tissues, resulting in swelling. When the therapeutic importance of these clinically beneficial medications in treating inflammation was recognized, it spurred the invention of even more powerful and important molecules. Oxadiazole derivatives are exceptionally potent NSAIDs, and they are widely used. Comprehensive biochemical, structure-activity-relationship and pharmacological investigations have demonstrated that these 1,3,4-oxadiazole compounds exhibit anti-inflammatory properties. This review article outlines the synthesis scheme for 1,3,4-oxadiazole used in treating inflammation.
Collapse
Affiliation(s)
- Tarun Chaudhary
- Institute of Pharmaceutical Research, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, India
| | - Prabhat Kumar Upadhyay
- Institute of Pharmaceutical Research, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
9
|
Sahu B, Bhatia R, Kaur D, Choudhary D, Rawat R, Sharma S, Kumar B. Design, synthesis and biological evaluation of oxadiazole clubbed piperazine derivatives as potential antidepressant agents. Bioorg Chem 2023; 136:106544. [PMID: 37116324 DOI: 10.1016/j.bioorg.2023.106544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Piperazine derivatives have been of great interest to medicinal chemists in the development of antidepressant drugs due to their distinct molecular and structural features along with their pharmacological profile. In this study, we have designed and synthesized a series of 10 compounds of piperazine clubbed oxadiazole derivatives (5a-j) and screened for their MAO inhibitory activity. Compound 5f and 5 g were found to be the most potent MAO-A inhibitors of the series with IC50 values of 0.96 ± 0.04 µM µM and 0.81 ± 0.03 µM, respectively with a selectivity index of 18-folds and 9-folds over MAO-B isoform. The compounds were found to be reversible inhibitors of MAO-A with no cytotoxicity against SH-SY5Y neuronal cells. The compounds also displayed good antioxidant activity. Further, in vivo TST studies revealed that both the compounds 5f and 5 g possessed good anti-depressant-like activity and reduced the immobility time significantly although were found inactive in FST studies. The molecular docking studies revealed that both compounds fit well at the active site of MAO-A enzyme as similar to clorgyline and form a stable complex. The results were confirmed via molecular dynamic studies which demonstrate the stable complex formation between MAO-A and 5f & 5 g. The appropriate drug-like characteristics with favourable ADMET profile, these molecules presented this piperazine clubbed oxadiazole structural framework as a key pharmacophore for the development of new antidepressant molecules along with strong candidature for further clinical investigations.
Collapse
Affiliation(s)
- Bhaskar Sahu
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Dilpreet Kaur
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Diksha Choudhary
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401 Punjab, India
| | - Ravi Rawat
- School of Health Sciences & Technology, UPES University, Dehradun 248007, India
| | - Shilpa Sharma
- Department of Biotechnology, Bennett University, Greater Noida 201310, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, Garhwal, Uttarakhand 246174, India; Department of Chemistry, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India.
| |
Collapse
|
10
|
Basha NJ. Small Molecules as Anti‐inflammatory Agents: Molecular Mechanisms and Heterocycles as Inhibitors of Signaling Pathways. ChemistrySelect 2023. [DOI: 10.1002/slct.202204723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru Karnataka-560043 India
| |
Collapse
|
11
|
Goel KK, Kharb R, Rajput SK. Design, Synthesis and Biological Evaluation of Imidazole-Substituted/Fused Aryl Derivatives Targeting Tubulin Polymerization as Anticancer Agents. SYNOPEN 2023. [DOI: 10.1055/s-0042-1751835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AbstractThe development of new pharmacologically active molecules targeting tubulin polymerization has recently attracted great interest in research groups. In efforts to develop new potent anticancer compounds, imidazole-tethered/fused pharmacologically active aryl derivatives possessing different substitution patterns targeting tubulin polymerization have been rationally designed and synthesized. The target molecules (P1-5 and KG1-5) were synthesized by multistep syntheses involving the reaction of intermediate 2-aminophenyl-tethered imidazoles with appropriate reactants in the presence of p-TsOH under different conditions. The synthesized compounds displayed moderate to good cytotoxicity, comparable to that of colchicine, against four cancer cell lines (MCF-7, MD-MBA-231, A549, and HCT-116). Compounds P2 and P5, with an imidazoloquinoxaline moiety, emerged as potential leads with cytotoxicity profiles against these cell lines similar to colchicine. Compounds P2 and P5 arrested cell division at the G2/M phase and prevented cancerous cell growth through induced apoptosis. These results favored the hypothesis that the compounds might act by binding to the colchicine binding site, which was further confirmed with the help of a tubulin polymerization inhibition assay. The results encourage the further exploration of imidazoloquinoxalines as promising leads that deserve advanced clinical investigation.
Collapse
Affiliation(s)
- Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University)
- Amity Institute of Pharmacy, Amity University
| | | | | |
Collapse
|
12
|
Zhang H, Zhao C, Zheng H, Chen X, Chen B, Wu Z. Design, Synthesis and Bioassay of 2-Phenylglycine Derivatives as Potential Pesticide Candidates. Chem Biodivers 2023; 20:e202200957. [PMID: 36515624 DOI: 10.1002/cbdv.202200957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
Plant diseases can seriously affect the growth of food crops and economic crops. To date, pesticides are still among the most effective methods to prevent and control plant diseases worldwide. Consequently, to develop potential pesticide molecules, a series of novel 2-phenylglycine derivatives containing 1,3,4-oxadiazole-2-thioethers were designed and synthesized. The bioassay results revealed that G19 exhibited great in vitro antifungal activity against Thanatephorus cucumeris with an EC50 value of 32.4 μg/mL, and in vivo antifungal activity against T. cucumeris on rice leaves at a concentration of 200.0 μg/mL (66.9 %) which was close that of azoxystrobin (73.2 %). Compounds G24 (80.2 %), G25 (89.4 %), and G27 (83.3 %) exhibited impressive in vivo inactivation activity against tobacco mosaic virus (TMV) at a concentration of 500.0 μg/mL, which was comparable to that of ningnanmycin (96.3 %) and markedly higher than that of ribavirin (55.6 %). The antibacterial activity of G16 (63.1 %), G26 (89.9 %), G27 (78.0 %), and G28 (68.0 %) against Xoo at a concentration of 50.0 μg/mL was higher than that of thiadiazole copper (18.0 %) and bismerthiazol (38.9 %). Preliminary mechanism studies on the antifungal activity against T. cucumeris demonstrated that G19 can affect the growth of mycelia by disrupting the integrity of the cell membrane and altering the permeability of the cell. These studies revealed that the amino acid derivatives containing a 1,3,4-oxadiazole moiety exhibited certain antifungal, antibacterial, and anti-TMV activities, and these derivatives can be further modified and developed as potential pesticide molecules.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Cailong Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Huanlin Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiaocui Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Biao Chen
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
13
|
Wang JJ, Sun W, Jia WD, Bian M, Yu LJ. Research progress on the synthesis and pharmacology of 1,3,4-oxadiazole and 1,2,4-oxadiazole derivatives: a mini review. J Enzyme Inhib Med Chem 2022; 37:2304-2319. [PMID: 36000176 PMCID: PMC9423840 DOI: 10.1080/14756366.2022.2115036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Oxadiazole is a five-membered heterocyclic compound containing two nitrogen atoms and one oxygen atom. The 1,3,4-oxadiazole and 1,2,4-oxadiazole have favourable physical, chemical, and pharmacokinetic properties, which significantly increase their pharmacological activity via hydrogen bond interactions with biomacromolecules. In recent years, oxadiazole has been demonstrated to be the biologically active unit in a number of compounds. Oxadiazole derivatives exhibit antibacterial, anti-inflammatory, anti-tuberculous, anti-fungal, anti-diabetic and anticancer activities. In this paper, we report a series of compounds containing oxadiazole rings that have been published in the last three years only (2020-2022) as there was no report or their activities described in any article in 2019, which will be useful to scientists in research fields of organic synthesis, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Wen Sun
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Wei-Dong Jia
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Ming Bian
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Li-Jun Yu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| |
Collapse
|
14
|
Design, Synthesis, Pharmacological and In Silico Screening of Disubstituted-Piperazine Derivatives as Selective and Reversible MAO-A Inhibitors for Treatment of Depression. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Dutta K, Majumdar AG, Kushwah N, Wadawale AP, Patro BS, Ghosh SK. Synthesis of novel indole‐oxadiazole molecular hybrids by a regioselective C‐3 sulfenylation of indole with 1,3,4‐oxadiazole‐2‐thiols using iodine‐dimethyl sulfoxide and their anticancer properties. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kartik Dutta
- Bio‐organic Division, Bhabha Atomic Research Centre Trombay Mumbai India
- Homi Bhabha National Institute Anushaktinagar Mumbai India
| | - Ananda Guha Majumdar
- Bio‐organic Division, Bhabha Atomic Research Centre Trombay Mumbai India
- Homi Bhabha National Institute Anushaktinagar Mumbai India
| | - Nisha Kushwah
- Chemistry Division, Bhabha Atomic Research Centre Trombay Mumbai India
| | - Amey P. Wadawale
- Chemistry Division, Bhabha Atomic Research Centre Trombay Mumbai India
| | - Birija S. Patro
- Bio‐organic Division, Bhabha Atomic Research Centre Trombay Mumbai India
- Homi Bhabha National Institute Anushaktinagar Mumbai India
| | - Sunil K. Ghosh
- Bio‐organic Division, Bhabha Atomic Research Centre Trombay Mumbai India
- Homi Bhabha National Institute Anushaktinagar Mumbai India
| |
Collapse
|
16
|
Bhatia R, Vyas A, El‐Bahy SM, Hessien MM, Mersal GAM, Ibrahim MM, Dogra R, Kumar B. Rationale Design, Synthesis, Pharmacological and
In‐silico
Investigation of Indole‐Functionalized Isoxazoles as Anti‐inflammatory Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rohit Bhatia
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan Ferozpur G.T. Road MOGA 142001 Punjab
| | - Akshun Vyas
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan Ferozpur G.T. Road MOGA 142001 Punjab
| | - Salah M. El‐Bahy
- Department of Chemistry Turabah University College, Taif University P.O.Box 11099 Taif 21944 Saudi Arabia
| | - Mahmoud M. Hessien
- Department of Chemistry, College of Science Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Gaber A. M. Mersal
- Department of Chemistry, College of Science Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Mohamed M. Ibrahim
- Department of Chemistry, College of Science Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Raghav Dogra
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan Ferozpur G.T. Road MOGA 142001 Punjab
| |
Collapse
|
17
|
Design, synthesis and evaluation of piperazine clubbed 1,2,4-triazine derivatives as potent anticonvulsant agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Ultrasonic energy for construction of bioactive heterocycles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Qadir T, Amin A, Sharma PK, Jeelani I, Abe H. A Review on Medicinally Important Heterocyclic Compounds. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2022. [DOI: 10.2174/18741045-v16-e2202280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heterocyclic compounds account for the most prominent and diverse class of organic compounds. A significant number of heterocyclic compounds have been synthesized up to this point. Heterocyclic compounds are rapidly increasing in number due to extensive synthetic research and also their synthetic utility. Such compounds have a wide range of uses in the field of medicinal chemistry. Dyestuff, sanitizers, corrosion inhibitors, antioxidants, and copolymer synthesis are additional well-known applications. There are always distinguishing characteristics of an efficient approach for producing newly discovered heterocyclic compounds and their moieties. According to prior research, more than 90% of medicines containing heterocyclic compounds have been developed after the obtainment of a thorough scientific grasp of the biological system. It was discovered in the neoteric developments of heterocyclic compounds that these play a vital role in curative chemistry, and exert anticancer, anti-inflammatory, antifungal, antiallergic, antibacterial, anti-HIV, antiviral, anti-convulsant, and other biological activities. The present article provides detailed information regarding such heterocyclic compounds.
Collapse
|
20
|
Singh PK, Easwari TS. Natural Medicines as Gastro-protective Therapy in the Treatment of Peptic Ulcer: A Multifaceted Approach. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220304150152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Gastrointestinal (GI) disorders are the ailments of the digestive tract that affect its function like digestion, absorption and excretion. The dysfunction of the gastrointestinal tract may occur due to infections by bacteria, parasites and viruses. Peptic Ulcer Disease is a gastrointestinal tract disorder of stomach and duodenum that is associated with infection of Helicobacter pylori. Helicobacter pylori is regarded as the worldwide causative agent responsible for the etiology of peptic ulcer and gastric carcinoma. The existing drug therapies are good healers in this situation, but due to resistance problems and side effects of drugs, researchers have been working to find out some safe alternatives. Interestingly, the medicinal herbs have been used for treating several disorders, including peptic ulcers and are considered an effective and safer alternative to existing drugs. It is also considered as an eco-friendly, easily available, safe, and less toxic traditional treatment therapy. The combination of herbal medicines with natural products has been shown effective in treating peptic ulcers. In this review, the medicinal plants used against H. pylori infection have been discussed. The mechanism of herbal drugs in healing peptic ulcers by inhibition of H+ K+ ATPase pump, secretion of gastric acid and gastric mucosal protection have also elaborated. The phytochemicals responsible for biological activity have been summarized in the present article. The combination of herbs and natural products in the form of the polyherbal formulation may also be helpful as an effective therapy for treating peptic ulcers. Medicinal plants may offer the researchers new chemical molecules to explore as future drugs or as biochemical agents to unravel the etiology of the disease.
Collapse
Affiliation(s)
- Pranjal Kumar Singh
- Department of Pharmaceutics, IIMT College of Medical Sciences, IIMT University, Meerut, Uttar Pradesh, India - 201012
| | - T. S. Easwari
- Department of Pharmaceutics, IIMT College of Medical Sciences, IIMT University, Meerut, Uttar Pradesh, India - 201012
| |
Collapse
|