1
|
Kim J, Kulthe AD, Park SJ, Raj V, Lee WR, Nimse SB. Transforming Small-Molecule Nanoaggregation into Functional Drug Delivery Platforms. J Med Chem 2025; 68:10384-10398. [PMID: 40314125 DOI: 10.1021/acs.jmedchem.5c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The development of stimuli-responsive nanoaggregates offers a transformative approach to cancer therapy, addressing the challenges of selectivity and efficacy. The spontaneous formation of nanoscale aggregates of small organic molecules through self-assembly is a major hurdle in early-stage drug discovery. However, this disadvantage can be transformed with a meticulous design into a functional drug delivery platform. Here, we report Nano-CC1-Acl, a nanoaggregate engineered for targeted anticancer activity. CC1 and CC1-Acl, benzimidazole derivatives, undergo self-assembly in aqueous environments to generate Nano-CC1 (235.2 ± 28.2 nm; IC50 > 100 μM) and Nano-CC1-Acl (110.6 ± 23.1 nm; IC50 = 2.88-3.40 μM) nanoaggregates. The IC50 value of Nano-CC1-Acl further decreases to 0.20 ± 0.16 μM in the presence of cysteine, a biothiol. Triggered by intracellular biothiols, Nano-CC1-Acl disassembles to release CC1, a potent microtubule-targeting agent that disrupts microtubule polymerization. Results presented here indicate that small molecule nanoaggregation can be utilized to develop functional drug delivery platforms.
Collapse
Affiliation(s)
- JunHyuk Kim
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 24252, Republic of Korea
| | - Arun Dattatray Kulthe
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 24252, Republic of Korea
| | - Su Jeong Park
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 24252, Republic of Korea
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Woo Ram Lee
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 24252, Republic of Korea
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
2
|
Li M, Long Y, Shao L, Meng J, Zheng Z, Wu Y, Zhou X, Liu L, Li Z, Wu Z, Yang S. Targeting tubulin protein to combat fungal disease: Design, synthesis, and its new mechanistic insights of benzimidazole hydrazone derivatives. Int J Biol Macromol 2025; 300:140226. [PMID: 39855516 DOI: 10.1016/j.ijbiomac.2025.140226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
As the vital the biomacromolecule in eukaryotic cells, tubulin protein is essential for preserving cell shape, facilitating cell division, and cell viability. Tubulin has been approved as promising target for anticancer, and antifungal therapy. However, there are still many gaps in tubulin-targeted fungicidal discovery. To expand the structural diversity of benzimidazoles and achieve the distinct interaction model, a series of novel benzimidazole hydrazone derivatives were therefore synthesized. Antifungal results showed that compound A9 was the most effective, achieving an EC50 value of 2.88 μg/mL in vitro against Colletotrichum sublineola. In vivo assay, compound A9 displayed encouraging efficacy, outperforming the reference agents ferimzone and tetramethylthiuram disulfide. Interestingly, mechanistic studies indicated that, compared with carbendazim, compound A9 might form stronger interactions with tubulin, exemplified by the presence of multiple hydrogen bonds and π-π interactions, leading to intracellular microtubule aggregation in compound A9-treated cells. The significantly different interactions models between A9-tubulin and carbendazim-tubulin complexes may endow to produce the low resistance risk. Additionally, compound A9 possessed low phytotoxicity and satisfactory ADME properties. This study not only provides a structural basis for the development of benzimidazole-based fungicides targeting tubulin but also offers new insights into the use of immunofluorescence assays in tubulin-targeting studies.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu Long
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lihui Shao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhicheng Zheng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuanyuan Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhenhua Li
- College of Agriculture/Institute of Rice Industry Technology Research, Key Laboratory of Plant Resource, Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Malik U, Pal D. Isoxazole compounds: Unveiling the synthetic strategy, in-silico SAR & toxicity studies and future perspective as PARP inhibitor in cancer therapy. Eur J Med Chem 2024; 279:116898. [PMID: 39353240 DOI: 10.1016/j.ejmech.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Latest developments in cancer treatment have shed a light on the crucial role of PARP inhibitors that enhance the treatment effectiveness by modifying abnormal repair pathways. PARP inhibitors, such as Olaparib, Rucaparib, Niraparib, and Talazoparib have been approved in a number of cancers including BRCA 1/BRCA2 associated malignancies although there are many difficulties as therapeutical resistance. Besides the conventional synthetic drugs, natural compounds such as flavones and flavonoids have been found to be PARP inhibitors but only in preclinical studies. Isoxazole is very important class of potential candidates for medicinal chemistry with anti-cancer and other pharmacological activities. At present, there are no approved PARP inhibitors of isoxazole origin but their ability to hit many pathways inside the cancer cells points out on its importance for future treatments design. In drug development, isoxazoles are helpful because of the molecular design flexibility that may be enhanced using various synthetic approaches. This review highlights the molecular mechanisms of PARP inhibition, importance of isoxazole compounds and present advances in their synthetic strategies that demonstrate promise for these agents as new anticancer drugs. It emphasizes that isoxazole-based PARP inhibitors compounds could be novel anti-cancer drugs. Through this review, we hope to grow a curiosity in additional explorations of isoxazole-based PARP inhibitors and their applications in the trends of novel insights towards precision cancer therapy.
Collapse
Affiliation(s)
- Udita Malik
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495009, India
| | - Dilipkumar Pal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495009, India.
| |
Collapse
|
4
|
Al Khzem AH, Gomaa MS, Alturki MS, Tawfeeq N, Sarafroz M, Alonaizi SM, Al Faran A, Alrumaihi LA, Alansari FA, Alghamdi AA. Drug Repurposing for Cancer Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:12441. [PMID: 39596504 PMCID: PMC11595001 DOI: 10.3390/ijms252212441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer ranks among the primary contributors to global mortality. In 2022, the global incidence of new cancer cases reached about 20 million, while the number of cancer-related fatalities reached 9.7 million. In Saudi Arabia, there were 13,399 deaths caused by cancer and 28,113 newly diagnosed cases of cancer. Drug repurposing is a drug discovery strategy that has gained special attention and implementation to enhance the process of drug development due to its time- and money-saving effect. It involves repositioning existing medications to new clinical applications. Cancer treatment is a therapeutic area where drug repurposing has shown the most prominent impact. This review presents a compilation of medications that have been repurposed for the treatment of various types of cancers. It describes the initial therapeutic and pharmacological classes of the repurposed drugs and their new applications and mechanisms of action in cancer treatment. The review reports on drugs from various pharmacological classes that have been successfully repurposed for cancer treatment, including approved ones and those in clinical trials and preclinical development. It stratifies drugs based on their anticancer repurpose as multi-type, type-specific, and mechanism-directed, and according to their pharmacological classes. The review also reflects on the future potential that drug repurposing has in the clinical development of novel anticancer therapies.
Collapse
Affiliation(s)
- Abdulaziz H. Al Khzem
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mansour S. Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Nada Tawfeeq
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mohammad Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Shareefa M. Alonaizi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Alhassan Al Faran
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Laela Ahmed Alrumaihi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Fatimah Ahmed Alansari
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Abdullah Abbas Alghamdi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| |
Collapse
|
5
|
Iqbal S, Firdous F, Furqan M, Bilal A, Fozail S, Pohl SÖG, Doleschall NJ, Myant KB, Singh U, Emwas AH, Jaremko M, Faisal A, Saleem RSZ. Synthesis and characterization of bis-amide SSE1917 as a microtubule-stabilizing anticancer agent. Bioorg Chem 2024; 143:107094. [PMID: 38199139 DOI: 10.1016/j.bioorg.2023.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Microtubule dynamics are critical for spindle assembly and chromosome segregation during cell division. Pharmacological inhibition of microtubule dynamics in cells causes prolonged mitotic arrest, resulting in apoptosis, an approach extensively employed in treating different types of cancers. The present study reports the synthesis of thirty-two novel bis-amides (SSE1901-SSE1932) and the evaluation of their antiproliferative activities. N-(1-oxo-3-phenyl-1-(phenylamino)propan-2-yl)benzamide (SSE1917) exhibited the most potent activity with GI50 values of 0.331 ± 0.01 µM in HCT116 colorectal and 0.48 ± 0.27 µM in BT-549 breast cancer cells. SSE1917 stabilized microtubules in biochemical and cellular assays, bound to taxol site in docking studies, and caused aberrant mitosis and G2/M arrest in cells. Prolonged treatment of cells with the compound increased p53 expression and triggered apoptotic cell death. Furthermore, SSE1917 suppressed the growth of both mouse and patient-derived human colon cancer organoids, highlighting its potential therapeutic value as an anticancer agent.
Collapse
Affiliation(s)
- Sana Iqbal
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Farhat Firdous
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan; Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Muhammad Furqan
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Aishah Bilal
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Salman Fozail
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Sebastian Öther-Gee Pohl
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Nora Julia Doleschall
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Kevin B Myant
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Upendra Singh
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- KAUST Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Amir Faisal
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan.
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan.
| |
Collapse
|
6
|
Park SJ, Song IH, Yeom GS, Nimse SB. The microtubule cytoskeleton: A validated target for the development of 2-Aryl-1H-benzo[d]imidazole derivatives as potential anticancer agents. Biomed Pharmacother 2024; 171:116106. [PMID: 38181711 DOI: 10.1016/j.biopha.2023.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
In this study, a series of 2-Aryl-1H-benzo[d]imidazole derivatives were developed to target intra- and extracellular microtubule networks. Compounds O-7 and O-10 showed impressive anti-proliferative activity across various tested cell lines, demonstrating selectivity indexes of 151.7 and 61.9, respectively. O-7 achieved an IC50 value of 0.236 ± 0.096 μM, while O-10 showed an IC50 value of 0.622 ± 0.13 μM against A549 cell lines. The induction of early-stage apoptosis in a dose-dependent manner further underscored the potential of O-7 and O-10 as effective anti-proliferative agents. O-7 and O-10 exhibited substantial inhibition of wound closure, with wound closure percentages decreasing from 23% at 0 μM to 0.43% and 2.62% at 20 μM, respectively. Colony formation reduction rates were impressive, with O-7 at 74.2% and O-10 at 81.2%. These results indicate that the O-7 and O-10 can impede cancer cell migration and have a high potential to curtail colony formation. The mode of action investigations for O-7 and O-10 revealed that O-7 could inhibit in vitro tubulin polymerization and disrupt the intracellular microtubule cytoskeleton. This disruption led to cell cycle arrest in the G2/M phase, indicating that O-7 exerts its anticancer activity through microtubule destabilization. However, O-10 shows a different mode of action than O-7 and requires further investigation. Overall, our study showcases the potential of the synthesized benzimidazole derivatives as novel and selective anticancer agents, motivating further exploration of their pharmacological properties and therapeutic applications.
Collapse
Affiliation(s)
- Su Jeong Park
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - In-Ho Song
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Gyu Seong Yeom
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea.
| |
Collapse
|
7
|
Nie J, Wu H, Luan Y, Wu J. The Development of HDAC and Tubulin Dual-Targeting Inhibitors for Cancer Therapy. Mini Rev Med Chem 2024; 24:480-490. [PMID: 37461341 DOI: 10.2174/1389557523666230717110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2024]
Abstract
Histone deacetylases (HDACs) are a class of enzymes that are responsible for the removal of acetyl groups from the ε-N-acetyl lysine of histones, allowing histones to wrap DNA more tightly. HDACs play an essential role in many biological processes, such as gene regulation, transcription, cell proliferation, angiogenesis, migration, differentiation and metastasis, which make it an excellent target for anticancer drug discovery. The search for histone deacetylase inhibitors (HDACis) has been intensified, with numerous HDACis being discovered, and five of them have reached the market. However, currently available HDAC always suffers from several shortcomings, such as limited efficacy, drug resistance, and toxicity. Accordingly, dual-targeting HDACis have attracted much attention from academia to industry, and great advances have been achieved in this area. In this review, we summarize the progress on inhibitors with the capacity to concurrently inhibit tubulin polymerization and HDAC activity and their application in cancer treatment.
Collapse
Affiliation(s)
- Jing Nie
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Huina Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| |
Collapse
|
8
|
Gujja V, Sadineni K, Epuru MR, Rao Allaka T, Banothu V, Gunda SK, Koppula SK. Synthesis and in Silico Studies of Some New 1,2,3-Triazolyltetrazole Bearing Indazole Derivatives as Potent Antimicrobial Agents. Chem Biodivers 2023; 20:e202301232. [PMID: 37988365 DOI: 10.1002/cbdv.202301232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
1,2,3-Triazole and tetrazole derivatives bearing pyrrolidines are found to exhibit notable biological activity and have become useful scaffolds in medicinal chemistry for application in lead discovery and optimization. Novel indazole bearing 1,2,3-triazolyltetrazoles were designed as potential antimicrobial candidates. The structure of duel heterocyclics was validated by a spectroscopic technique of infrared (IR), nuclear magnetic resonance (1 H and 13 C NMR), and mass spectral data. Compounds 4b, 4c, 4d, and 4h were found to have a stronger antibacterial effect against Gram-positive (S. aureus, B. subtilis, M. Luteus) and Gram-negative (E. coli, P. aeruginosa) microorganisms with MICs ranging from 5±0.03-18±0.02 μM, respectively. Moreover, scaffolds 4a, 4h showed potent antifungal activity against A. flavus, M. gypsuem strains with MIC values of 10±0.02, 11±0.01 μM, which are similar activity that of the standard Itraconazole (MIC=8±0.02, 10±0.01 μM). The binding mode for compound 4 inside the catalytic pocket of S. aureus complexed with nicotinamide adenine dinucleotide phosphate and trimethoprim and produced a network of hydrophobic and hydrophilic interactions (3FRE). From in silico results, 4b demonstrated highly stable hydrogen binding amino acids Leu62(X) [N18…O, 2.47 Å], Arg44(X) [N17…N, 3.11 Å], Thr96(X) [N10…OG1, 3.05 Å], Gly94(X) [F7…N, 2.82 Å], and Gly43(X) [F7…N, 2.90 Å], which are plays a crucial role in ensuring efficient binding of the ligand in a crystal structure of antibacterial receptor. Furthermore, the physicochemical and ADME filtration molecular properties, estimation of toxicity, and bioactivity scores of these novel scaffolds were evaluated by using SwissADME and ADMETlab2.0 online protocols. Thus, the significant antimicrobial activity of indazole linked to duel heterocyclic compounds can be used for development of new antimicrobial agents with further modifications.
Collapse
Affiliation(s)
- Venkanna Gujja
- Department of chemistry, Gitam deemed to be University, Hyderabad campus, Rudraram, Sangareddy, Hyderabad, 502329, Telangana, India
| | - Kumaraswamy Sadineni
- Department of chemistry, Gitam deemed to be University, Hyderabad campus, Rudraram, Sangareddy, Hyderabad, 502329, Telangana, India
| | - Manohar Reddy Epuru
- Department of Chemistry, School of Applied Sciences and humanities, VFSTR, Vadlamudi, Guntur, Andhra Pradesh, 522213, India
- Analytical Research and Development, I, nnovare Labs Private Limited, Hyderabad, Telangana, 500090, India
| | - Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, Department of Chemistry, Institute of Science & Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, 500085, Telangana, India
| | - Venkanna Banothu
- Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, 500085, Telangana, India
| | - Shravan Kumar Gunda
- Bioinformatics Division, PGRRCDE, Osmania University, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Shiva Kumar Koppula
- Department of chemistry, Gitam deemed to be University, Hyderabad campus, Rudraram, Sangareddy, Hyderabad, 502329, Telangana, India
| |
Collapse
|
9
|
Abstract
Targeted protein degradation (TPD) has emerged as the most promising approach for the specific knockdown of disease-associated proteins and is achieved by exploiting the cellular quality control machinery. TPD technologies are highly advantageous in overcoming drug resistance as they degrade the whole target protein. Microtubules play important roles in many cellular processes and are among the oldest and most well-established targets for tumor chemotherapy. However, the development of drug resistance, risk of hypersensitivity reactions, and intolerable toxicities severely restrict the clinical applications of microtubule-targeting agents (MTAs). Microtubule degradation agents (MDgAs) operate via completely different mechanisms compared with traditional MTAs and are capable of overcoming drug resistance. The emergence of MDgAs has expanded the scope of TPD and provided new avenues for the discovery of tubulin-targeted drugs. Herein, we summarized the development of MDgAs, and discussed their degradation mechanisms, mechanisms of action on the binding sites, potential opportunities, and challenges.
Collapse
Affiliation(s)
- Chufeng Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
10
|
Viveki AB, Mansfield TM, Tran KA, Lenkeit E, MacKenzie KR, Young DW, Chamakuri S. Heterocyclic Merging of Stereochemically Diverse Chiral Piperazines and Morpholines with Indazoles. Chemistry 2023; 29:e202301888. [PMID: 37462979 PMCID: PMC10885319 DOI: 10.1002/chem.202301888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 08/31/2023]
Abstract
We report a heterocyclic merging approach to construct novel indazolo-piperazines and indazolo-morpholines. Starting from chiral diamines and amino alcohols, novel regiochemically (1,3 and 1,4) and stereochemically diverse (relative and absolute) cohorts of indazolo-piperazines and indazolo-morpholines were obtained within six or seven steps. The key transformations involved are a Smiles rearrangement to generate the indazole core structure and a late-stage Michael addition to build the piperazine and morpholine heterocycles. We further explored additional vector diversity by incorporating substitutions on the indazole aromatic ring, generating a total of 20 unique, enantiomerically pure heterocyclic scaffolds.
Collapse
Affiliation(s)
- Amol B Viveki
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Timothy M Mansfield
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Kevin A Tran
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Evan Lenkeit
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Kevin R MacKenzie
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Damian W Young
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Srinivas Chamakuri
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
11
|
Wang J, Shi D, Wang Z, Ren F, Li X, You Y, Liu X, Lou Y. A Scalable and Metal-Free Synthesis of Indazoles from 2-Aminophenones and In Situ Generated De-Boc-Protected O-Mesitylsulfonyl Hydroxylamine Derivatives. J Org Chem 2023; 88:13049-13056. [PMID: 37647210 DOI: 10.1021/acs.joc.3c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A one-pot metal-free protocol to access indazoles from easily available 2-aminophenones and hydroxylamine derivatives has been achieved. The reaction is operationally simple, mild, and insensitive to air and moisture. A broad range of indazoles were prepared in good to excellent yield (up to 97% yield), and the reaction displayed a broad functional group tolerance. The reaction was performed at gram scale, and its synthetic application was exhibited through the rapid and efficient preparation of bioactive molecule YC-3 and FDA-approved drug axitinib.
Collapse
Affiliation(s)
- Jinlong Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Dongmin Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zihao Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Fucai Ren
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xin Li
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Yang'en You
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Yazhou Lou
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
12
|
Huo XS, Tang-Yang J, Zeng WB, Jian XE, Ma XX, Yue-Yang P, Wen-Wei Y, Zhao PL. Synthesis and biological evaluation of novel 5-substituted/unsubstituted triazolothiadiazines as tubulin depolymerizing and vascular disrupting agents with promising antitumor activity. Drug Dev Res 2023; 84:975-987. [PMID: 37089026 DOI: 10.1002/ddr.22066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 04/25/2023]
Abstract
A novel series of 5-substituted/unsubstituted [1,2,4]triazolo[3,4-b][1,3,4] thiadiazine compounds has been achieved successfully through chemoselective reduction of the C = N bond, based on our prior work. Initial biological evaluation illustrated that the most active derivative 7j exhibited significant cell growth inhibitory activity toward MCF-7, A549, HCT116, and A2780 with the IC50 values of 0.75, 0.94, 2.90, and 4.15 μM, respectively. Most importantly, all the representative analogs did not demonstrate obvious cytotoxic activity against the non-tumoural cell line HEK-293 (IC50 > 100 μM). The mechanism study revealed that 7j caused the G2 /M phase arrest, induced cell apoptosis in HeLa cells in a concentration-dependent manner, and also showed potent tubulin polymerization inhibitory effect. Meanwhile, 7j exerted significant antivascular activity in the wound-healing and tube formation assays. These observations indicate that 5-unsubstituted 6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine scaffold might be considered as a potential lead for antitubulin inhibitors to develop highly efficient anticancer agents with potent selectivity over normal human cells.
Collapse
Affiliation(s)
- Xian-Sen Huo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Ji Tang-Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Wen-Bin Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Xuan-Xuan Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Peng Yue-Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - You Wen-Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| |
Collapse
|
13
|
Song IH, Park SJ, Yeom GS, Song KS, Kim T, Nimse SB. Not all benzimidazole derivatives are microtubule destabilizing agents. Biomed Pharmacother 2023; 164:114977. [PMID: 37271075 DOI: 10.1016/j.biopha.2023.114977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023] Open
Abstract
In recent years, microtubule-targeting agents (MTAs) have gained considerable interest in developing novel small-molecule anticancer drugs. MTAs demonstrate anticancer activity either as microtubule-stabilizing agents (paclitaxel) or microtubule-destabilizing agents (nocodazole). FDA-approved drugs containing a benzimidazole ring (nocodazole, albendazole, mebendazole, etc.) are well-known microtubule-destabilizing agents. Thus, most recent research on benzimidazole scaffold-based MTAs focuses on developing microtubule-destabilizing agents. However, there is no report on the benzimidazole scaffold-based microtubule-stabilizing agent. Here, we present the benzimidazole derivatives NI-11 and NI-18 that showed a profound anticancer activity as microtubule-stabilization agents. About twenty benzimidazole analogues were synthesized with excellent yield (80.0% ∼ 98.0%) and tested for their anticancer activity using two cancer cell lines (A549, MCF-7) and one normal cell line (MRC-5). NI-11 showed IC50 values of 2.90, 7.17, and 16.9 µM in A549, MCF-7, and MRC-5 cell lines. NI-18 showed IC50 values of 2.33, 6.10, and 12.1 µM in A549, MCF-7, and MRC-5 cell lines. Thus, NI-11 and NI-18 demonstrated selectivity indexes of 5.81 and 5.20, respectively, which are much higher than the currently available anticancer agents. NI-11 and NI-18 inhibited the cancer cell motility and migration, induced the early phase apoptosis. Both of these comounds were found to show an upregulation of DeY-α-tubulin and downregulation of Ac-α-tubulin expressions in cancer cells. Eventhough the reported benzimidazole scaffold-based commercially available drugs are known to be microtubule-destabilizing agents, the analogues NI-11 and NI-18 were found to have microtubule-stabilizing activity. The in vitro tubulin polymerization assay and the immunofluorescence assay results indicate that the NI-11 and NI-18 exhibit anticancer activity by stabilizing the microtubule network.
Collapse
Affiliation(s)
- In-Ho Song
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea; Biometrix Technology, Inc., 2-2 Bio Venture Plaza 56, Chuncheon 24232, South Korea
| | - Su Jeong Park
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Gyu Seong Yeom
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Keum-Soo Song
- Biometrix Technology, Inc., 2-2 Bio Venture Plaza 56, Chuncheon 24232, South Korea
| | - Taisun Kim
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea.
| |
Collapse
|
14
|
El-Damasy AK, Jin H, Sabry MA, Kim HJ, Alanazi MM, Seo SH, Bang EK, Keum G. Design and Synthesis of New 4-(3,4,5-Trimethoxyphenyl)Thiazole-Pyrimidine Derivatives as Potential Antiproliferative Agents. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1076. [PMID: 37374282 DOI: 10.3390/medicina59061076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
A new series of 3,4,5-trimethoxyphenyl thiazole pyrimidines has been synthesized and biologically evaluated for its in vitro anticancer activity. Compounds 4a, 4b, and 4h with substituted piperazine showed the best antiproliferative activity. In the NCI-60 cell line screening, compound 4b showed promising cytostatic activity against multiple cell lines. Notably, it elicited a GI value of 86.28% against the NSCL cancer cell line HOP-92 at a 10 μM dose. Compounds 4a and 4h at 10 μM showed promising GI values of 40.87% and 46.14% against HCT-116 colorectal carcinoma and SK-BR-3 breast cancer cell lines, respectively. ADME-Tox prediction of compounds 4a, 4b, and 4h revealed their acceptable drug-likeness properties. In addition, compounds 4a, 4b, and 4h showed a high probability of targeting kinase receptors via Molinspiration and Swiss TargetPrediction.
Collapse
Affiliation(s)
- Ashraf K El-Damasy
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Heewon Jin
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Mohamed A Sabry
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hyun Ji Kim
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seon Hee Seo
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun-Kyoung Bang
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gyochang Keum
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
15
|
Puri S, Sawant S, Juvale K. A comprehensive review on the indazole based derivatives as targeted anticancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
16
|
Wang C, Shi L, Yang S, Chang J, Liu W, Zeng J, Meng J, Zhang R, Xing D. Research progress on antitumor activity of XRP44X and analogues as microtubule targeting agents. Front Chem 2023; 11:1096666. [PMID: 36936533 PMCID: PMC10014799 DOI: 10.3389/fchem.2023.1096666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Cancer threatens human health and life. Therefore, it is particularly important to develop safe and effective antitumor drugs. Microtubules, the main component of cytoskeleton, play an important role in maintaining cell morphology, mitosis, and signal transduction, which are one of important targets of antitumor drug research and development. Colchicine binding site inhibitors have dual effects of inhibiting proliferation and destroying blood vessels. In recent years, a series of inhibitors targeting this target have been studied and some progress has been made. XRP44X has a novel structure and overcomes some disadvantages of traditional inhibitors. It is also a multifunctional molecule that regulates not only the function of tubulin but also a variety of biological pathways. Therefore, the structure, synthesis, structure-activity relationship, and biological activity of XRP44X analogues reported in recent years were summarized in this paper, to provide a useful reference for the rational design of efficient colchicine binding site inhibitors.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Chao Wang, ; Dongming Xing,
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Chao Wang, ; Dongming Xing,
| |
Collapse
|
17
|
Combination Therapy of Ledipasvir and Itraconazole in the Treatment of COVID-19 Patients Coinfected with Black Fungus: An In Silico Statement. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5904261. [PMID: 35463967 PMCID: PMC9020143 DOI: 10.1155/2022/5904261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/19/2022]
Abstract
The manuscript mainly aimed at providing clues on improving the innate immunity of coronavirus patients and safeguarding them from both new mutant strains and black fungus infections. Coronavirus is readily mutating from one variant to another. Among the several variants, we selected SARS-CoV-2 B.1.1.7 in this study. Upon infection of any virus, ideally, the phagocytic cells of the host engulf and destroy the virus by a mechanism called phagocytosis. However, compromised immunity impairs phagocytosis, and thus, restoring the immune system is crucial for a speedy recovery of infected patients. The autophagy and activation of Toll-like receptor-4 are the only ways to restore innate immunity. Recently, immunocompromised COVID-19 patients have been suffering from the coinfection of black fungus. Rhizomucor, a black fungus species, causes more than 75% of cases of mucormycosis. Here, we present the results of molecular docking studies of sixty approved antiviral drugs targeting receptors associated with the SARS-CoV-2 B 1.1.7 variant (PDB id: 7NEH), activating the innate immune system (PDB id: 5YEC and 5IJC). We also studied the twenty approved antifungal drugs with Rhizomucor miehei lipase propeptide (PDB id: 6QPR) to identify the possible combination therapy for patients coinfected with coronavirus and black fungus. The ledipasvir showed excellent docking interactions with the 7NEH, 5YEC, and 5IJC, indicating that it is a perfect candidate for the treatment of COVID-19 patients. Itraconazole showed significant interaction with 6QPR of Rhizomucor miehei, suggesting that itraconazole can treat black fungus infections. In conclusion, the combination therapy of ledipasvir and itraconazole can be a better alternative for treating COVID-19 patients coinfected with black fungus.
Collapse
|