1
|
Durmuş M, Kalkan S, Güzel Karahan S, Biçakcioğlu M, Özdemir N, Gün ZÜ, Özer AB. Can antibiotics affect the clinical features of patients with candidemia? The retrospective evaluation of 5 years of data in an intensive care unit. Eur J Hosp Pharm 2024; 31:416-422. [PMID: 37098442 DOI: 10.1136/ejhpharm-2022-003673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/11/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Candidemia is an opportunistic infection of intensive care units (ICUs) and causes morbidity and mortality. Multiple antibiotic exposure was found to be an independent risk factor for mortality and non-albicans candidemia (NAC) in candidemia patients. AIM The aim of this study was to determine the relationship between antibiotics and clinical features of patients with candidemia, and to determine the independent risk factors for hospital stay >50 days, 30-day mortality in hospital, candidemia types, and septic shock in candidemia patients. METHODS Patients were evaluated retrospectively for 5 years. A total of 148 candidemia cases were detected and included in the study. Characteristics of cases were defined and recorded. The relationship between qualitative data was determined by the χ2 test. Logistic regression analysis was used to determine the independent risk factors for hospital stay >50 days, 30-day mortality in hospital, candidemia types, and septic shock in candidemia patients. RESULTS The incidence of candidemia for 5 years was 4.5%. Candida parapsilosis was the most reported species with 65% (n=97). Linezolid and central venous catheters (CVC) were found to be independent risk factors for NAC. Carbapenems and cephalosporins were found in association to lower mortality. No antibiotics or characteristics were found to be independent risk factors for mortality. Some broad spectrum antibiotics and antibiotic combinations were found in relationship with hospital stay >50 days; however, none of them were found to be independent risk factors. Metisilin resistant staphylococcus aureus (MRSA) antibiotics, meropenem+linezolid piperacillin-tazobactam+fluoroquinolones and comorbidity were found in association with septic shock, although only piperacillin-tazobactam+fluoroquinolones and comorbidity were found to be independent risk factors for septic shock. CONCLUSIONS This study concluded that many antibiotics were safe for candidemia patients. However, clinicians should pay attention when prescribing linezolid or piperacillin-tazobactam and flouroquinolons concomitantly or sequentially for patients with candidemia risk factors.
Collapse
Affiliation(s)
- Mefküre Durmuş
- Clinical Pharmacy, İnönü University Faculty of Pharmacy, Malatya, Turkey
| | - Serkan Kalkan
- Anesthesiology and Reanimation, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Sena Güzel Karahan
- Clinical Pharmacy, İnönü University Faculty of Pharmacy, Malatya, Turkey
| | - Murat Biçakcioğlu
- Anesthesiology and Reanimation, İnönü University Faculty of Medicine, Malatya, Turkey
| | | | - Zeynep Ülkü Gün
- Clinical Pharmacy, İnönü University Faculty of Pharmacy, Malatya, Turkey
| | - Ayşe Belin Özer
- Anesthesiology and Reanimation, İnönü University Faculty of Medicine, Malatya, Turkey
| |
Collapse
|
2
|
Niculescu AG, Mük GR, Avram S, Vlad IM, Limban C, Nuta D, Grumezescu AM, Chifiriuc MC. Novel strategies based on natural products and synthetic derivatives to overcome resistance in Mycobacterium tuberculosis. Eur J Med Chem 2024; 269:116268. [PMID: 38460268 DOI: 10.1016/j.ejmech.2024.116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 03/11/2024]
Abstract
One of the biggest health challenges of today's world is the emergence of antimicrobial resistance (AMR), which renders conventional therapeutics insufficient and urgently demands the generation of novel antimicrobial strategies. Mycobacterium tuberculosis (M. tuberculosis), the pathogen causing tuberculosis (TB), is among the most successful bacteria producing drug-resistant infections. The versatility of M. tuberculosis allows it to evade traditional anti-TB agents through various acquired and intrinsic mechanisms, rendering TB among the leading causes of infectious disease-related mortality. In this context, researchers worldwide focused on establishing novel approaches to address drug resistance in M. tuberculosis, developing diverse alternative treatments with varying effectiveness and in different testing phases. Overviewing the current progress, this paper aims to briefly present the mechanisms involved in M. tuberculosis drug-resistance, further reviewing in more detail the under-development antibiotics, nanotechnological approaches, and natural therapeutic solutions that promise to overcome current treatment limitations.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest, University of Bucharest, 90 Panduri Road, Bucharest, Romania; Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061, Bucharest, Romania.
| | - Georgiana Ramona Mük
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, Bucharest, R-050095, Romania; St. Stephen's Pneumoftiziology Hospital, Șoseaua Ștefan cel Mare 11, Bucharest, 020122, Romania.
| | - Speranta Avram
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, Bucharest, R-050095, Romania.
| | - Ilinca Margareta Vlad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia, 020956, Bucharest, Romania.
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia, 020956, Bucharest, Romania.
| | - Diana Nuta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia, 020956, Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest, University of Bucharest, 90 Panduri Road, Bucharest, Romania; Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061, Bucharest, Romania.
| | - Mariana-Carmen Chifiriuc
- Research Institute of the University of Bucharest, University of Bucharest, 90 Panduri Road, Bucharest, Romania; Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, Bucharest, R-050095, Romania.
| |
Collapse
|
3
|
Prasher P, Sharma M. Hybridization of antimicrobial oxazolidinones with commercial drugs: A fight against the "superbugs". Drug Dev Res 2023; 84:1337-1345. [PMID: 37583273 DOI: 10.1002/ddr.22107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/16/2023] [Accepted: 08/05/2023] [Indexed: 08/17/2023]
Abstract
Antimicrobial resistance caused by the emergence of antibiotic-resistant microbes, termed as "superbugs," poses a grave healthcare concern in the contemporary era. Though this phenomenon is natural, an incessant use of antibiotics due to their unregulated over-the-counter availability, and a lack of compliance with the legislation seem to be major contributing factors. This phenomenon has further complicated the treatment of common infectious diseases thereby leading to prolonged illness, disability, and even death. In addition, a sizeable impact on the healthcare cost is met due to a prolonged stay at the medical facilities to receive an intensive care. Overall, the gains of "Millennium Development Goals" and the accomplishment of Sustainable Development Goals are at risk due to the emerging antimicrobial resistance. Since an early identification and development of novel antibiotic classes that evade antimicrobial resistance appears improbable, the strategy of hybridization of the existing antibiotics with efficacious pharmacophores and drug molecules with a different mechanism of antimicrobial action can be a silver lining for the management of superbugs. In this regard, we aim to provide a perspective for the applicability of the hybridization of oxazolidinone class of antibiotics with other drugs for evading antimicrobial resistance.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, India
| |
Collapse
|
4
|
Khetmalis YM, Sangeetha GP, Chandu A, Swati, Murugesan S, Sharma V, Kumar MM, Kondapalli VG. Design, synthesis and biological evaluation of novel oxindole analogs as antitubercular agents. Future Med Chem 2023; 15:1323-1342. [PMID: 37610851 DOI: 10.4155/fmc-2023-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Aim: To design, synthesize and evaluate oxindole derivatives for antitubercular activity. Methodology: We synthesized the derivatives, confirmed their structures by 1H/13C NMR and mass spectrometry, and evaluated them for antitubercular activity against Mycobacterium tuberculosis H37Rv strain using the microplate alamarBlue™ assay. Results: Among all the synthesized derivatives, OXN-1, -3 and -7 exhibited excellent antitubercular activity (minimum inhibitory concentration [MIC]: 0.78 μg/ml). Compounds with a MIC ≤1.56 were tested for cytotoxicity against human embryonic kidney cells and were found to be relatively nontoxic. Molecular docking analysis of OXN-1, -3 and -7 was performed to determine their binding patterns at the active site of DNA topoisomerase II (PDB-5BS8). In drug combination studies, OXN-1, 3 and 7 showed synergism with isoniazid. Conclusion: The obtained results reveal that oxindole derivatives exhibit potent antitubercular activity.
Collapse
Affiliation(s)
- Yogesh M Khetmalis
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500078, India
| | - Guruvelli Pv Sangeetha
- College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Ala Chandu
- Department of Pharmacy, Medicinal Chemistry Research Laboratory, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Swati
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Medicinal Chemistry Research Laboratory, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Muthyala Mk Kumar
- College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Venkata Gcs Kondapalli
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500078, India
| |
Collapse
|
5
|
Dimitrov S, Slavchev I, Simeonova R, Mileva M, Pencheva T, Philipov S, Georgieva A, Tsvetanova E, Teneva Y, Rimpova N, Dobrikov G, Valcheva V. Evaluation of Acute and Sub-Acute Toxicity, Oxidative Stress and Molecular Docking of Two Nitrofuranyl Amides as Promising Anti-Tuberculosis Agents. Biomolecules 2023; 13:1174. [PMID: 37627241 PMCID: PMC10452431 DOI: 10.3390/biom13081174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB) remains a widespread infectious disease and one of the top 10 causes of death worldwide. Nevertheless, despite significant advances in the development of new drugs against tuberculosis, many therapies and preventive measures do not lead to the expected favorable health results for various reasons. The aim of this study was to evaluate the acute and sub-acute toxicity and oxidative stress of two selected nitrofuranyl amides with high in vitro antimycobacterial activity. In addition, molecular docking studies were performed on both compounds to elucidate the possibilities for further development of new anti-tuberculosis candidates with improved efficacy, selectivity, and pharmacological parameters. Acute toxicity tests showed that no changes were observed in the skin, coat, eyes, mucous membranes, secretions, and vegetative activity in mice. The histological findings include features consistent with normal histological architecture without being associated with concomitant pathological conditions. The observed oxidative stress markers indicated that the studied compounds disturbed the oxidative balance in the mouse liver. Based on the molecular docking, compound DO-190 showed preferable binding energies compared to DO-209 in three out of four targets, while both compounds showed promising protein-ligand interactions. Thus, both studied compounds displayed promising activity with low toxicity and can be considered for further evaluation and/or lead optimization.
Collapse
Affiliation(s)
- Simeon Dimitrov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
| | - Ivaylo Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (G.D.)
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.S.); (Y.T.)
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
| | - Tania Pencheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Stanislav Philipov
- Department of Human Anatomy, Histology, General and Clinical Pathology and Forensic Medicine, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria;
| | - Almira Georgieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Yoanna Teneva
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.S.); (Y.T.)
| | - Nadezhda Rimpova
- Department of Paediatrics, University Children’s Hospital, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Georgi Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (G.D.)
| | - Violeta Valcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
| |
Collapse
|
6
|
Osmaniye D, Baltacı Bozkurt N, Levent S, Benli Yardımcı G, Sağlık BN, Ozkay Y, Kaplancıklı ZA. Synthesis, Antifungal Activities, Molecular Docking and Molecular Dynamic Studies of Novel Quinoxaline-Triazole Compounds. ACS OMEGA 2023; 8:24573-24585. [PMID: 37457491 PMCID: PMC10339406 DOI: 10.1021/acsomega.3c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Uncontrolled use of antifungal drugs affects the development of resistance to existing drugs. Azole antifungals constitute a large part of antifungal therapy. Therefore, there is a need for new azole antifungals. Within the scope of this study, 17 new triazole derivative compounds were synthesized. Structure determinations were clarified by spectroscopic analysis methods (1H-NMR, 13C-NMR, HRMS). In addition, structure matching was completed using two-dimensional NMR techniques, HSQC, HMBC and NOESY. The antifungal effects of the compounds were evaluated on Candida strains by means of in vitro method. Compound 5d showed activity against Candida glabrata with a MIC90 = 2 μg/mL. Compound 5d showed activity against Candida krusei with a MIC90 = 2 μg/mL. This activity value, which is higher than fluconazole, is promising. In addition, the biofilm inhibition percentages of the compounds were calculated. Molecular docking and molecular dynamics simulations performed with compound 5d are in harmony with activity studies.
Collapse
Affiliation(s)
- Derya Osmaniye
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Nurnehir Baltacı Bozkurt
- Department
of Pharmaceutical Microbiology, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey
| | - Serkan Levent
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Gamze Benli Yardımcı
- Department
of Pharmaceutical Microbiology, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey
| | - Begüm Nurpelin Sağlık
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Yusuf Ozkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
7
|
Dhameliya TM, Vekariya DD, Patel HY, Patel JT. Comprehensive coverage on anti-mycobacterial endeavour reported during 2022. Eur J Med Chem 2023; 255:115409. [PMID: 37120997 DOI: 10.1016/j.ejmech.2023.115409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
TB being one of the deadliest diseases and second most common infectious cause of deaths, poses the severe threat to global health. The extended duration of therapy owing to resistance and its upsurge in immune-compromised patients have been the driving force for the development of novel of anti-TB scaffolds. Recently, we have compiled the account of anti-mycobacterial scaffolds published during 2015-2020 and updated them in 2021. The present work involves the insights on the anti-mycobacterial scaffolds reported in 2022 with their mechanism of action, structure activity relationships, along with the key perceptions for the design of newer anti-TB agents for the broader interests of medicinal chemists.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India.
| | | | - Heta Y Patel
- L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Janvi T Patel
- L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| |
Collapse
|
8
|
Malik MS, Faazil S, Alsharif MA, Sajid Jamal QM, Al-Fahemi JH, Banerjee A, Chattopadhyay A, Pal SK, Kamal A, Ahmed SA. Antibacterial Properties and Computational Insights of Potent Novel Linezolid-Based Oxazolidinones. Pharmaceuticals (Basel) 2023; 16:516. [PMID: 37111273 PMCID: PMC10143092 DOI: 10.3390/ph16040516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The mounting evidence of bacterial resistance against commonly prescribed antibiotics warrants the development of new antibacterial drugs on an urgent basis. Linezolid, an oxazolidinone antibiotic, is a lead molecule in designing new oxazolidinones as antibacterial agents. In this study, we report the antibacterial potential of the novel oxazolidinone-sulphonamide/amide conjugates that were recently reported by our research group. The antibacterial assays showed that, from the series, oxazolidinones 2 and 3a exhibited excellent potency (MIC of 1.17 μg/mL) against B. subtilis and P. aeruginosa strains, along with good antibiofilm activity. Docking studies revealed higher binding affinities of oxazolidinones 2 and 3a compared to linezolid, which were further validated by molecular dynamics simulations. In addition to this, other computational studies, one-descriptor (log P) analysis, ADME-T and drug likeness studies demonstrated the potential of these novel linezolid-based oxazolidinones to be taken forward for further studies.
Collapse
Affiliation(s)
- M. Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.A.A.)
| | - Shaikh Faazil
- Department of Chemistry, Poona College of Arts, Science and Commerce, Pune 411001, India
- Department of Medicinal Chemistry and Pharmacology, CSIR—Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Meshari A. Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.A.A.)
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia;
| | - Jabir H. Al-Fahemi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.A.A.)
| | - Amrita Banerjee
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd., Kolkata 700032, India;
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Arpita Chattopadhyay
- Department of Basic Science and Humanities, Techno International New Town, Block—DG 1/1, Action Area 1, New Town, Rajarhat, Kolkata 700156, India;
| | - Samir Kumar Pal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata 700106, India;
| | - Ahmed Kamal
- Department of Medicinal Chemistry and Pharmacology, CSIR—Indian Institute of Chemical Technology, Hyderabad 500007, India
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad 500078, India
| | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.A.A.)
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
9
|
5-(4-Nitrophenyl)furan-2-carboxylic Acid. MOLBANK 2022. [DOI: 10.3390/m1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ever-evolving research in the field of antitubercular agents has led to the identification of several new potential drug classes. Among them, 5-phenyl-furan-2-carboxylic acids have emerged as innovative potential therapeutics, targeting iron acquisition in mycobacterial species. In our efforts to characterize the molecular interactions between these compounds and their protein target (MbtI from M. tuberculosis) by means of co-crystallization experiments, we unexpectedly obtained the structure of 5-(4-nitrophenyl)furan-2-carboxylic acid (1). Herein, we describe the preparation of the compound and its analysis by 1H NMR, 13C NMR, HRMS, and SC-XRD.
Collapse
|
10
|
Obaid RJ, Mughal EU, Naeem N, Al-Rooqi MM, Sadiq A, Jassas RS, Moussa Z, Ahmed SA. Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Obaid RJ, Naeem N, Mughal EU, Al-Rooqi MM, Sadiq A, Jassas RS, Moussa Z, Ahmed SA. Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase. RSC Adv 2022; 12:19764-19855. [PMID: 35919585 PMCID: PMC9275557 DOI: 10.1039/d2ra03081k] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 01/15/2023] Open
Abstract
Heterocycles are the key structures in organic chemistry owing to their immense applications in the biological, chemical, and pharmaceutical fields. Heterocyclic compounds perform various noteworthy functions in nature, medication, innovation etc. Most frequently, pure nitrogen heterocycles or various positional combinations of nitrogen, oxygen, and sulfur atoms in five or six-membered rings can be found. Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes is a popular strategy for the management of numerous mental diseases. In this context, cholinesterase inhibitors are utilized to relieve the symptoms of neurological illnesses like dementia and Alzheimer's disease (AD). The present review focuses on various heterocyclic scaffolds and their role in designing and developing new potential AChE and BChE inhibitors to treat AD. Moreover, a detailed structure-activity relationship (SAR) has been established for the future discovery of novel drugs for the treatment of AD. Most of the heterocyclic motifs have been used in the design of new potent cholinesterase inhibitors. In this regard, this review is an endeavor to summarize the biological and chemical studies over the past decade (2010-2022) describing the pursuit of new N, O and S containing heterocycles which can offer a rich supply of promising AChE and BChE inhibitory activities.
Collapse
Affiliation(s)
- Rami J Obaid
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | | | - Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain Abu Dhabi United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|