1
|
Sanchitra J, Debnath A, Singh AK, Jha AK, Singh RK. Discovery of novel HBV core protein inhibitors by high throughput virtual screening. Sci Rep 2025; 15:13054. [PMID: 40240438 PMCID: PMC12003855 DOI: 10.1038/s41598-025-97242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatitis B Virus (HBV) constitutes a chronic viral infection with limited therapeutic options and a significant global health challenge. The virus lifecycle intricacy significantly relies on the core protein crucial for virus structure stability and interaction with host cells thus contributing to the infection's persistence and severity. This study employs advanced techniques for the identification of novel core protein inhibitors through the screening of two chemical databases ZINC and BIMP utilizing computational methods such as structure-based virtual screening, drug-likeness, ADME, toxicity, consensus molecular docking, density functional theory, and 100 ns molecular dynamics simulation. The compound ZINC00674395 possesses high affinity and specificity towards core protein demonstrating drug-like properties, favorable ADME profiles, non-toxicity, and favorable electronic configuration with high stability at the core protein active site thus highlighting its potential as a therapeutic agent. These findings offer new insights into core protein interaction and pave the way for developing effective HBV therapeutics.
Collapse
Affiliation(s)
- Jahanvi Sanchitra
- Noida Institute of Engineering and Technology [Pharmacy Institute], 19 Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh, India
| | - Abhijit Debnath
- Noida Institute of Engineering and Technology [Pharmacy Institute], 19 Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh, India.
| | - Anil Kumar Singh
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology, Galgotias University, Greater Noida, India
| | - Rajesh Kumar Singh
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Lyu W, Qin H, Li Q, Lu D, Shi C, Zhao K, Zhang S, Yu R, Zhang H, Zhou X, Xia S, Zhang L, Wang X, Chi X, Liu Z. Novel mechanistic insights - A brand new Era for anti-HBV drugs. Eur J Med Chem 2024; 279:116854. [PMID: 39276582 DOI: 10.1016/j.ejmech.2024.116854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Hepatitis B Virus (HBV) remains a critical global health issue, with substantial morbidity and mortality. Current therapies, including interferons and nucleoside analogs, often fail to achieve complete cure or functional eradication. This review explores recent advances in anti-HBV agents, focusing on their innovative mechanisms of action. HBV entry inhibitors target the sodium taurocholate cotransporting polypeptide (NTCP) receptor, impeding viral entry, while nucleus translocation inhibitors disrupt key viral life cycle steps, preventing replication. Capsid assembly modulators inhibit covalently closed circular DNA (cccDNA) formation, aiming to eradicate the persistent viral reservoir. Transcription inhibitors targeting cccDNA and integrated DNA offer significant potential to suppress HBV replication. Immunomodulatory agents are highlighted for their ability to enhance host immune responses, facil-itating better control and possible eradication of HBV. These novel approaches represent significant advancements in HBV therapy, providing new strategies to overcome current treatment limitations. The development of cccDNA reducers is particularly critical, as they directly target the persistent viral reservoir, offering a promising pathway towards achieving a functional cure or complete viral eradication. Continued research in this area is essential to advance the effectiveness of anti-HBV therapies.
Collapse
Affiliation(s)
- Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Haoming Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Dehua Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Kangchen Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Shengran Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Ruohan Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Huiying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaonan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Sitian Xia
- Beijing National Day School, Beijing, 100089, PR China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaoqian Wang
- Beijing Tide Pharmaceutical Co., Ltd, No.8 East Rongjing Street, Beijing Economic-Technological Development Area (BDA), Beijing, 100176, PR China.
| | - Xiaowei Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
3
|
Liang M, Liu L, Liu J, Yang Z, Wang M, Xie Y, Cai Y, Xue P, Chen Y, Zhan P, Jia H. Design, synthesis and anti-HBV activity study of novel HBV capsid assembly modulators. Bioorg Med Chem Lett 2024; 112:129913. [PMID: 39111727 DOI: 10.1016/j.bmcl.2024.129913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/18/2024]
Abstract
Capsid assembly modulators (CAMs) have the potential to cure chronic hepatitis B, as demonstrated in clinical trials. Lead compounds NVR3-778 and 5a were found to exist in normal and flipped conformations through induced fit docking. Therefore, we designed and synthesized series I and II compounds by interchanging the amide and sulfonamide bonds of 5a to modify both the tolerance region and solvent-opening region. Among them, compound 4a (EC50 = 0.24 ± 0.10 μM, CC50 > 100 μM) exhibited potent anti-HBV activity with low toxicity, surpassing the lead compounds NVR3-778 (EC50 = 0.29 ± 0.03 μM, CC50 = 20.78 ± 2.29 μM) and 5a (EC50 = 0.50 ± 0.07 μM, CC50 = 48.16 ± 9.15 μM) in HepAD38 cells. Additionally, compared with the lead compound, 4a displayed a stronger inhibitory effect on HBV capsid protein assembly. Molecular dynamics (MD) simulations confirmed that the normal conformation of 4a had relatively stable conformation at different frames of binding modes. Furthermore, 4a showed better metabolic stability in human plasma than positive control drugs. Therefore, compound 4a could be further structurally modified as a potent lead compound.
Collapse
Affiliation(s)
- Minghui Liang
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Linyue Liu
- School of Pharmacy, Shandong Second Medical University, Weifang, China; Binzhou Hospital of Traditional Chinese Medicine, Binzhou, China
| | - Jun Liu
- School of Nursing, Shandong Second Medical University, Weifang, China
| | - Zechun Yang
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Mei Wang
- School of Pharmacy, Shandong Second Medical University, Weifang, China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, China
| | - Yong Xie
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd, Dongguan 523871, China
| | - Yuqing Cai
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Peng Xue
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Yunfu Chen
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd, Dongguan 523871, China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, China.
| | - Haiyong Jia
- School of Pharmacy, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
4
|
Du K, Wang X, Bai Y, Zhang X, Xue J, Li S, Xie Y, Sang Z, Tang Y, Wang X. Development of benzimidazole-based compounds as novel capsid assembly modulators for the treatment of HBV infection. Eur J Med Chem 2024; 271:116402. [PMID: 38636128 DOI: 10.1016/j.ejmech.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a promising therapeutic approach for the treatment of HBV infection. In this study, the hit compound CDI (IC50 = 2.46 ± 0.33 μM) was identified by screening of an in-house compound library. And then novel potent benzimidazole derivatives were designed and synthesized as core assembly modulators, and their antiviral effects were evaluated in vitro and in vivo biological experiments. The results indicated that compound 26f displayed the most optimized modulator of HBV capsid assembly (IC50 = 0.51 ± 0.20 μM, EC50 = 2.24 ± 0.43 μM, CC50 = 84.29 μM) and high selectivity index. Moreover, treatment with compound 26f for 14 days significantly decreased serum levels of HBV DNA levels in the Hydrodynamic-Injection (HDI) mouse model. Therefore, compound 26f could be considered as a promising candidate drug for further development of novel HBV CAMs with the desired potency and safety.
Collapse
Affiliation(s)
- Kaixin Du
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xianyang Wang
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuxin Bai
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xue Zhang
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Jie Xue
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Shanshan Li
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhipei Sang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Yu Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Xin Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
6
|
Nayak S, Gowda J, Abbas SA, Kim H, Han SB. Recent Advances in the Development of Sulfamoyl-Based Hepatitis B Virus Nucleocapsid Assembly Modulators. Viruses 2023; 15:2367. [PMID: 38140607 PMCID: PMC10747759 DOI: 10.3390/v15122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) is the primary contributor to severe liver ailments, encompassing conditions such as cirrhosis and hepatocellular carcinoma. Globally, 257 million people are affected by HBV annually and 887,000 deaths are attributed to it, representing a substantial health burden. Regrettably, none of the existing therapies for chronic hepatitis B (CHB) have achieved satisfactory clinical cure rates. This issue stems from the existence of covalently closed circular DNA (cccDNA), which is difficult to eliminate from the nucleus of infected hepatocytes. HBV genetic material is composed of partially double-stranded DNA that forms complexes with viral polymerase inside an icosahedral capsid composed of a dimeric core protein. The HBV core protein, consisting of 183 to 185 amino acids, plays integral roles in multiple essential functions within the HBV replication process. In this review, we describe the effects of sulfamoyl-based carboxamide capsid assembly modulators (CAMs) on capsid assembly, which can suppress HBV replication and disrupt the production of new cccDNA. We present research on classical, first-generation sulfamoyl benzocarboxamide CAMs, elucidating their structural composition and antiviral efficacy. Additionally, we explore newly identified sulfamoyl-based CAMs, including sulfamoyl bicyclic carboxamides, sulfamoyl aromatic heterocyclic carboxamides, sulfamoyl aliphatic heterocyclic carboxamides, cyclic sulfonamides, and non-carboxamide sulfomoyl-based CAMs. We believe that certain molecules derived from sulfamoyl groups have the potential to be developed into essential components of a well-suited combination therapy, ultimately yielding superior clinical efficacy outcomes in the future.
Collapse
Affiliation(s)
- Sandesha Nayak
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jayaraj Gowda
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Syed Azeem Abbas
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyejin Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soo Bong Han
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|