1
|
Saleh NS, El-Sayed NNE, Saleh OA, Allam HA, Mohamed NM, Abbas SES, Said MF. 6,7-Dimethoxy-2-methyl-4-substituted quinazolines: Design, synthesis, EGFR inhibitory activity, in vitro cytotoxicity, and in silico studies. Eur J Med Chem 2025; 290:117502. [PMID: 40120497 DOI: 10.1016/j.ejmech.2025.117502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Six series of 2,4,6,7-tetrasubstituted quinazolines 4a-c, 6a-c, 8a-c, 10a-d, 13a-d along with quinazoline-tetrahydropyrimidine hybrids 15a-c were designed and synthesized based on keeping the essential key binding pattern of some EGFR inhibitors to appraise their EGFR inhibition and anticancer activity. Twelve compounds out of twenty displayed a significant EGFR inhibition in a subnanomolar level (IC50 = 0.143-0.946 nM) compared to afatinib (IC50 = 0.102 nM). The most potent derivatives 4a, 6c, 8b, 13a and 15b (IC50 = 0.143-0.313 nM) were further screened for their anticancer activity against lung (A549) and colon (HCT116) cancer cell lines, in addition to, normal fibroblast cells (WI-38). It was found that, compounds 6c and 13a show a nearly equipotent to superior cytotoxicity towards (A549) (IC50 = 0.020 and 0.006 μM; respectively) and (IC50 = 0.020 and 0.038 μM; respectively) against HCT116 in comparison to afatinib (IC50 = 0.025 and 0.030 μM; respectively). Also, compounds 6c and 13a caused a cell cycle arrest at S phase and induced apoptosis in A549 and HCT116; respectively. Moreover, in silico studies clarified the binding pattern of the potent compounds in EGFR enzyme active site and confirmed their ability to gratify the structural features meted for binding and rationalized their selectivity. Furthermore, the most active candidates possess promising predicted pharmacokinetic properties.
Collapse
Affiliation(s)
- Nermin S Saleh
- Egyptian Drug Authority (EDA), 51 Wezaret El-Zeraa St., Giza, 35521, Egypt
| | - Nahed N E El-Sayed
- Egyptian Drug Authority (EDA), 51 Wezaret El-Zeraa St., Giza, 35521, Egypt
| | - Ola A Saleh
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical Industries Research Institute, National Research Centre, Egypt
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, P.O. Box 11562, Kasr El-Aini Street, Cairo, Egypt
| | - Nada M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo, Egypt
| | - Safinaz E-S Abbas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, P.O. Box 11562, Kasr El-Aini Street, Cairo, Egypt
| | - Mona F Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, P.O. Box 11562, Kasr El-Aini Street, Cairo, Egypt.
| |
Collapse
|
2
|
Abd El-Haleem A, Kassem MAEK, Elnagar MR, Abbas SES, El Kerdawy AM, Farouk AKBAW. Furan- and Furopyrimidine-Based Derivatives: Synthesis, VEGFR-2 Inhibition, and In Vitro Cytotoxicity. ACS Med Chem Lett 2024; 15:2150-2157. [PMID: 39691520 PMCID: PMC11647721 DOI: 10.1021/acsmedchemlett.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
New derivatives 4a-d, 6, 7a-d, 8a-c, 9, 11a, 11b, 12a-f, 13a-c, and 14 were synthesized and evaluated for their VEGFR-2 inhibition. Compounds 4c, 7b, and 7c showed remarkable enzyme inhibition (IC50 = 57.1, 42.5, and 52.5 nM, respectively) relative to sorafenib (IC50 = 41.1 nM) and were assessed for their cytotoxicity versus HepG2, MCF-7, A549, HT-29, and PC3 cancer cell lines in addition to WI-38. Compound 7b displayed nearly equipotent cytotoxicity against A549 and HT-29 (IC50 = 6.66 and 8.51 μM) compared to sorafenib (IC50 = 6.60 and 8.78 μM). Cell cycle analysis and apoptotic assay of 7b in the HT-29 cell line showed cellular growth arrest at the G2/M phase in addition to the induction of apoptosis. Western blot analysis of compound 7b revealed the deactivation of VEGFR-2. Moreover, a wound healing assay of 7b showed inhibition of wound closure. Additionally, molecular modeling studies of compounds 4c, 7b, and 7c were carried out.
Collapse
Affiliation(s)
- Akram
H. Abd El-Haleem
- Pharmaceutical
Chemistry Department, College of Pharmaceutical Sciences and Drug
Manufacturing, Misr University for Science
and Technology, Sixth
of October City, Giza 77, Egypt
| | - Manar Abd El-karim Kassem
- Pharmaceutical
Chemistry Department, College of Pharmaceutical Sciences and Drug
Manufacturing, Misr University for Science
and Technology, Sixth
of October City, Giza 77, Egypt
| | - Mohamed R. Elnagar
- Pharmacology
and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt
- Department
of Pharmacology, College of Pharmacy, The
Islamic University, Najaf 54001, Iraq
| | - Safinaz E-S. Abbas
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Ahmed M. El Kerdawy
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
- School
of Health and Care Sciences, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire LN6 7DL, United Kingdom
| | - Ahmed K. B. A. W. Farouk
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
3
|
Farag AB, Othman AH, El-Ashrey MK, Abbas SES, Elwaie TA. New 6-nitro-4-substituted quinazoline derivatives targeting epidermal growth factor receptor: design, synthesis and in vitro anticancer studies. Future Med Chem 2024; 16:2025-2041. [PMID: 39230501 PMCID: PMC11485908 DOI: 10.1080/17568919.2024.2389772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: Twenty compounds of 6-nitro-4-substituted quinazolines were synthesized.Materials & methods: The new derivatives were evaluated for their epidermal growth factor receptor (EGFR) inhibitory activity. The most potent derivatives were assessed for their cytotoxicity against colon cancer and lung cancer cells, in addition to normal fibroblast cells.Results & discussion: compound 6c showed a superior to nearly equal cytotoxicity in comparison to gefitinib, it also revealed a good safety profile. Compound 6c caused a cell cycle arrest at G2/M phase in addition to induction of apoptosis. A molecular docking study was conducted on the most active compounds to gain insights of their binding mode in the active site of EGFR enzyme besides ADME prediction of their physicochemical properties and drug likeness profile.
Collapse
Affiliation(s)
- Ayman B Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Aya H Othman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mohamed K El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, 46612, Egypt
| | - Safinaz E-S. Abbas
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
| | - Tamer A Elwaie
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
- Department of Chemistry and Biochemistry, Center for Translational Medicine, University of Montana, Missoula, MT59812, USA
| |
Collapse
|
4
|
Ibrahim BT, Allam HA, El-Dydamony NM, Fouad MA, Mohammed ER. Exploring new quinazolin-4(3H)-one derivatives as CDK2 inhibitors: Design, synthesis, and anticancer evaluation. Drug Dev Res 2024; 85:e22163. [PMID: 38419305 DOI: 10.1002/ddr.22163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
In the present work, five series of new 2,3-disubstituted quinazolin-4(3H)-ones 4a-c, 5a-d, 6a-g, 7a,b, and 9a-c were designed, synthesized, and screened in vitro for their cytotoxic activity against 60 cancer cell lines by the National Cancer Institute, USA. Five candidates 4c, 6a, 6b, 6d, and 6g revealed promising cytotoxicity with significant percentage growth inhibition in the range of 81.98%-96.45% against the central nervous system (CNS) (SNB-19), melanoma (MDA-MB-435), and non-small cell lung cancer (HOP-62) cell lines. The in vitro cytotoxic half maximal inhibitory concentration (IC50 ) values for the most active compounds 4c, 6a, 6b, 6d, and 6g against the most sensitive cell lines were evaluated. Additionally, screening their cyclin-dependent kinase 2 (CDK2) inhibitory activity was performed. Ortho-chloro-benzylideneamino derivative 6b emerged as the most potent compound with IC50 = 0.67 µM compared to Roscovitine (IC50 = 0.64 µM). The most active candidates arrested the cell cycle at G1, S phases, or both, leading to cell death and inducing apoptosis against CNS (SNB-19), melanoma (MDA-MB-435), and non-small cell lung cancer (HOP-62) cell lines. The molecular docking study verified the resulting outcomes for the most active candidates in the CDK2-binding pocket. Finally, physicochemical, and pharmacokinetic properties deduced that compounds 4c, 6a, 6b, 6d, and 6g displayed significant drug-likeness properties. According to the obtained results, the newly targeted compounds are regarded as promising scaffolds for the continued development of novel CDK2 inhibitors.
Collapse
Affiliation(s)
- Basant T Ibrahim
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | | | - Nehad M El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Marwa A Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmaceutical Chemistry Department, New Giza University, Cairo, Egypt
| | - Eman R Mohammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Moradi M, Mousavi A, Emamgholipour Z, Giovannini J, Moghimi S, Peytam F, Honarmand A, Bach S, Foroumadi A. Quinazoline-based VEGFR-2 inhibitors as potential anti-angiogenic agents: A contemporary perspective of SAR and molecular docking studies. Eur J Med Chem 2023; 259:115626. [PMID: 37453330 DOI: 10.1016/j.ejmech.2023.115626] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Angiogenesis, the formation of new blood vessels from the existing vasculature, is pivotal in the migration, growth, and differentiation of endothelial cells in normal physiological conditions. In various types of tumour microenvironments, dysregulated angiogenesis plays a crucial role in supplying oxygen and nutrients to cancerous cells, leading to tumour size growth. VEGFR-2 tyrosine kinase has been extensively studied as a critical regulator of angiogenesis; thus, inhibition of VEGFR-2 has been widely used for cancer treatments in recent years. Quinazoline nucleus is a privileged and versatile scaffold with a broad range of pharmacological activity, especially in the field of tyrosine kinase inhibitors with more than twenty small molecule inhibitors approved by the US Food and Drug Administration in the last two decades. As of now, the U.S. FDA has approved eleven small chemical inhibitors of VEGFR-2 for various types of malignancies, with a prime example being vandetanib, a quinazoline derivative, which is a multi targeted kinase inhibitor used for the treatment of late-stage medullary thyroid cancer. Despite of prosperous discovery and development of VEGFR-2 down regulator drugs, there still exists limitations in clinical efficacy, adverse effects, a high rate of clinical discontinuation and drug resistance. Therefore, there is an urgent need for the design and synthesis of more selective and effective inhibitors to tackle these challenges. Through the gathering of this review, we have strived to broaden the extent of our view over the entire scope of quinazoline-based VEGFR-2 inhibitors. Herein, we give an overview of the importance and advancement status of reported structures, highlighting the SAR, biological evaluations and their binding modes.
Collapse
Affiliation(s)
- Mahfam Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mousavi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Johanna Giovannini
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Honarmand
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680, Roscoff, France; Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
6
|
Ghorab MM, Soliman AM, El-Adl K, Hanafy NS. New quinazoline sulfonamide derivatives as potential anticancer agents: Identifying a promising hit with dual EGFR/VEGFR-2 inhibitory and radiosensitizing activity. Bioorg Chem 2023; 140:106791. [PMID: 37611529 DOI: 10.1016/j.bioorg.2023.106791] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Herein, we report the synthesis of a series of new quinazoline sulfonamide conjugates 2-16 and their evaluation as potential anticancer agents via dual targeting of EGFRT790M and VEGFR-2. The newly synthesized compounds were designed based on the structure requirements of the target receptors and were confirmed using spectral data. The compounds were evaluated for their cytotoxicity against four cancer cell lines (HepG2, MCF-7, HCT116 and A549) using MTT assay. The most active compounds were further evaluated for their inhibitory activity against EGFRT790M and VEGFR-2. Compound 15 showed the most significant cytotoxic activity with IC50 = 0.0977 µM against MCF-7 and the most potent inhibitory activity against both EGFR and VEGFR with IC50 = 0.0728 and 0.0523 µM, respectively. Compound 15 was able to induce apoptosis in MCF-7 cells and cell cycle arrest at the G2/M phase. The relative safety profile of 15 was assessed using HEK-293 normal cell line and an ADMET profile was carried out. Radiosensitizing evaluation of 15 proved its significant ability to sensitize the cancer cell to the effect of radiation after being subjected to a single dose of 8 Gy gamma irradiation. Molecular docking studies revealed that 15 could bind to the ATP-binding site of EGF and VEGF receptors, inhibiting their activity.
Collapse
Affiliation(s)
- Mostafa M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Aiten M Soliman
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Noura S Hanafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
7
|
Șandor A, Ionuț I, Marc G, Oniga I, Eniu D, Oniga O. Structure-Activity Relationship Studies Based on Quinazoline Derivatives as EGFR Kinase Inhibitors (2017-Present). Pharmaceuticals (Basel) 2023; 16:534. [PMID: 37111291 PMCID: PMC10141396 DOI: 10.3390/ph16040534] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a critical role in the tumorigenesis of various forms of cancer. Targeting the mutant forms of EGFR has been identified as an attractive therapeutic approach and led to the approval of three generations of inhibitors. The quinazoline core has emerged as a favorable scaffold for the development of novel EGFR inhibitors due to increased affinity for the active site of EGFR kinase. Currently, there are five first-generation (gefitinib, erlotinib, lapatinib, vandetanib, and icotinib) and two second-generation (afatinib and dacomitinib) quinazoline-based EGFR inhibitors approved for the treatment of various types of cancers. The aim of this review is to outline the structural modulations favorable for the inhibitory activity toward both common mutant (del19 and L858R) and resistance-conferring mutant (T790M and C797S) EGFR forms, and provide an overview of the newly synthesized quinazoline derivatives as potentially competitive, covalent or allosteric inhibitors of EGFR.
Collapse
Affiliation(s)
- Alexandru Șandor
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania;
| | - Dan Eniu
- Department of Surgical Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 34-36 Republicii Street, 40015 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| |
Collapse
|
8
|
Amin NH, El-Saadi MT, Abdel-Fattah MM, Mohammed AA, Said EG. Development of certain aminoquinazoline scaffolds as potential multitarget anticancer agents with apoptotic and anti-proliferative effects: Design, synthesis and biological evaluation. Bioorg Chem 2023; 135:106496. [PMID: 36989735 DOI: 10.1016/j.bioorg.2023.106496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Newly designed 4 - aminoquinazoline derivatives (5a-f, 6a, b, 7, 8, 9, 10a-c, 11a, b, 12a, b and 13a, b) have been synthesized and evaluated for their potential multitarget anticancer activities, apoptotic and anti-proliferative effects. Thereupon, in vitro cytotoxic activities of all the synthesized compounds were screened against NCI 60 human cancer cell lines (nine subpanels) at NCI, USA. Successfully, 2-morpholino-N-(quinazolin-4-yl) acetohydrazide 5e was granted an NSC code, owing to its significant potency and broad spectrum of activity against various cancer cell lines; leukemia K-562, non-small cell lung cancer NCI-H522 cells, colon cancer SW-620, melanoma LOX IMVI, MALME-3M, renal cancer RXF 393, ACHN and breast cancer MDA-MB231/ATCC (GI% = 99.6, 161, 126.03, 90.22, 174.47, 139.7, 191 and 97, respectively). Compound 5e showed the best inhibitory activity (GI50 = 1.3 µM) against melanoma LOX IMVI, when tested at five doses against NCI 60 cell lines. Furthermore, compound 5e showed comparable EGFR and CDK2 inhibitory activity results (IC50 = 0.093 ± 0.006 μM and 0.143 ± 0.008 μM, respectively) to those of lapatinib and ribociclib (IC50 = 0.03 ± 0.002 μM and 0.067 ± 0.004 μM, respectively). Western blotting analysis of compound 5e against melanoma LOX IMVI marked out significant reduced EGFR and CDK2 protein expression percentages, up to 32.97% and 34.09%, respectively, if compared to lapatinib (31.18%) and ribociclib (29.66%). Moreover, compound 5e caused clear cell cycle arrests at S phase of renal UO-31 cells and at G1 phase of both breast cancer MCF7 and ovarian cancer IGROV1, associated with remarkable increase of DNA content of the controls. In accordance, it demonstrated promising anti- proliferative and apoptotic activities, showing a significant increase in total apoptotic percentages of renal cancer UO-31, breast cancer MCF7 and ovarian IGROV1 cancer cell lines, if compared to the control untreated cells (from 1.79% to 46.72%, 2.19% to 39.02% and 1.66 to 42.51%, respectively). Molecular modelling and dynamic simulation study results supported the main objectives of the present work.
Collapse
|
9
|
Parshuram Satpute D, Shirwadkar U, Kumar Tharalla A, Dattatray Shinde S, Nikhil Vaidya G, Joshi S, Patel Vatsa P, Jain A, Singh AA, Garg R, Mandoli A, Kumar D. Discovery of fluorinated 2‑Styryl 4(3H)-quinazolinone as potential therapeutic hit for oral cancer. Bioorg Med Chem 2023; 81:117193. [PMID: 36796126 DOI: 10.1016/j.bmc.2023.117193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial neoplasm, affects the mouth and throat, and accounts for 90 % of oral cancers. Considering the associated morbidity with neck dissections and the limitation of existing therapeutic agents, the discovery and development of new anticancer drugs/drug candidates for oral cancer treatment are of the utmost need. In this context, reported here is the identification of fluorinated 2‑styryl 4(3H)-quinazolinone as a promising hit for oral cancer. Preliminary studies indicate that the compound blocks the transition of G1 to S phase, thereby leading to arrest in the G1/S phase. Subsequent RNA-seq analysis revealed that the compound induces the activation of molecular pathways involved in apoptosis (such as TNF signalling through NF-κB, p53 pathways) and cell differentiation and suppresses the pathways of cellular growth and development (such as KRAS signaling) in CAL-27 cancer cells. It is noted that identified hit complies with a favorable range of ADME properties as per the computational analysis.
Collapse
Affiliation(s)
- Dinesh Parshuram Satpute
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmadabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Urjita Shirwadkar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmadabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Anil Kumar Tharalla
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmadabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Sangita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmadabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Gargi Nikhil Vaidya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmadabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Swarali Joshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmadabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Priyanka Patel Vatsa
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmadabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmadabad, Palaj, Gandhinagar-382355, Gujarat, India; Department of Bio-engineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Abhishek A Singh
- Department of Molecular Biology, Radboud University, Nijmegen, Netherlands
| | - Rachana Garg
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmadabad, Palaj, Gandhinagar-382355, Gujarat, India; Division of Neurosurgery, Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmadabad, Palaj, Gandhinagar-382355, Gujarat, India.
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmadabad, Palaj, Gandhinagar-382355, Gujarat, India.
| |
Collapse
|
10
|
Ghorab WM, El-Sebaey SA, Ghorab MM. Design, synthesis and Molecular modeling study of certain EGFRinhibitors with a quinazolinone scaffold as anti-hepatocellular carcinoma and Radio-sensitizers. Bioorg Chem 2023; 131:106310. [PMID: 36528923 DOI: 10.1016/j.bioorg.2022.106310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
A set of novel N-substituted-2-((4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)thio)acetamide 3-16 were designed and synthesized from 2-mercapto-3-phenylquinazolinone 2. The targeted compounds were screened for their cytotoxic activity against the hepatocellular carcinoma cell line HepG-2. Compounds 8, 9, 10, and 11 with IC50 values of 1.11, 4.28, 5.70, and 4.69 µM, respectively, showed 5.7- to 28-fold higher activities than the positive control doxorubicin (IC50 32.02 µM). Furthermore, compounds 8 and 9 were tested for EGFR inhibitory activity and demonstrated IC50 values of 73.23 and 58.26 µM, respectively, when compared to erlotinib's IC50 value of 9.79 µM. The most potent compounds, 8 and 9, were subjected to a single dose of 8 Gy of γ-radiation, and their cytotoxic efficacy was found to increase after irradiation, demonstrating the synergistic effect of γ-irradiation. Molecular docking was adopted for the most active compounds to confirm their mode of action.
Collapse
Affiliation(s)
- Walid M Ghorab
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11765, Egypt
| | - Samiha A El-Sebaey
- Department of Pharmaceutical organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Youssef Abbas Street, Nasr City, Cairo, Egypt
| | - Mostafa M Ghorab
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11765, Egypt.
| |
Collapse
|