1
|
Guo ZK, Wu XF, Tan MY, Liang WS, Yang YM, Chu ZZ, Xu R, Li KQ, Cheng YY, Zhang YZ, Zhang YH, Hai Y, Cui SX, Qu XJ. Activation of sphingosine-1-phosphate receptor 2 (S1PR2) upregulates dihydropyrimidine dehydrogenase (DPD) expression in colon cancer cells. J Adv Res 2025:S2090-1232(25)00025-6. [PMID: 39814224 DOI: 10.1016/j.jare.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
INTRODUCTION Dihydropyrimidine dehydrogenase (DPD) is a major determinant of cancer 5-fluorouracyl (5-FU) resistance via its direct degradation. However, the mechanisms of tumoral DPD upregulation have not been fully understood. OBJECTIVES This study aimed to explore the role of S1PR2 in the regulation of tumoral DPD expression, identifying S1PR2 as the potential target for reversing 5-FU resistance. METHODS Western blot was used to analyze S1PR2 expression in cultured cancer cells and human colorectal cancer (CRC) tissues. 5-FU resistance was estimated in mouse xenografts of HT-29sh-S1PR2 and SW480S1PR2 cells. HPLC-UV was used to measure 5-FU levels in the xenografts. Chromatin immunoprecipitation (ChIP) was used to analyze the binding of YAP1/TEAD1 to the TWIST1 promoter. A luciferase reporter was used to analyze the binding of TWIST1 to the DPYD promoter. RESULTS S1PR2 was highly expressed in cancer cell lines and human CRC tissues. Activation of S1PR2 upregulated DPD expression, leading to 5-FU resistance. Mechanistically, activated S1PR2 upregulated nuclear TWIST1 by activating the Hippo/TEAD1-TWIST1 pathway. Nuclear TWIST1 interacted with the JMJD3-RNA Pol II complex, resulting in the interaction of TWIST1 with the DPYD promoter, thus increasing H3K27me3-enriched DPYD transcription. These findings were confirmed in xenografted human colon cancer cells in nude mice. Transfection with an S1PR2 expression vector led to the upregulation of DPD, blunting the sensitivity of SW480S1PR2 cells to 5-FU by 45.14 %. Conversely, knockdown of S1PR2 resulted in a decrease of DPD, thus increasing the sensitivity of HT-29sh-S1PR2 cells to 5-FU by 62.12 %. Molecular analysis of these xenografts confirmed the role of S1PR2 in upregulating DPD expression by activating the Hippo/TEAD1-JMJD3 pathway. CONCLUSIONS Activation of S1PR2 upregulated DPD expression by activating the Hippo/TWIST1-JMJD3 pathway. S1PR2 is therefore a potential target for novel inhibitors that may reverse 5-FU resistance in cancer therapy.
Collapse
Affiliation(s)
- Zhi-Kun Guo
- Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Xin-Feng Wu
- Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ming-Yong Tan
- Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Wei-Shi Liang
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China; Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yu-Meng Yang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Zhen-Zhen Chu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Lymphoma Department, Peking University Cancer Hospital & Institute, Beijing, China
| | - Rui Xu
- Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ke-Qin Li
- Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yu-Yao Cheng
- Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Ying-Zhi Zhang
- Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yu-Hang Zhang
- Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yong Hai
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China; Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Shu-Xiang Cui
- Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China.
| | - Xian-Jun Qu
- Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Hao W, Luo D, Jiang Y, Wan S, Li X. An overview of sphingosine-1-phosphate receptor 2: Structure, biological function, and small-molecule modulators. Med Res Rev 2024; 44:2331-2362. [PMID: 38665010 DOI: 10.1002/med.22044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, there has been a notable increase in research on sphingosine-1-phosphate receptor 2 (S1PR2), which is a type of G-protein-coupled receptor. Upon activation by S1P or other ligands, S1PR2 initiates downstream signaling pathways such as phosphoinositide 3-kinase (PI3K), Mitogen-activated protein kinase (MAPK), Rho/Rho-associated coiled-coil containing kinases (ROCK), and others, contributing to the diverse biological functions of S1PR2 and playing a pivotal role in various physiological processes and disease progressions, such as multiple sclerosis, fibrosis, inflammation, and tumors. Due to the extensive biological functions of S1PR2, many S1PR2 modulators, including agonists and antagonists, have been developed and discovered by pharmaceutical companies (e.g., Novartis and Galapagos NV) and academic medicinal chemists for disease diagnosis and treatment. However, few reviews have been published that comprehensively overview the functions and regulators of S1PR2. Herein, we provide an in-depth review of the advances in the function of S1PR2 and its modulators. We first summarize the structure and biological function of S1PR2 and its pathological role in human diseases. We then focus on the discovery approach, design strategy, development process, and biomedical application of S1PR2 modulators. Additionally, we outline the major challenges and future directions in this field. Our comprehensive review will aid in the discovery and development of more effective and clinically applicable S1PR2 modulators.
Collapse
Affiliation(s)
- Wanting Hao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Dongdong Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shengbiao Wan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Marine Biomedical Research, Institute of Qingdao, Qingdao, China
| |
Collapse
|
3
|
Lin T, Peng M, Zhu Q, Pan X. S1PR2 participates in intestinal injury in severe acute pancreatitis by regulating macrophage pyroptosis. Front Immunol 2024; 15:1405622. [PMID: 38827741 PMCID: PMC11140028 DOI: 10.3389/fimmu.2024.1405622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Background Severe acute pancreatitis (SAP) is an inflammatory disorder affecting the gastrointestinal system. Intestinal injury plays an important role in the treatment of severe acute pancreatitis. In this study, we mainly investigated the role of S1PR2 in regulating macrophage pyroptosis in the intestinal injury of severe acute pancreatitis. Methods The SAP model was constructed using cerulein and lipopolysaccharide, and the expression of S1PR2 was inhibited by JTE-013 to detect the degree of pancreatitis and intestinal tissue damage in mice. Meanwhile, the level of pyroptosis-related protein was detected by western blot, the level of related mRNA was detected by PCR, and the level of serum inflammatory factors was detected by ELISA. In vitro experiments, LPS+ATP was used to construct the pyroptosis model of THP-1. After knockdown and overexpression of S1PR2, the pyroptosis proteins level was detected by western blot, the related mRNA level was detected by PCR, and the level of cell supernatant inflammatory factors were detected by ELISA. A rescue experiment was used to verify the sufficient necessity of the RhoA/ROCK pathway in S1PR2-induced pyroptosis. Meanwhile, THP-1 and FHC were co-cultured to verify that cytokines released by THP-1 after damage could regulate FHC damage. Results Our results demonstrated that JTE-013 effectively attenuated intestinal injury and inflammation in mice with SAP. Furthermore, we observed a significant reduction in the expression of pyroptosis-related proteins within the intestinal tissue of SAP mice upon treatment with JTE-013. We confirmed the involvement of S1PR2 in THP-1 cell pyroptosis in vitro. Specifically, activation of S1PR2 triggered pyroptosis in THP-1 cells through the RhoA/ROCK signaling pathway. Moreover, it was observed that inflammatory factors released during THP-1 cell pyroptosis exerted an impact on cohesin expression in FHC cells. Conclusion The involvement of S1PR2 in SAP-induced intestinal mucosal injury may be attributed to its regulation of macrophage pyroptosis.
Collapse
Affiliation(s)
| | | | | | - Xinting Pan
- Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Espinoza KS, Snider AJ. Therapeutic Potential for Sphingolipids in Inflammatory Bowel Disease and Colorectal Cancer. Cancers (Basel) 2024; 16:789. [PMID: 38398179 PMCID: PMC10887199 DOI: 10.3390/cancers16040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammatory bowel disease (IBD), characterized by chronic inflammation in the intestinal tract, increases the risk for the development of colorectal cancer (CRC). Sphingolipids, which have been implicated in IBD and CRC, are a class of bioactive lipids that regulate cell signaling, differentiation, apoptosis, inflammation, and survival. The balance between ceramide (Cer), the central sphingolipid involved in apoptosis and differentiation, and sphingosine-1-phosphate (S1P), a potent signaling molecule involved in proliferation and inflammation, is vital for the maintenance of normal cellular function. Altered sphingolipid metabolism has been implicated in IBD and CRC, with many studies highlighting the importance of S1P in inflammatory signaling and pro-survival pathways. A myriad of sphingolipid analogues, inhibitors, and modulators have been developed to target the sphingolipid metabolic pathway. In this review, the efficacy and therapeutic potential for modulation of sphingolipid metabolism in IBD and CRC will be discussed.
Collapse
Affiliation(s)
- Keila S. Espinoza
- Department of Physiology, University of Arizona, Tucson, AZ 85721, USA;
| | - Ashley J. Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|