1
|
Wu M, Mao X, Wu Y, Wang W, Jin Y, Yu H, Hu L, Shen Z, Shen L, Zeng S, Xu T, Chen Y, Zhang B, Lin N, Che J, Huang W, Dong X. Discovery of a New and Selective HPK1 PROTAC for Enhancing Tumor Immunotherapy through Eliminating GLK Degradation. J Med Chem 2025. [PMID: 40375722 DOI: 10.1021/acs.jmedchem.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
HPK1 is an attractive therapeutic target for tumor immunotherapy. Nevertheless, the formidable challenge selectivity over GLK and limited antitumor efficacy of HPK1 inhibitors and PROTACs impeded their developments. Here, we demonstrated that blocking GLK alone or simultaneous blocking both GLK and HPK1 could reduce immune activation through siRNA, which underscores the necessity for designing selective HPK1 degraders. Given the differences in spatial tolerance between HPK1 and GLK, we successfully obtained a degrader, designated E3, which exhibits a DC50 of 3.16 nM for HPK1 and demonstrates at least a 1000-fold selectivity over GLK. Notably, E3 displayed a superior capacity for promoting immune activation. Oral administration of E3 combined with PDL-1 antibody showed significant antitumor activity. In conclusion, the availability of E3 provides a structural foundation for the development of selective HPK1 PROTACs.
Collapse
Affiliation(s)
- Mingfei Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinfei Mao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiquan Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wentao Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuyuan Jin
- Center of Safety Evaluation and Research, School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Hengyuan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liuzhi Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zheyuan Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liteng Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenxin Zeng
- Center of Safety Evaluation and Research, School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Tengfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310024, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310024, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wenhai Huang
- Center of Safety Evaluation and Research, School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Li Y, Wu Y, Gao S, Sun T, Jiang C. PROTAC delivery in tumor immunotherapy: Where are we and where are we going? J Control Release 2025; 378:116-144. [PMID: 39637991 DOI: 10.1016/j.jconrel.2024.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Immunotherapy has emerged as a pioneering therapeutic modality, particularly within the realm of oncology, where Chimeric Antigen Receptor T-cell (CAR-T) therapy has manifested significant efficacy in the treatment of hematological malignancies. Nonetheless, the extension of immunotherapy to solid tumors poses a considerable challenge. This challenge is largely attributed to the intrinsic "cold" characteristics of certain tumors, which are defined by scant T-cell infiltration and a diminished immune response. Additionally, the impediment is exacerbated by the elusive nature of numerous targets within the tumor microenvironment, notably those deemed "undruggable" by small molecule inhibitors. This scenario underscores an acute necessity for the inception of innovative therapeutic strategies aimed at countering the resistance mechanisms underlying immune evasion in cold tumors, thereby amplifying the efficacy of cancer immunotherapy. Among the promising strategies is the deployment of Proteolysis Targeting Chimeras (PROTACs), which facilitate the targeted degradation of proteins. PROTACs present unique advantages and have become indispensable in oncology. However, they concurrently grapple with challenges such as solubility issues, permeability barriers, and the classical Hook effect. Notably, advanced delivery systems have been instrumental in surmounting these obstacles. This review commences with an analysis of the factors contributing to the suboptimal responses to immunotherapy in cold tumors. Subsequently, it delivers a thorough synthesis of immunotherapeutic concepts tailored for these tumors, clarifying the integral role of PROTACs in their management and delineating the trajectory of PROTAC technology from bench-side investigation to clinical utilization, facilitated by drug delivery systems. Ultimately, the review extrapolates the prospective future of this approach, aspiring to present novel insights that could catalyze progress in immunotherapy for the treatment of cold tumors.
Collapse
Affiliation(s)
- Yiyang Li
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yike Wu
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Sihan Gao
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; Quzhou Fudan Institute, Quzhou 324003, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
3
|
Omar EA, R R, Das PK, Pal R, Purawarga Matada GS, Maji L. Next-generation cancer therapeutics: PROTACs and the role of heterocyclic warheads in targeting resistance. Eur J Med Chem 2025; 281:117034. [PMID: 39527893 DOI: 10.1016/j.ejmech.2024.117034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
One of the major obstacles to sustained cancer treatment effectiveness is the development of medication resistance. Current therapies that block proteins associated with cancer progression often lose their efficacy due to acquired drug resistance, which is frequently driven by mutated or overexpressed protein targets. Proteolysis-targeting chimeras (PROTACs) offer an alternative therapeutic strategy by hijacking the cell's ubiquitin-proteasome system to degrade disease-causing proteins, presenting several potential advantages. Over the past few years, PROTACs have been developed to target various cancer-related proteins, offering new treatment options for patients with previously untreatable malignancies and serving as a foundation for next-generation therapeutics. One of the notable benefits of PROTACs is their ability to overcome certain resistance mechanisms that limit the effectiveness of conventional targeted therapies, as shown in several recent studies. Additionally, research teams are investigating how PROTACs can selectively degrade mutant proteins responsible for resistance to first-line cancer therapies. In the pursuit of novel and effective treatments, this review highlights recent advancements in the development of PROTACs aimed at overcoming cancer resistance. When it comes to drug design, heterocyclic scaffolds often serve as a foundational framework, offering opportunities for modification and optimization of novel molecules. Researchers are similarly exploring various heterocyclic derivatives as "warheads" in the design of PROTACs has been instrumental in pushing the boundaries of targeted protein degradation. As warheads, these heterocyclic compounds are responsible for recognizing and binding to the target protein, which ultimately leads to its degradation via the ubiquitin-proteasome system. This study aims to provide a comprehensive overview of cutting-edge strategies in PROTAC design, offering detailed insights into key concepts and methodologies for creating effective PROTACs. Special emphasis is placed on structure-based rational design, the development of novel warheads, and their critical in influencing biological activity.
Collapse
Affiliation(s)
- Ebna Azizal Omar
- Centre for Excellence in Drug Analysis, Department of Pharmaceutical Analysis, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rajesh R
- Centre for Excellence in Drug Analysis, Department of Pharmaceutical Analysis, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Lalmohan Maji
- Tarifa Memorial Institute of Pharmacy, Department of Pharmaceutical Chemistry, Murshidabad, 742166, West Bengal, India
| |
Collapse
|
4
|
Duan Y, Guo Z, Zhong W, Chen J, Xu S, Liu J, Xu J. An updated review of small-molecule HPK1 kinase inhibitors (2016-present). Future Med Chem 2024; 16:2431-2450. [PMID: 39582317 PMCID: PMC11622775 DOI: 10.1080/17568919.2024.2420630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a serine-threonine kinase specific to hematopoiesis and a member of the MAP4K family of Ste20-related protein kinases. Targeting HPK1 to ameliorate T cell exhaustion and enhance T cell functions is a promising strategy for clinical immunotherapies. Numerous studies have reported the progress in developing effective HPK1 inhibitors and elucidating their mechanisms of action. However, most inhibitors affect multiple signaling pathways, resulting in unintended side effects that limit their clinical development and application. Herein, we reviewed HPK1-related signaling pathways, clinical candidates and recent advances in small-molecule inhibitors targeting HPK1. Additionally, we present our perspectives on current challenges and potential future research field, hoping to provide inspiration for the development of novel HPK1 inhibitors.
Collapse
Affiliation(s)
- Yiping Duan
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Zhichao Guo
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Wenyi Zhong
- Department of Organic Chemistry, China Pharmaceutical University, School of Science, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jichao Chen
- Nanjing University Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, Peoples Republic China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jie Liu
- Department of Organic Chemistry, China Pharmaceutical University, School of Science, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| |
Collapse
|
5
|
Zhang Z, Guo L, Zhao M, Pan H, Dong Z, Wang L, Yang X, Zhang Z, Wu M, Chang Y, Yang Y, Sun L, Liu S, Zhu R, Zheng H, Dai X, Zhang X, Jiang C, Zhu Z, Zhang Y, Liu D. Discovery of Novel PROTAC-Based HPK1 Degraders with High Potency and Selectivity for Cancer Immunotherapy. J Med Chem 2024; 67:18682-18698. [PMID: 39446986 DOI: 10.1021/acs.jmedchem.4c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1, MAP4K1), a serine/threonine (SER/THR) kinase, has been identified as a negative immune regulator of T-cell receptor signaling. Deprivation of the HPK1 function suppresses tumor growth, providing an attractive strategy for cancer immunotherapy. Herein, we present a novel PROTAC-based HPK1 degrader compound DD205-291 with high selectivity and potency. DD205-291 showed a dose-dependent inhibition of SLP-76 phosphorylation and an induction of IL-2 and IFN-γ. Compared with other inhibitors, DD205-291 exhibited good efficacy and a favorable safety profile in the MC38 model. Specifically, oral administration of DD205-291 at 0.5 mg/kg in combination with anti-PD1 resulted in significant suppression with a TGI value of 91.0%. Furthermore, DD205-291 exhibited a low risk of cardiotoxicity and a wide safety window. This research effort demonstrates that DD205-291 is a promising preclinical candidate (PCC) for potential mono- and comboimmunotherapy of cancer.
Collapse
Affiliation(s)
- Zhimin Zhang
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Liubin Guo
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Mengting Zhao
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Hao Pan
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Zhao Dong
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Ling Wang
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Xi Yang
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Zhiping Zhang
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Mengqiang Wu
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Yujie Chang
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Yacheng Yang
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Linan Sun
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Sirui Liu
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Rongyao Zhu
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Haowen Zheng
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Xinyu Dai
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Xiaohua Zhang
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Chunhua Jiang
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Zhuangzhi Zhu
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Yuchen Zhang
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| | - Dongzhou Liu
- Global Drug R&D Center, Huadong Medicine, Hangzhou 310011, P. R. China
| |
Collapse
|
6
|
Xu J, Li Y, Chen X, Yang J, Xia H, Huang W, Zeng S. Opportunities and challenges for targeting HPK1 in cancer immunotherapy. Bioorg Chem 2024; 153:107866. [PMID: 39369461 DOI: 10.1016/j.bioorg.2024.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Hematopoietic Progenitor Kinase 1 (HPK1, also known as MAP4K1) is a hematopoiesis-specific serine/threonine kinase that belongs to the MAP4K family of Ste20-related protein kinases. HPK1 has been identified as a negative regulator of T-cell receptor signaling. Recent studies have indicated that the inhibition or knockout of HPK1 kinase function can effectively alleviate T cell exhaustion, enhance T cell functionality, and improve the therapeutic efficacy of tumor immunotherapy. In recent years, small molecule chemical drugs targeting HPK1 have made significant progress and have become a hot topic in the research and development of tumor immunotherapy drugs. However, the advancement of small molecule drugs that target HPK1 is hindered by various challenges, including the limited selectivity, insufficient immune stimulation, and the ambiguity surrounding role of non-kinase scaffold functions of HPK1 in tumor immune responses. This review briefly describes the biological structure of HPK1 and its related signaling pathways in tumor immunity, systematically discusses the latest research progress in small molecule chemical drugs targeting HPK1. Finally, we summarize and prospect the opportunities and challenges in the drug development of small molecule chemical drugs targeting HPK1 in tumor immunity.
Collapse
Affiliation(s)
- Jiamei Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yingzhou Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Xinyi Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Junyi Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Heye Xia
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Wenhai Huang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| | - Shenxin Zeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
7
|
Wu M, Wu Y, Jin Y, Mao X, Zeng S, Yu H, Zhang J, Jin Y, Wu Y, Xu T, Chen Y, Wang Y, Yao X, Che J, Huang W, Dong X. Discovery of an Exceptionally Orally Bioavailable and Potent HPK1 PROTAC with Enhancement of Antitumor Efficacy of Anti-PD-L1 Therapy. J Med Chem 2024; 67:13852-13878. [PMID: 39084610 DOI: 10.1021/acs.jmedchem.4c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
HPK1, a well-known negative regulator of T cell receptors, can cause T cell dysfunction when abnormally activated. In this study, a PROTAC C3 was designed and synthesized by optimizing the physicochemical properties of the warhead, linker, and CRBN ligand. C3 demonstrated significant HPK1 degradation with a DC50 of 21.26 nM, excellent oral absorption with a Cmax of 10,899.92 ng/mL, and a bioavailability (F %) of 81.7%. C3 also showed degradation selectivity and potent immune activation effects. Proteomic and WB analyses revealed that immune-activating effect of C3 is attributed to the inhibition of SLP76 and NF-κB signaling pathways, as well as the enhancement of MAPK signaling pathway transduction. In vivo efficacy study demonstrated that oral administration of C3 in combination with anti-PDL1 antibody significantly inhibited tumor growth (tumor growth inhibition = 65.58%). These findings suggest that C3, a novel HPK1 PROTAC, holds promise as a therapeutic agent for tumor immunotherapy.
Collapse
Affiliation(s)
- Mingfei Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yiquan Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyuan Jin
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, P. R. China
| | - Xinfei Mao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shenxin Zeng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, P. R. China
| | - Hengyuan Yu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingyu Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuheng Jin
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yizhe Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tengfei Xu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yong Chen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau 999078, P. R. China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, P. R. China
| | - Xiaowu Dong
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, P. R. China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| |
Collapse
|
8
|
Chen H, Guan X, He C, Lu T, Lin X, Liao X. Current strategies for targeting HPK1 in cancer and the barriers to preclinical progress. Expert Opin Ther Targets 2024; 28:237-250. [PMID: 38650383 DOI: 10.1080/14728222.2024.2344697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Hematopoietic progenitor kinase 1 (HPK1), a 97-kDa serine/threonine Ste20-related protein kinase, functions as an intracellular negative regulator, primarily in hematopoietic lineage cells, where it regulates T cells, B cells, dendritic cells, and other immune cells. Loss of HPK1 kinase activity results in exacerbated cytokine secretion, enhanced T cell signaling, improved viral clearance, and thus increased restraint of tumor growth. These findings highlight HPK1 as a promising target for immuno-oncology treatments, culminating in the advancement of candidate compounds targeting HPK1 to clinical trials by several biotech enterprises. AREAS COVERED Through searching PubMed, Espacenet-patent search, and clinicaltrials.gov, this review provides a comprehensive analysis of HPK1, encompassing its structure and roles in various downstream signaling pathways, the consequences of constitutive activation of HPK1, and potential therapeutic strategies to treat HPK1-driven malignancies. Moreover, the review outlines the patents issued for small molecule inhibitors and clinical investigations of HPK1. EXPERT OPINION To enhance the success of tumor immunotherapy in clinical trials, it is important to develop protein degraders, allosteric inhibitors, and antibody-drug conjugates based on the crystal structure of HPK1, and to explore combination therapy approaches. Although several challenges remain, the development of HPK1 inhibitors display promising in preclinical and clinical studies.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Xiangna Guan
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Chi He
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Tingting Lu
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xingyu Lin
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xuebin Liao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| |
Collapse
|