1
|
MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics (Basel) 2022; 12:diagnostics12071610. [PMID: 35885514 PMCID: PMC9322918 DOI: 10.3390/diagnostics12071610] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the dominant emerging factor in cancer-related mortality around the globe. Therapeutic interventions for lung cancer are not up to par, mainly due to reoccurrence/relapse, chemoresistance, and late diagnosis. People are currently interested in miRNAs, which are small double-stranded (20–24 ribonucleotides) structures that regulate molecular targets (tumor suppressors, oncogenes) involved in tumorigeneses such as cell proliferation, apoptosis, metastasis, and angiogenesis via post-transcriptional regulation of mRNA. Many studies suggest the emerging role of miRNAs in lung cancer diagnostics, prognostics, and therapeutics. Therefore, it is necessary to intensely explore the miRNOME expression of lung tumors and the development of anti-cancer strategies. The current review focuses on the therapeutic, diagnostic, and prognostic potential of numerous miRNAs in lung cancer.
Collapse
|
2
|
Zhang P, Li L, Wang B, Ran X, Yang S, Luo Y, Li Y, Wang Z, Liu Y, Zhu B. miR-489-3p promotes malignant progression of non-small cell lung cancer through the inactivation of Wnt/β-catenin signaling pathway via regulating USP48. Respir Res 2022; 23:93. [PMID: 35413838 PMCID: PMC9006470 DOI: 10.1186/s12931-022-01988-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/21/2021] [Indexed: 12/25/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer globally, with average age of cancer patients becoming younger gradually. It is of significance to gain a comprehensive understanding of molecular mechanism underlying NSCLC. Methods Quantitative polymerase chain reaction (qPCR) and western blot were applied to measure RNA and protein levels separately. Functional assays and western blot were performed to determine the effects of miR-489-3p and USP48 on cell growth, migration and epithelial-mesenchymal transition (EMT) in NSCLC. TOP/FOP flash luciferase reporter assay was carried out to detect the activity of Wnt pathway. Besides, qPCR, RNA pulldown and luciferase reporter assays were conducted to probe into the target gene of miR-489-3p. Immunoprecipitation-western blot (IP-western blot) analysis was implemented to assess the effect of USP48 on the ubiquitination of β-catenin. Results miR-489-3p hampers NSCLC cell proliferation, migration and EMT in vitro and NSCLC tumorigenesis and metastasis in vivo. Additionally, miR-489-3p inactivates Wnt/β-catenin signaling pathway and regulates USP48 to inhibit the ubiquitination of β-catenin. Moreover, USP48 propels the development of NSCLC cells. Conclusions The current study demonstrated that miR-489-3p promotes the malignant progression of NSCLC cells via targeting USP48, which might offer a new perspective into NSCLC treatment. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01988-w.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Li Li
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Bing Wang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Xu Ran
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Shengrong Yang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Yujie Luo
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Yunhe Li
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Zhenghong Wang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Yi Liu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Bing Zhu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
3
|
Zhong S, Golpon H, Zardo P, Borlak J. miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res 2021; 230:164-196. [PMID: 33253979 DOI: 10.1016/j.trsl.2020.11.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide and miRNAs play a key role in LC development. To better diagnose LC and to predict drug treatment responses we evaluated 228 articles encompassing 16,697 patients and 12,582 healthy controls. Based on the criteria of ≥3 independent studies and a sensitivity and specificity of >0.8 we found blood-borne miR-20a, miR-10b, miR-150, and miR-223 to be excellent diagnostic biomarkers for non-small cell LC whereas miR-205 is specific for squamous cell carcinoma. The systematic review also revealed 38 commonly regulated miRNAs in tumor tissue and the circulation, thus enabling the prediction of histological subtypes of LC. Moreover, theranostic biomarker candidates with proven responsiveness to checkpoint inhibitor treatments were identified, notably miR-34a, miR-93, miR-106b, miR-181a, miR-193a-3p, and miR-375. Conversely, miR-103a-3p, miR-152, miR-152-3p, miR-15b, miR-16, miR-194, miR-34b, and miR-506 influence programmed cell death-ligand 1 and programmed cell death-1 receptor expression, therefore providing a rationale for the development of molecularly targeted therapies. Furthermore, miR-21, miR-25, miR-27b, miR-19b, miR-125b, miR-146a, and miR-210 predicted response to platinum-based treatments. We also highlight controversial reports on specific miRNAs. In conclusion, we report diagnostic miRNA biomarkers for in-depth clinical evaluation. Furthermore, in an effort to avoid unnecessary toxicity we propose predictive biomarkers. The biomarker candidates support personalized treatment decisions of LC patients and await their confirmation in randomized clinical trials.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Heiko Golpon
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Patrick Zardo
- Clinic for Cardiothoracic and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Jiang ZB, Ma BQ, Feng Z, Liu SG, Gao P, Yan HT. miR-365 inhibits the progression of gallbladder carcinoma and predicts the prognosis of Gallbladder carcinoma patients. Cell Cycle 2021; 20:308-319. [PMID: 33459111 DOI: 10.1080/15384101.2021.1874694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gallbladder carcinoma (GBC) is one of the most common fatal biliary tract tumors in the world. Its 3-year survival rate is 30% and the recurrence rate remains very high. miR-365 was downregulated in numerous tumors and worked as tumor suppressor gene. However, the role of miR-365 in GBC was unclear. In this study, our results found that the expression of miR-365 in GBC tissues was reduced rather than that in non-cancerous tissues. miR-365 overexpression inhibited the proliferation, metastasis and expansion of GBC CSCs. Mechanically, bioinformatic and luciferase reporter analysis identified Ras-related C3 botulinum toxin substrate 1 (RAC1) as a direct target of miR-365. Overexpression of miR-365 in GBC cells reduced the RAC1 mRNA and protein expression. The special RAC1 inhibitor EHop-106 abolished the discrepancy of growth, metastasis and self-renewal ability between miR-365-overexpression GBC cells and their control cells, which further demonstrated that RAC1 was involved in miR-365-disrupted GBC cells growth, metastasis and self-renewal. More importantly, reduced expression of miR-365 was a predictor of poor prognosis of GBC patients. In conclusion, miR-365 inhibited GBC cell growth, metastasis and self-renewal capacity by directly targeting RAC1, and may therefore prove to be a novel prognosis biomarker for GBC patients.
Collapse
Affiliation(s)
- Ze-Bin Jiang
- Department of General Surgery, Gansu Provincial Hospital , Gansu, China
| | - Bing-Qiang Ma
- Department of General Surgery, Gansu Provincial Hospital , Gansu, China
| | - Zongfeng Feng
- Department of General Surgery, Cao County People's Hospital , Heze, Shandong Province, China
| | - Shao-Guang Liu
- Department of Emergency Surgery, Gansu Provincial Hospital , Gansu, China
| | - Peng Gao
- Department of General Surgery, Gansu Provincial Hospital , Gansu, China
| | - Hui-Ting Yan
- Department of Nursing Department, Gansu Provincial Hospital , Gansu, China
| |
Collapse
|
5
|
Hao D, Wang X, Wang X, Thomsen B, Yang Y, Lan X, Huang Y, Chen H. MicroRNA bta-miR-365-3p inhibits proliferation but promotes differentiation of primary bovine myoblasts by targeting the activin A receptor type I. J Anim Sci Biotechnol 2021; 12:16. [PMID: 33431058 PMCID: PMC7802253 DOI: 10.1186/s40104-020-00528-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022] Open
Abstract
Background MicroRNAs act as post-transcriptional regulators that repress translation or degrade mRNA transcripts. Each microRNA has many mRNA targets and each mRNA may be targeted by several microRNAs. Skeletal muscles express a plethora of microRNA genes that regulate muscle development and function by controlling the expression of protein-coding target genes. To expand our understanding of the role of microRNA, specifically bta-miR-365-3p, in muscle biology, we investigated its functions in regulating primary bovine myoblast proliferation and differentiation. Results Firstly, we found that bta-miR-365-3p was predominantly expressed in skeletal muscle and heart tissue in Chinese Qinchuan beef cattle. Quantitative PCR and western blotting results showed that overexpression of bta-miR-365-3p significantly reduced the expression levels of cyclin D1 (CCND1), cyclin dependent kinase 2 (CDK2) and proliferating cell nuclear antigen (PCNA) but stimulated the expression levels of muscle differentiation markers, i.e., MYOD1, MYOG at both mRNA and protein level. Moreover, downregulation of bta-miR-365-3p increased the expression of CCND1, CDK2 and PCNA but decreased the expression of MYOD1 and MYOG at both mRNA and protein levels. Furthermore, flow cytometry, EdU proliferation assays and immunostaining results showed that increased levels of bta-miR-365-3p suppressed cell proliferation but promoted myotube formation, whereas decreased levels of bta-miR-365-3p resulted in the opposite consequences. Finally, we identified that activin A receptor type I (ACVR1) could be a direct target of bta-miR-365-3p. It was demonstrated that bta-miR-365-3p can bind to the 3’UTR of ACVR1 gene to regulate its expression based on dual luciferase gene reporter assays. Consistently, knock-down of ACVR1 was associated with decreased expressions of CDK2, CCND1 and PCNA but increased expression of MYOG and MYOD1 both at mRNA and protein level. Conclusion Collectively, these data suggested that bta-miR-365-3p represses proliferation but promotes differentiation of bovine myoblasts through several biological mechanisms involving downregulation of ACVR1. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-020-00528-0.
Collapse
Affiliation(s)
- Dan Hao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China.,Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Xiaogang Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China
| | - Xiao Wang
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Building 324, 2800, Kongens Lyngby, Denmark
| | - Bo Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Yu Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Polymorphisms in Pepsinogen C and miRNA Genes Associate with High Serum Pepsinogen II in Gastric Cancer Patients. Microorganisms 2021; 9:microorganisms9010126. [PMID: 33430456 PMCID: PMC7827830 DOI: 10.3390/microorganisms9010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/03/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Pepsinogen (PG) II (PGII) is a serological marker used to estimate the risk of gastric cancer but how PGII expression is regulated is largely unknown. It has been suggested that PGII expression, from the PGC (Progastricsin) gene, is regulated by microRNAs (miRNA), but how PGII levels vary with Helicobacter pylori (H. pylori) infection and miRNAs genotype remains unclear. Methods: Serum levels of PGI and PGII were determined in 80 patients with gastric cancer and persons at risk for gastric cancer (74 first-degree relatives of patients, 62 patients with autoimmune chronic atrophic gastritis, and 2 patients with dysplasia), with and without H. pylori infection. As control from the general population, 52 blood donors were added to the analyses. Associations between PGII levels and genetic variants in PGC and miRNA genes in these groups were explored based on H. pylori seropositivity and the risk for gastric cancer. The two-dimensional difference in gel electrophoresis (2D-DIGE) and the NanoString analysis of messenger RNA (mRNAs) from gastric cancer tissue were used to determine the pathways associated with increased PGII levels. Results: PGII levels were significantly higher in patients with gastric cancer, and in those with H. pylori infection, than in other patients or controls. A PGI/PGII ratio ≤ 3 was found better than PGI < 25 ng/mL to identify patients with gastric cancer (15.0% vs. 8.8%). For two genetic variants, namely rs8111742 in miR-Let-7e and rs121224 in miR-365b, there were significant differences in PGII levels between genotype groups among patients with gastric cancer (p = 0.02 and p = 0.01, respectively), but not among other study subjects. Moreover, a strict relation between rs9471643 C-allele with H. pylori infection and gastric cancer was underlined. Fold change in gene expression of mRNA isolated from gastric cancer tissue correlated well with polymorphism, H. pylori infection, increased PGII level, and pathway for bacteria cell entry into the host. Conclusions: Serum PGII levels depend in part on an interaction between H. pylori and host miRNA genotypes, which may interfere with the cut-off of PGI/PGII ratio used to identify persons at risk of gastric cancer. Results reported new findings regarding the relation among H. pylori, PGII-related host polymorphism, and genes involved in this interaction in the gastric cancer setting.
Collapse
|
7
|
Cancel M, Castellier C, Debiais-Delpech C, Charles T, Rozet F, Rioux-Leclercq N, Mathieu R, Beltjens F, Cormier L, Bruyère F, Fromont G. Specificities of small cell neuroendocrine prostate cancer: Adverse prognostic value of TTF1 expression. Urol Oncol 2020; 39:74.e17-74.e23. [PMID: 32739231 DOI: 10.1016/j.urolonc.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To determine whether small cell neuroendocrine prostate cancers (NEPCa) emerging after anti-androgen treatments are different from the rarest cases diagnosed de novo, and to identify effective predictive markers. MATERIAL AND METHODS The expression of neuroendocrine markers, androgen receptor (AR) and androgen-regulated genes, as well as markers of aggressiveness, were analyzed by immunohistochemistry on a tissue microarray containing samples of 30 sNEPCa, either pure or admixed with conventional PCa, and including 14 cases diagnosed de novo and 16 cases subsequent to prior androgen deprivation. RESULTS Chromogranin A is a better marker of NE differentiation than synaptophysin in post-treatment NEPCa, with 94% and 44% of positive tumors, respectively, while both markers are equally expressed in de novo cases. Despite the acquisition of a NE phenotype, more than half of NEPCa expressed AR and the androgen-regulated gene NKX3.1, more frequently in cases admixed with conventional PCa. TTF1 staining, present in half of NEPCa, was associated with loss of androgen-regulated genes and with markers of aggressiveness, including increased proliferation, Zeb1 expression and PTEN loss. In multivariate analysis, only TTF1 expression was significantly associated with shorter overall survival. CONCLUSION These results suggest the persistence of androgen signaling in a number of NEPCa cases, and the interest of TTF1 staining as a predictive biomarker.
Collapse
Affiliation(s)
- Mathilde Cancel
- Inserm UMR1069 "Nutrition, Croissance et Cancer" Université de Tours, CHRU Bretonneau, Tours, France; Department of Oncology, Tours, France
| | | | | | | | - François Rozet
- Institut Mutualiste Montsouris, Department of Urology, Paris, France
| | | | | | | | - Luc Cormier
- Centre Georges Francois Leclerc, CHU Dijon, Department of Urology, Dijon, France
| | | | - Gaëlle Fromont
- Inserm UMR1069 "Nutrition, Croissance et Cancer" Université de Tours, CHRU Bretonneau, Tours, France; Department of Pathology, Tours, France.
| |
Collapse
|
8
|
Bottani M, Banfi G, Lombardi G. Circulating miRNAs as Diagnostic and Prognostic Biomarkers in Common Solid Tumors: Focus on Lung, Breast, Prostate Cancers, and Osteosarcoma. J Clin Med 2019; 8:E1661. [PMID: 31614612 PMCID: PMC6833074 DOI: 10.3390/jcm8101661] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022] Open
Abstract
An early cancer diagnosis is essential to treat and manage patients, but it is difficult to achieve this goal due to the still too low specificity and sensitivity of classical methods (imaging, actual biomarkers), together with the high invasiveness of tissue biopsies. The discovery of novel, reliable, and easily collectable cancer markers is a topic of interest, with human biofluids, especially blood, as important sources of minimal invasive biomarkers such as circulating microRNAs (miRNAs), the most promising. MiRNAs are small non-coding RNAs and known epigenetic modulators of gene expression, with specific roles in cancer development/progression, which are next to be implemented in the clinical routine as biomarkers for early diagnosis and the efficient monitoring of tumor progression and treatment response. Unfortunately, several issues regarding their validation process are still to be resolved. In this review, updated findings specifically focused on the clinical relevance of circulating miRNAs as prognostic and diagnostic biomarkers for the most prevalent cancer types (breast, lung, and prostate cancers in adults, and osteosarcoma in children) are described. In addition, deep analysis of pre-analytical, analytical, and post-analytical issues still affecting the circulation of miRNAs' validation process and routine implementation is included.
Collapse
Affiliation(s)
- Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Vita-Salute San Raffaele University, 20132 Milano, Italy.
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Dept. of Physiology and Pharmacology, Gdańsk University of Physical Education and Sport, Gdańsk, ul. Kazimierza Górskiego 1, 80-336 Pomorskie, Poland.
| |
Collapse
|
9
|
Bellavia D, Salamanna F, Raimondi L, De Luca A, Carina V, Costa V, Alessandro R, Fini M, Giavaresi G. Deregulated miRNAs in osteoporosis: effects in bone metastasis. Cell Mol Life Sci 2019; 76:3723-3744. [PMID: 31147752 PMCID: PMC11105262 DOI: 10.1007/s00018-019-03162-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022]
Abstract
Starting from their role exerted on osteoblast and osteoclast differentiation and activity pathways, microRNAs (miRNAs) have been recently identified as regulators of different processes in bone homeostasis. For this purpose, in a recent review, we highlighted, as deregulated miRNAs could be involved in different bone diseases such as osteoporosis. In addition, recent studies supported the concept that osteoporosis-induced bone alterations might offer a receptive site for cancer cells to form bone metastases, However, to date, no data on specific-shared miRNAs between osteoporosis and bone metastases have been considered and described to clarify the evidence of this link. The main goal of this review is to underline as deregulated miRNAs in osteoporosis may have specific roles in the development of bone metastases. The review showed that several circulating osteoporotic miRNAs could facilitate tumor progression and bone-metastasis formation in several tumor types, i.e., breast cancer, prostate cancer, non-small-cell lung cancer, esophageal squamous cell carcinoma, and multiple myeloma. In detail, serum up-regulation of pro-osteoporotic miRNAs, as well as serum down-regulation of anti-osteoporotic miRNAs are common features of all these tumors and are able to promote bone metastasis. These results are of key importance and could help researcher and clinicians to establish new therapeutic strategies connected with deregulation of circulating miRNAs and able to interfere with pathogenic processes of osteoporosis, tumor progressions, and bone-metastasis formation.
Collapse
Affiliation(s)
| | - F Salamanna
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - L Raimondi
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - A De Luca
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V Carina
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V Costa
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - R Alessandro
- Section of Biology and Genetics, Department of BioMedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90133, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - M Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - G Giavaresi
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
10
|
Li H, Jiang M, Cui M, Feng G, Dong J, Li Y, Xiao H, Fan S. MiR-365 enhances the radiosensitivity of non-small cell lung cancer cells through targeting CDC25A. Biochem Biophys Res Commun 2019; 512:392-398. [PMID: 30902389 DOI: 10.1016/j.bbrc.2019.03.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
Abstract
Radioresistance is a major challenge in lung cancer radiotherapy (RT), and consequently, new radiosensitizers are urgently needed. MicroRNAs (miRNAs) have been demonstrated to participate in many important cellular processes including radiosensitization. MiR-365 is dysregulated in non-small cell lung cancer (NSCLC) and is able to restrain the development of NSCLC. However, the relationship between miR-365 and radiosensitivities of NSCLC cells remains largely unknown. Here we reveal that overexpression of miR-365 is able to enhance the radiosensitivity of NSCLC cells through targeting CDC25A. We found that the expression level of miR-365 was positively correlated with the radiosensitivity of NSCLC cell lines. Furthermore, our results showed that overexpression of miR-365 could sensitize A549 cells to the irradiation. However, knockdown of miR-365 in H460 cells could act the converse manner. Mechanically, miR-365 was able to directly target 3'UTR of cell division cycle 25A (CDC25A) mRNA and reduce the expression of CDC25A at the levels of mRNA and protein. And we confirmed that miR-365 could increase the radiosensitivity of NSCLC cells by targeting CDC25A using in vitro and in vivo assays. Taken together, restoration of miR-365 expression enhances the radiosensitivity of NSCLC cells by suppressing CDC25A, and miR-365 could be used as a radiosensitizer for NSCLC therapy.
Collapse
Affiliation(s)
- Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| | - Mian Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
11
|
MicroRNA in Lung Cancer Metastasis. Cancers (Basel) 2019; 11:cancers11020265. [PMID: 30813457 PMCID: PMC6406837 DOI: 10.3390/cancers11020265] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a hallmark of cancer, with distant metastasis frequently developing in lung cancer, even at initial diagnosis, resulting in poor prognosis and high mortality. However, available biomarkers cannot reliably predict cancer spreading sites. The metastatic cascade involves highly complicated processes including invasion, migration, angiogenesis, and epithelial-to-mesenchymal transition that are tightly controlled by various genetic expression modalities along with interaction between cancer cells and the extracellular matrix. In particular, microRNAs (miRNAs), a group of small non-coding RNAs, can influence the transcriptional and post-transcriptional processes, with dysregulation of miRNA expression contributing to the regulation of cancer metastasis. Nevertheless, although miRNA-targeted therapy is widely studied in vitro and in vivo, this strategy currently affords limited feasibility and a few miRNA-targeted therapies for lung cancer have entered into clinical trials to date. Advances in understanding the molecular mechanism of metastasis will thus provide additional potential targets for lung cancer treatment. This review discusses the current research related to the role of miRNAs in lung cancer invasion and metastasis, with a particular focus on the different metastatic lesions and potential miRNA-targeted treatments for lung cancer with the expectation that further exploration of miRNA-targeted therapy may establish a new spectrum of lung cancer treatments.
Collapse
|
12
|
Li Z, Li Y, Fu J, Li N, Shen L. Clinical utility of microRNA-451 as diagnostic biomarker for human cancers. Biosci Rep 2019; 39:BSR20180653. [PMID: 30509965 PMCID: PMC6331668 DOI: 10.1042/bsr20180653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/09/2018] [Accepted: 09/25/2018] [Indexed: 12/29/2022] Open
Abstract
We conducted comprehensive analyses to assess the diagnostic ability of miRNA-451 in cancers. A systematic online search was conducted in PubMed, Web of Science, China's national knowledge infrastructure, and VIP databases from inception to July 31, 2017. The bivariate random effect model was used for calculating sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under cure (AUC). The whole pooled sensitivity and specificity were 0.85 (0.77-0.90) and 0.85 (0.78-0.90) with their 95% confidence interval (95%CI), respectively. The pooled AUC was 0.91 (95%CI: 0.89-0.94). Positive likelihood ratio was 5.57 (95%CI: 3.74-8.31), negative likelihood ratio was 0.18 (95%CI: 0.11-0.28), and diagnostic odds ratio was 31.33 (95%CI: 15.19-64.61). Among Asian population, the sensitivity and specificity were 0.85 (95%CI: 0.77-0.91) and 0.86 (95%CI: 0.78-0.91), respectively. The positive likelihood ratio and negative likelihood ratio were 5.87 (95%CI: 3.78-9.12) and 0.17 (95%CI: 0.11-0.28). The diagnostic odds ratio and AUC were 34.31 (15.51-75.91) and 0.92 (0.89-0.94). The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and AUC for digestive system cancer were 0.83, 0.88, 6.87, 0.20, 35.13, and 0.92, respectively. The other cancers were 0.87, 0.81, 4.55, 0.16, 28.51, and 0.90, respectively. For sample source, the results still remain consistent. Our results indicated miRNA-451 has a moderate diagnostic ability for cancers, and could be a potential early screening biomarker, and considered as an adjuvant diagnostic index when being combined with other clinical examinations.
Collapse
Affiliation(s)
- Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Yanyan Li
- Department of Outpatient, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Jun Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| |
Collapse
|
13
|
Jiang ZB, Ma BQ, Liu SG, Li J, Yang GM, Hou YB, Si RH, Gao P, Yan HT. miR-365 regulates liver cancer stem cells via RAC1 pathway. Mol Carcinog 2018; 58:55-65. [PMID: 30182377 PMCID: PMC6585981 DOI: 10.1002/mc.22906] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Liver cancer stem cells (CSCs) were involved in tumorigenesis, progression, recurrence, and drug resistance of hepatocellular carcinoma (HCC). miR-365 was downregulated in hepatocellular carcinoma and inhibited HCC cell proliferation and invasion. However, the role of miR-365 in liver cancer stem cells was unknown. Herein, we observed a remarkable decrease of miR-365 expression in CD133 or EpCAM-positive liver CSCs as well as in CSC-enriched hepatoma spheres. Up-regulated miR-365 suppressed liver CSC expansion by inhibiting the dedifferentiation of hepatoma cells and decreasing the self-renewal ability of liver CSCs. Mechanistically, bioinformatic and luciferase reporter analysis identified Ras-related C3 botulinum toxin substrate 1 (RAC1) as a direct target of miR-365. Overexpression of miR-365 in hepatoma cells downregulated the RAC1 mRNA and protein expression. RAC1 also could promote the expansion of liver CSCs. The special RAC1 inhibitor EHop-106 or RAC1 overexpression abolished the discrepancy in liver CSC proportion and the self-renewal capacity between miR-365 overexpression hepatoma cells and control cells, which further confirmed that RAC1 was required in miR-365-suppressed liver CSCs expansion. miR-365 was downregulated in liver CSCs and could inhibit HCC cells dedifferentiation and liver CSCs expansion by targeting RAC1 signaling.
Collapse
Affiliation(s)
- Ze-Bin Jiang
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Bing-Qiang Ma
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Shao-Guang Liu
- Department of Emergency Surgery, Gansu Provincial Hospital, Gansu, China
| | - Jing Li
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Guang-Ming Yang
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Ya-Bo Hou
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Ruo-Huang Si
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Peng Gao
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Hui-Ting Yan
- Department of Nursing Department, Gansu Provincial Hospital, Gansu, China
| |
Collapse
|
14
|
Yuan HL, Wang T, Zhang KH. MicroRNAs as potential biomarkers for diagnosis, therapy and prognosis of gastric cancer. Onco Targets Ther 2018; 11:3891-3900. [PMID: 30013369 PMCID: PMC6039071 DOI: 10.2147/ott.s156921] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the widespread use of endoscopy and conventional tumor biomarkers, gastric cancer (GC) remains one of the most frequent causes of cancer-related deaths worldwide due to its late diagnosis and poor response to treatment. Valuable and practical biomarkers are urgently needed to screen patients with a high risk of GC that can complement endoscopic diagnosis. Such biomarkers will enable the efficient prediction of therapeutic response and prognosis of GC patients and favor the establishment of an effective treatment strategy for each and every patient. MicroRNAs (miRNAs) are a class of small non-coding RNA sequences that play important roles in modulating key biological processes by regulating the expression of target genes. Expectedly, miRNAs are abnormally expressed within the tumor tissue and in associated biological fluids of GC patients including their blood, gastric juice, and urine. Accumulating evidence indicates that miRNAs are potential biomarkers with multiple diagnostic functions for GC. Here, we review recent advances and challenges in using miRNAs, particularly biofluid miRNAs, as GC biomarkers with potential clinical applications including diagnosing, clinically staging, and predicting malignant behaviors, therapy response, recurrence after surgery and survival time.
Collapse
Affiliation(s)
- Hai-Liang Yuan
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, People's Republic of China,
| | - Ting Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, People's Republic of China,
| | - Kun-He Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, People's Republic of China,
| |
Collapse
|
15
|
Chen L, Huang X, Chen X. miR-365 Suppresses Cholangiocarcinoma Cell Proliferation and Induces Apoptosis by Targeting E2F2. Oncol Res 2018; 26:1375-1382. [PMID: 29471889 PMCID: PMC7844787 DOI: 10.3727/096504018x15188352857437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most malignant adenocarcinomas arising from bile duct epithelial cells. However, the molecular mechanism regulating CCA development and progression still needs to be investigated. Here we found that miR-365 was downregulated in CCA tissues compared with adjacent normal tissues. By functional experiments, we found that overexpression of miR-365 significantly inhibited CCA cell proliferation and promoted cellular apoptosis in vitro. Furthermore, administration with miR-365 markedly suppressed the growth of tumor tissues in vivo. Mechanistically, we identified E2F2 as the target gene of miR-365 in CCA cells. We found that overexpression significantly inhibited the expression of E2F2 in CCA cells, and there was an inverse correlation between the expression levels of E2F2 and miR-365 in CCA tissues. We also found that E2F2 was highly expressed in CCA tissues and cell lines. Restoration of E2F2 in miR-365-overexpressing CCA cells promoted cell viability and reduced cellular apoptosis in CCA. Collectively, our study demonstrated the essential role of miR-365 and its functional mechanism in CCA cells, which provided a new insight on the design of therapeutic targets for CCA treatment.
Collapse
Affiliation(s)
- Lunjian Chen
- Department of Hepatobiliary Surgery, The Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, P.R. China
| | - Xiaorong Huang
- Otorhinolaryngology Center, The Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, P.R. China
| | - Xinxin Chen
- Department of Preventive Health Care, First Affiliated Hospital of Medical College of Shihezi University, Shihezi, P.R. China
| |
Collapse
|
16
|
Feng R, Beeharry MK, Lu S, Sah BK, Yuan F, Yan M, Liu B, Li C, Zhu Z. Down-regulated serum miR-126 is associated with aggressive progression and poor prognosis of gastric cancer. Cancer Biomark 2018; 22:119-126. [PMID: 29562500 DOI: 10.3233/cbm-171099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND miR-126 functions as a tumor suppressor in gastric cancer (GC), however, the clinical significance of serum miR-126 in GC remains unclear. OBJECTIVE To investigate the associations of serum miR-126 level with the clinicopathological characteristics and prognosis of GC patients. METHODS Quantitative real-time polymerase chain reaction was performed to examine the expression levels of miR-126 in 338 GC patients' tissues and sera, and 50 healthy controls' sera. The associations of serum miR-126 with clinicopathological characteristics and clinical outcome were evaluated. RESULTS Compared with the matched adjacent non-tumor tissues and normal sera, miR-126 expression was significantly down-regulated in both tumor tissues and sera of GC patients. Importantly, there was a positive correlation between tissue and serum levels of miR-126 in GC patients. A reduced serum miR-126 level statistically correlated with aggressive clinicopathological characteristics, such as larger tumor size, deeper local invasion, more lymph node metastasis, advanced TNM stage, and poorer prognosis. Notably, multivariate analysis identified reduced serum miR-126 level as an independent predictor for the unfavorable prognosis of GC. CONCLUSIONS These results indicate for the first time that serum miR-126 may serve as a novel prognostic biomarker in GC.
Collapse
Affiliation(s)
- Runhua Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Maneesh K Beeharry
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Birendra K Sah
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chen Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenggang Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
17
|
miR-365 promotes diabetic retinopathy through inhibiting Timp3 and increasing oxidative stress. Exp Eye Res 2017; 168:89-99. [PMID: 29196060 DOI: 10.1016/j.exer.2017.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 01/23/2023]
Abstract
miRs play critical roles in oxidative stress-related retinopathy pathogenesis. miR-365 was identified in a previously constructed library from glyoxal-treated rat Müller cell. This report explores epigenetic alterations in Müller cells under oxidative stress to develop a novel therapeutic strategy. To examine the miR-365 expression pattern, in situ hybridization and quantitative RT-PCR were performed. Bioinformatical analysis and dual luciferase report assay were applied to identify and confirm target genes. Streptozotocin (STZ)-treated rats were used as the diabetic retinopathy (DR) model. Lentivirus-mediated anti-miR-365 was delivered subretinally and intravitreally into the rats' eyes. The functional and structural changes were evaluated by electroretinogram (ERG), histologically, and through examination of expression levels of metallopeptidase inhibitor 3 (Timp3), glial fibrillary acidic protein (Gfap), recoverin (Rcvrn) and vascular endothelia growth factor A (Vegfa). Oxidative stress factors and pro-inflammatory cytokines were analyzed. miR-365 expression was confirmed in the glyoxal-treated rat Müller cell line (glyoxal-treated rMC-1). In the retina, miR-365 mainly localized in the inner nuclear layer (INL). The increased miR-365 participated in Müller cell gliosis through oxidative stress aggravation, as observed in glyoxal-treated rMC-1 and DR rats before 6 weeks. Timp3 was a target and negatively regulated by miR-365. When miR-365 was inhibited, Timp3 expression was upregulated, Müller cell gliosis was alleviated, and retinal oxidative stress was attenuated. Visual function was also partially rescued as detected by ERG. miR-365 was found to be highly expressed in the retina and the abnormality of miR-365/Timp3 pathway is closely related to the pathology, like Müller gliosis, and the visual injury in DR. The mechanism might be through oxidative stress, and miR-365/Timp3 could be a potential therapeutic target for treating DR.
Collapse
|