1
|
Nikhil A, Gugjoo MB, Das A, Manzoor T, Ahmad SM, Ganai NA, Kumar A. Multilayered Cryogel Enriched with Exosomes Regenerates and Maintains Cartilage Architecture and Phenotype in Goat Osteochondral Injuries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64505-64521. [PMID: 39555858 DOI: 10.1021/acsami.4c13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Treatment of critical-size osteochondral (OC) injuries at load-bearing sites has remained a major clinical challenge in orthopedic surgery. This is due to the anisotropic characteristics of OC tissue and the stratified structure of the cartilage. Here, we developed a multilayered OC scaffold by employing cryogelation technology. Gelatin, chitosan, and chondroitin sulfate were utilized for designing three distinct, 2425 ± 120 μm thick layers of cartilage having different alignments, while nanohydroxyapatite and gelatin were used for the subchondral bone layer. Exosomes derived from articular chondrocytes in the range of 60-110 nm were used to promote chondrogenesis. The biocompatibility and cartilage formation potential of the scaffold and exosomes were initially evaluated in rat OC defects. The application of exosome-loaded scaffolds was then investigated in a critical-size OC injury (8 × 10 mm) created in the goat knee. Artificial synovial fluid was designed and utilized as a carrier for exosomes for a booster dose administered as an intra-articular injection. X-ray imaging and micro-CT analysis revealed that the treatment resulted in improved subchondral bone regeneration. The defect region exhibited healthy hyaline cartilage formation, as detected by MRI imaging. Moreover, histological examination revealed that the treatment group showed augmented cell proliferation, matrix deposition, secretion of proteoglycans, and the formation of stratified hyaline cartilage over a long-term (6 and 12 months), whereas the control group demonstrated the formation of fibrocartilage. Treatment-induced upregulation of collagen II, aggrecan, and SOX 9 genes (∼10 fold) further provided evidence that the cartilage phenotype was well preserved. Hence, the proposed treatment has significant translational potential for treating adverse OC clinical injuries.
Collapse
Affiliation(s)
- Aman Nikhil
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, SKUAST-Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Ankita Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, SKUAST-Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, SKUAST-Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Nazir Ahmad Ganai
- Division of Animal Breeding and Genetics, SKUAST-Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
2
|
Llamasares-Castillo A, Uclusin-Bolibol R, Rojsitthisak P, Alcantara KP. In vitro and in vivo studies of the therapeutic potential of Tinospora crispa extracts in osteoarthritis: Targeting oxidation, inflammation, and chondroprotection. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118446. [PMID: 38857679 DOI: 10.1016/j.jep.2024.118446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The increasing incidence of osteoarthritis (OA), especially among the elderly population, highlights the need for more efficacious treatments that go beyond mere symptomatic relief. Tinospora crispa (L.) Hook. f. & Thomson (TC) boasts a rich traditional heritage, widespread use in Ayurveda, traditional Chinese medicine (TCM), and diverse indigenous healing practices throughout Southeast Asia for treating arthritis, rheumatism, fever, and inflammation. AIM OF THE STUDY This study investigates the anti-inflammatory and chondroprotective potential of TC stem extracts, including ethanolic TC extract (ETCE) and aqueous TC extract (ATCE), in modulating OA pathogenesis through in vitro and in vivo approaches. MATERIALS AND METHODS The study utilized LC-MS/MS to identify key compounds in TC stem extracts. In vitro experiments assessed the antioxidative and anti-inflammatory properties of ETCE and ATCE in activated macrophages, while an in vivo monoiodoacetate (MIA)-induced OA rat model evaluated the efficacy of ETCE treatment. Key markers of oxidative stress, such as superoxide dismutase (SOD) and catalase (CAT), were assessed alongside pro-inflammatory cytokines TNF-α and IL-1β, and matrix-degrading enzymes, matrix metalloproteinase (MMP 13 and MMP 3), to evaluate the therapeutic effects of TC stem extracts on OA. RESULTS Chemical profiling of the extracts was conducted using LC-MS/MS in positive ionization, identifying seven compounds, including pseudolaric acid B, stylopine, and reticuline, which were reported for the first time in this species. The study utilized varying concentrations of TC stem extracts, specifically 6.25-25 μg/mL for in vitro assays and 500 mg/kg for in vivo studies. Our findings also revealed that both ETCE and ATCE exhibit dose-dependent reduction in reactive oxygen species (41%-52%) and nitric oxide (NO) levels (50% and 72%), with ETCE displaying superior antioxidative efficacy and marked anti-inflammatory properties, significantly reducing TNF-α and IL-6 at concentrations above 12.5 μg/mL. In the MIA-induced OA rat model, ETCE treatment notably outperformed ATCE, markedly lowering TNF-α (1.91 ± 0.37 pg/mL) and IL-1β (26.30 ± 3.68 pg/mL) levels and effectively inhibiting MMP 13 and MMP 3 enzymes. Furthermore, macroscopic and histopathological assessments, including ICRS scoring and OARSI grading, indicate that TC stem extracts reduce articular damage and proteoglycan loss in rat knee cartilage. These results suggest that TC stem extracts may play a role in preventing cartilage degradation and potentially alleviating inflammation and pain associated with OA, though further studies are needed to confirm these effects. CONCLUSION This study highlights the potential of TC stem extracts as a novel, chondroprotective therapeutic avenue for OA management. By targeting oxidative stress, pro-inflammatory cytokines, and cartilage-degrading enzymes, TC stem extracts promise to prevent cartilage degradation and alleviate inflammation and pain associated with OA.
Collapse
Affiliation(s)
- Agnes Llamasares-Castillo
- The Graduate School, University of Santo Tomas, Manila, 1015, Philippines; Research Center for the Natural and Applied Sciences (RCNAS), University of Santo Tomas, Manila, 1015, Philippines; Faculty of Pharmacy, Department of Pharmacy, University of Santo Tomas, Manila, 1015, Philippines.
| | | | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Mariné-Casadó R, Domenech-Coca C, Fernández S, Costa A, Segarra S, López-Andreo MJ, Puiggròs F, Cerón JJ, Martínez-Puig D, Soler C, Sifre V, Serra CI, Caimari A. Effects of the oral administration of glycosaminoglycans with or without native type II collagen on the articular cartilage transcriptome in an osteoarthritic-induced rabbit model. GENES & NUTRITION 2024; 19:19. [PMID: 39232650 PMCID: PMC11375882 DOI: 10.1186/s12263-024-00749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND In a previous study, the 84-day administration of glycosaminoglycans (GAGs), with or without native collagen type II (NC), in an osteoarthritis (OA)-induced rabbit model slowed down OA progression, improved several micro- and macroscopic parameters and magnetic resonance imaging (MRI) biomarkers in cartilage, and increased hyaluronic acid levels in synovial fluid. To elucidate the potential underlying mechanisms, a transcriptomics approach was conducted using medial femoral condyle and trochlea samples. RESULTS The administration of chondroitin sulfate (CS), glucosamine hydrochloride (GlHCl), and hyaluronic acid (HA), with (CGH-NC) or without (CGH) NC, strongly modulated several genes involved in chondrocyte extracellular matrix (ECM) remodeling and homeostasis when compared to non-treated rabbits (CTR group). Notably, both treatments shared the main mechanism of action, which was related to ECM modulation through the down-regulation of genes encoding proteolytic enzymes, such as ADAM metallopeptidase with thrombospondin type 1 motif, 9 (Adamts9), and the overexpression of genes with a relevant role in the synthesis of ECM components, such as aggrecan (Acan) in both CGH-NC and CGH groups, and fibronectin 1 (Fn1) and collagen type II, alpha 1 (Col2A1) in the CGH group. Furthermore, there was a significant modulation at the gene expression level of the mTOR signaling pathway, which is associated with the regulation of the synthesis of ECM proteolytic enzymes, only in CGH-NC-supplemented rabbits. This modulation could account for the better outcomes concerning the microscopic and macroscopic evaluations reported in these animals. CONCLUSIONS In conclusion, the expression of key genes involved in chondrocyte ECM remodeling and homeostasis was significantly modulated in rabbits in response to both CGH and CGH-NC treatments, which would partly explain the mechanisms by which these therapies exert beneficial effects against OA.
Collapse
Affiliation(s)
- Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, 43204, Spain
| | - Cristina Domenech-Coca
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, 43204, Spain
| | - Salvador Fernández
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit, Universitat Rovira i Virgili-EURECAT, Reus, 43204, Spain
| | - Andrea Costa
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, 43204, Spain
| | - Sergi Segarra
- R&D Bioiberica S.A.U., Esplugues de Llobregat, 08950, Spain
| | - Maria José López-Andreo
- Servicio de Investigación Biosanitaria, Área Científica y Técnica de Investigación (ACTI), Universidad de Murcia, Murcia, 30100, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus, 43204, Spain
| | - José Joaquín Cerón
- Interlab-UMU, Campus de Excelencia "Mare Nostrum", University of Murcia, Campus Espinardo, Murcia, 30071, Spain
| | | | - Carme Soler
- Hospital Veterinario UCV, Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, 46002, Spain
| | - Vicente Sifre
- Hospital Veterinario UCV, Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, 46002, Spain
| | - Claudio Iván Serra
- Hospital Veterinario UCV, Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, 46002, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus, 43204, Spain.
| |
Collapse
|
4
|
Ai D, Yin Y, Xia X, Yang S, Sun Y, Zhou J, Qin H, Xu X, Song J. Validation of a physiological type 2 diabetes model in human periodontal ligament stem cells. Oral Dis 2024; 30:3363-3375. [PMID: 37794779 DOI: 10.1111/odi.14766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES Type 2 diabetes (T2DM), a recognized risk factor for periodontitis, is characterized by insulin resistance. However, the molecular mechanisms concerning the role of insulin resistance in linking T2DM and periodontitis remain poorly elucidated due to the absence of an appropriate T2DM cell model. We aimed to explore an appropriate model of T2DM in human periodontal ligament stem cells (hPDLSCs) and uncover the involved mechanisms. MATERIALS AND METHODS hPDLSCs were incubated with common reagents for recapitulating insulin resistance state including high glucose (HG) (15, 25, 35, 45 mM), glucosamine (0.8, 8, 18, 28, 38 mM), or palmitic acid (PA; 100, 200, 400, 800 μM), combined with LPS for 48 h. The insulin signaling pathway, inflammation, and pyroptosis were detected by western blots and quantitative real-time polymerase chain reaction (RT-qPCR). The effects on osteogenesis were evaluated by alkaline phosphatase staining, alizarin red S staining, RT-qPCR, and western blots. RESULTS HG failed to recapitulate insulin resistance. Glucosamine was sufficient to induce insulin resistance but failed to trigger inflammation. In total, 100 and 200 μM PA exhibited the most proinflammatory, insulin resistance, and pyroptosis induced role, and inhibited the osteogenic differentiation of hPDLSCs. CONCLUSION Palmitic acid is a promising candidate for developing T2DM model in hPDLSCs.
Collapse
Affiliation(s)
- Dongqing Ai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Yin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xuyun Xia
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sihan Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yu Sun
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Qin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaohui Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
5
|
Vassallo V, Di Meo C, Toro G, Alfano A, Iolascon G, Schiraldi C. Hyaluronic Acid-Based Injective Medical Devices: In Vitro Characterization of Novel Formulations Containing Biofermentative Unsulfated Chondroitin or Extractive Sulfated One with Cyclodextrins. Pharmaceuticals (Basel) 2023; 16:1429. [PMID: 37895900 PMCID: PMC10610477 DOI: 10.3390/ph16101429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Currently, chondroitin sulfate (CS) and hyaluronic acid (HA) pharma-grade forms are used for osteoarthritis (OA) management, CS as an oral formulations component, and HA as intra-articular injective medical devices. Recently, unsulfated chondroitin, obtained through biofermentative (BC) manufacturing, has been proposed for thermally stabilized injective preparation with HA. This study aimed to highlight the specific properties of two commercial injective medical devices, one based on HA/BC complexes and the other containing HA, extractive CS, and cyclodextrins, in order to provide valuable information for joint disease treatments. Their biophysical and biomechanical features were assayed; in addition, biological tests were performed on human pathological chondrocytes. Rheological measurements displayed similar behavior, with a slightly higher G' for HA/BC, which also proved superior stability to the hyaluronidase attack. Both samples reduced the expression of specific OA-related biomarkers such as NF-kB, interleukin 6 (IL-6), and metalloprotease-13 (MMP-13). Moreover, HA/BC better ensured chondrocyte phenotype maintenance by up-regulating collagen type 2A1 (COLII) and aggrecan (AGN). Notwithstanding, the similarity of biomolecule components, the manufacturing process, raw materials characteristics, and specific concentration resulted in affecting the biomechanical and, more interestingly, the biochemical properties, suggesting potential better performances of HA/BC in joint disease treatment.
Collapse
Affiliation(s)
- Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (A.A.)
| | - Celeste Di Meo
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (A.A.)
| | - Giuseppe Toro
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (G.I.)
| | - Alberto Alfano
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (A.A.)
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (G.I.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (A.A.)
| |
Collapse
|
6
|
Sartinah A, Nugrahani I, Ibrahim S, Anggadiredja K. Potential metabolites of Arecaceae family for the natural anti-osteoarthritis medicine: A review. Heliyon 2022; 8:e12039. [PMID: 36561673 PMCID: PMC9763769 DOI: 10.1016/j.heliyon.2022.e12039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory disorder of the joints caused by fluid and cartilage matrix component reduction. This disease results in symptoms of pain, deformity, and limitation of movement. In general, OA is treated with anti-inflammatory drugs and chondroprotection compounds, includes natural nutraceutical ingredients, which are expected to be effective and have minimal side effects. Arecaceae plants are widely spread worldwide, especially in tropical areas. The objective of this review is to collect information about the Arecaceae family as anti-OA agents, with the main study focusing on the primary and secondary metabolites of plants of the Arecaceae family, i.e., sugar palm (Arenga pinnata), nipa palm (Nypa fruticans), palmyra palm (Borassus flabellifer), date palm (Phoenix dactylifera), and betel nut (Areca catechu) have potential as anti-OA agents. The Arecaceae's metabolites that show anti-inflammatory and chondroprotective effects are galactomannan, fatty acids (linoleic and linolenic acids), flavonoids (quercetin, luteolin, isorhamnetin), phenolics (coumaric acid, ferulic acid), polyphenols (epicatechin), and steroids (stigmasterol, campesterol, spirostane). Based on the reports, the Arecaceae family plants become worthy of being explored and developed into natural anti-OA products, such as supplements or nutraceuticals.
Collapse
Affiliation(s)
- Ari Sartinah
- School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - Ilma Nugrahani
- School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia
- Corresponding author.
| | - Slamet Ibrahim
- Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Cimahi, Indonesia
| | | |
Collapse
|
7
|
dos Santos DR, Xavier DP, de Ataíde LAP, Bentes LGDB, Lemos RS, Giubilei DB, de Barros RSM. Os efeitos do colágeno hidrolisado e do peptídeo de colágeno no tratamento de lesões condrais superficiais: Um estudo experimental. Rev Bras Ortop 2022; 58:72-78. [PMID: 36969779 PMCID: PMC10038713 DOI: 10.1055/s-0042-1756332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/18/2022] [Indexed: 11/07/2022] Open
Abstract
Resumo
Objetivo Avaliar os efeitos do colágeno hidrolisado e do peptídeo de colágeno no tratamento de lesões condrais superficiais de ratos.
Método Foram utilizados 18 Rattus norvegicus nesta pesquisa. O dano articular foi induzido por uma única infiltração intra-articular de iodoacetato de sódio (solução 2 mg), injetada através do ligamento patelar da articulação dos animais previamente anestesiados. Os animais foram distribuídos em três grupos: grupo controle, grupo peptídeo de colágeno e grupo colágeno hidrolisado. O tratamento foi realizado por 30 dias com a administração via oral do peptídeo de colágeno ou do colágeno hidrolisado. Posteriormente, foi realizada a eutanásia dos experimentos e seguiu-se para o estudo das alterações condrais articulares. Os resultados foram avaliados conforme contagem de condrócitos por cluster e através da avaliação histológica segundo Pritzker et al.
Resultados Ao observar os estágios de lesão, não foi observada significância estatística entre os grupos controle, colágeno hidrolisado e peptídeo de colágeno (p = 0,11). Ao observar os escores, houve significância estatística na comparação do grupo tratado com colágeno hidrolisado e o grupo peptídeo colágeno (p < 0,05), porém sem diferença estatística em relação ao grupo controle.
Conclusão Os tratamentos propostos da lesão condral induzida com uso de colágeno hidrolisado ou peptídeos de colágeno via oral mostraram-se eficazes, com estabilização ou regressão da lesão apresentada em ratos, merecendo novas pesquisas experimentais com o intuito de compreender e melhorar o desfecho primário deste trabalho.
Collapse
Affiliation(s)
| | | | | | | | - Rafael Silva Lemos
- Laboratório de Cirurgia Experimental, Universidade do Estado do Pará, Belém, PA, Brasil
| | | | - Rui Sergio Monteiro de Barros
- Departamento de Ortopedia e Traumatologia do Hospital Porto Dias, Belém, PA, Brasil
- Universidade do Estado do Pará, Belém, PA, Brasil
| |
Collapse
|
8
|
Ping SH, Tian FM, Liu H, Sun Q, Shao LT, Lian QQ, Zhang L. Raloxifene inhibits the overexpression of TGF-β1 in cartilage and regulates the metabolism of subchondral bone in rats with osteoporotic osteoarthritis. Bosn J Basic Med Sci 2021; 21:284-293. [PMID: 33259777 PMCID: PMC8112563 DOI: 10.17305/bjbms.2020.5142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
Overexpression of transforming growth factor-beta 1 (TGF-β1) and subchondral bone remodelling play key roles in osteoarthritis (OA). Raloxifene (RAL) reduces the serum level of TGF-β1 in postmenopausal women. However, the effect of RAL on TGF-β1 expression in articular cartilage is still unclear. Therefore, we aimed to investigate the protective effect of RAL on osteoporotic osteoarthritis via affecting TGF-β1 expression in cartilage and the metabolism of subchondral bone. Osteoporotic osteoarthritis was induced by a combination of anterior cruciate transection (ACLT) and ovariectomy (OVX). Rats were divided into five groups (n = 12): The sham group, the ACLT group, the OVX group, the ACLT + OVX group, and the RAL group (ACLT + OVX + RAL, 6.25 mg/kg/day for 12 weeks). Assessment was performed by histomorphology, microcomputed tomography (micro-CT) scan, immunohistochemistry, and tartrate-resistant acid phosphatase (TRAP) staining. We found that severe cartilage degeneration was shown in the ACLT + OVX group. The histomorphological scores, the levels of TGF-β1, and its related catabolic enzymes and osteoclasts numbers in the ACLT + OVX group were higher than those in other groups (p < 0.05). Furthermore, structure model index (SMI) and trabecular spacing (Tb.Sp) were decreased (p < 0.05), while bone mineral density (BMD), bone volume fraction (BV/TV), and trabecular number (Tb.N) were increased by RAL compared with the ACLT + OVX group (p < 0.05). Our findings demonstrated that RAL in clinical doses retards the development of osteoporotic osteoarthritis by inhibiting the overexpression of TGF-β1 in cartilage and regulating the metabolism of subchondral bone. These results provide support for RAL in the expansion of clinical indication for prevention and treatment in postmenopausal osteoarthritis.
Collapse
Affiliation(s)
- Shao-Hua Ping
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China
| | - Fa-Ming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Hao Liu
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Qi Sun
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China
| | - Li-Tao Shao
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China
| | - Qiang-Qiang Lian
- Department of Orthopedic Surgery, the Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China; Department of Orthopedic Surgery, Emergency General Hospital, Beijing, China
| |
Collapse
|
9
|
Glucosamine and Chondroitin Sulfate: Is There Any Scientific Evidence for Their Effectiveness as Disease-Modifying Drugs in Knee Osteoarthritis Preclinical Studies?-A Systematic Review from 2000 to 2021. Animals (Basel) 2021; 11:ani11061608. [PMID: 34072407 PMCID: PMC8228516 DOI: 10.3390/ani11061608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Osteoarthritis is the most common progressive joint disease diagnosed in companion animals and its management continues to be a significant challenge. Nutraceuticals have been widely investigated over the years in the treatment of osteoarthritis and among them, glucosamine and chondroitin sulfate treatments are probably the most common therapies used in veterinary management. However, heterogeneous results were obtained among animal studies and the evidence of their efficacy is still controversial. Animal models have a crucial role in studying the histological changes and evaluating the therapy efficacy of different drugs. Consequently, we consider it may be of interest to evaluate the effectiveness of the most representative nutraceuticals in experimental animal studies of osteoarthritis. In this systematic review, we found a large inconsistency among the experimental protocols, but a positive cartilage response and biochemical modulation were observed in half of the evaluated articles, mainly associated with pre-emptive administrations and with some therapies’ combinations. Even though some of these results were promising, additional data are needed to draw solid conclusions, and further studies evaluating their efficacy in the long term and focusing on other synovial components may be needed to clarify their function. Abstract Glucosamine and chondroitin sulfate have been proposed due to their physiological and functional benefits in the management of osteoarthritis in companion animals. However, the scientific evidence for their use is still controversial. The purpose of this review was to critically elucidate the efficacy of these nutraceutical therapies in delaying the progression of osteoarthritis, evaluating their impact on the synovial knee joint tissues and biochemical markers in preclinical studies by systematically reviewing the last two decades of peer-reviewed publications on experimental osteoarthritis. Three databases (PubMed, Scopus and, Web of Science) were screened for eligible studies. Twenty-two articles were included in the review. Preclinical studies showed a great heterogeneity among the experimental designs and their outcomes. Generally, the evaluated nutraceuticals, alone or in combination, did not seem to prevent the subchondral bone changes, the synovial inflammation or the osteophyte formation. However, further experimental studies may be needed to evaluate their effect at those levels. Regarding the cartilage status and biomarkers, positive responses were identified in approximately half of the evaluated articles. Furthermore, beneficial effects were associated with the pre-emptive administrations, higher doses and, multimodality approaches with some combined therapies. However, additional studies in the long term and with good quality and systematic design are required.
Collapse
|
10
|
Greif DN, Emerson CP, Allegra P, Arizpe A, Mansour KL, Cade WH, Baraga MG. Supplement Use in Patients Undergoing Anterior Cruciate Ligament Reconstruction: A Systematic Review. Arthroscopy 2020; 36:2537-2549. [PMID: 32438028 DOI: 10.1016/j.arthro.2020.04.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To assess whether a standardized dietary supplementation can help to decrease postoperative muscle atrophy and/or improve rehabilitation outcomes in patients who underwent anterior cruciate ligament reconstruction (ACLR). METHODS A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). MEDLINE, Scopus, and Cochrane Library databases were searched, and articles that examined protein or amino acid, vitamin, or any other type of supplementation in ACLR were reviewed. Two independent reviewers conducted the search using pertinent Boolean operations. RESULTS A total of 1818 articles were found after our database search. Ten studies fulfilled our inclusion criteria and only assessed patients undergoing ACLR. Four studies assessed protein-based supplementation. One study assessed creatine as a supplement. Four studies assessed vitamin-based supplementation. One study assessed testosterone supplementation. Protein and amino acid supplementation showed potential benefits; multiple authors demonstrated a combination of improved achievement of rehabilitation benchmarks, graft maturation, muscular hypertrophic response, and peak dynamic muscle strength. When we examined creatine, vitamin, or hormone-based protocols, none demonstrated results, suggesting these factors may attenuate muscle atrophy after surgery. Vitamin C and E demonstrated potentially increased local inflammation in skeletal muscle, which runs contrary to the belief that antioxidant vitamin-based supplementation may decrease the inflammatory response that plays a role in the post injury/operative period. CONCLUSIONS Protein-based supplementation may play a role in mitigating muscle atrophy associated with ACLR, as multiple authors demonstrated a combination of improved achievement of rehabilitation benchmarks, thigh hypertrophic response, and peak dynamic muscle strength. However, based on current literature, it is not possible to recommend a specific protein-based supplementation protocol at this time for patients undergoing ACLR. Limited evidence suggests no benefit for creatine, vitamin, or hormone-based protocols. LEVEL OF EVIDENCE II, a systematic review of level I-II studies.
Collapse
Affiliation(s)
- Dylan N Greif
- University of Miami Sports Medicine Institute, Coral Gables, Florida, U.S.A..
| | | | - Paul Allegra
- Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Azael Arizpe
- Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Kailey L Mansour
- University of Miami Sports Medicine Institute, Coral Gables, Florida, U.S.A
| | - William H Cade
- University of Miami Sports Medicine Institute, Coral Gables, Florida, U.S.A
| | - Michael G Baraga
- University of Miami Sports Medicine Institute, Coral Gables, Florida, U.S.A.; Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| |
Collapse
|
11
|
Synthesis and anticholinesterase activities of novel glycosyl benzoxazole derivatives. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519819901251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Eight glycosyl benzoxazole derivatives are synthesized by nucleophilic addition reactions of glycosyl isothiocyanate with o-aminophenol in tetrahydrofuran. The reaction conditions are optimized, and good yields (86%–94%) were obtained. The structures of all new products are confirmed by infrared, 1H nuclear magnetic resonance, and high-resolution mass spectrometry (electrospray ionization). In addition, the in vitro cholinesterase inhibitory activities of these new compounds are tested by Ellman’s method.
Collapse
|
12
|
Artuzi FE, Puricelli E, Baraldi CE, Quevedo AS, Ponzoni D. Reduction of osteoarthritis severity in the temporomandibular joint of rabbits treated with chondroitin sulfate and glucosamine. PLoS One 2020; 15:e0231734. [PMID: 32294140 PMCID: PMC7159193 DOI: 10.1371/journal.pone.0231734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis is a degenerative disease that causes substantial changes in joint tissues, such as cartilage degeneration and subchondral bone sclerosis. Chondroitin sulfate and glucosamine are commonly used products for the symptomatic treatment of osteoarthritis. The aim of the present study was to investigate the effects of these products when used as structure-modifying drugs on the progression of osteoarthritis in the rabbit temporomandibular joint. Thirty-six New Zealand rabbits were divided into 3 groups (n = 12/group): control (no disease); osteoarthritis (disease induction); and treatment (disease induction and administration of chondroitin sulfate and glucosamine). Osteoarthritis was induced by intra-articular injection of monosodium iodoacetate. Animals were killed at 30 and 90 days after initiation of therapy. The treatment was effective in reducing disease severity, with late effects and changes in the concentration of glycosaminoglycans in the articular disc. The results indicate that chondroitin sulfate and glucosamine may have a structure-modifying effect on the tissues of rabbit temporomandibular joints altered by osteoarthritis.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/diagnosis
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/pathology
- Cartilage, Articular/cytology
- Cartilage, Articular/drug effects
- Cartilage, Articular/pathology
- Chondroitin Sulfates/administration & dosage
- Disease Models, Animal
- Drug Therapy, Combination/methods
- Extracellular Matrix/drug effects
- Extracellular Matrix/pathology
- Glucosamine/administration & dosage
- Humans
- Injections, Intra-Articular
- Injections, Subcutaneous
- Iodoacetic Acid/administration & dosage
- Iodoacetic Acid/toxicity
- Male
- Osteoarthritis/chemically induced
- Osteoarthritis/diagnosis
- Osteoarthritis/drug therapy
- Osteoarthritis/pathology
- Rabbits
- Severity of Illness Index
- Temporomandibular Joint/drug effects
- Temporomandibular Joint/pathology
Collapse
Affiliation(s)
- Felipe Ernesto Artuzi
- School of Dentistry/Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| | - Edela Puricelli
- Oral and Maxillofacial Surgery Unit/ Clinical Hospital of Porto Alegre (HCPA), School of Dentistry/Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Eduardo Baraldi
- School of Dentistry/Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre Silva Quevedo
- School of Dentistry/Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Deise Ponzoni
- Oral and Maxillofacial Surgery Unit/ Clinical Hospital of Porto Alegre (HCPA), School of Dentistry/Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
13
|
Multifaceted Protective Role of Glucosamine against Osteoarthritis: Review of Its Molecular Mechanisms. Sci Pharm 2019. [DOI: 10.3390/scipharm87040034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease resulting from cartilage degeneration and causing joint pain and stiffness. Glucosamine exerts chondroprotective effects and effectively reduces OA pain and stiffness. This review aims to summarise the mechanism of glucosamine in protecting joint health and preventing OA by conducting a literature search on original articles. Current evidence has revealed that glucosamine exhibits anti-inflammatory effects by reducing the levels of pro-inflammatory factors (such as tumour necrosis factor-alpha, interleukin-1, and interleukin-6) and enhancing the synthesis of proteoglycans that retard cartilage degradation and improve joint function. Additionally, glucosamine improves cellular redox status, reduces OA-mediated oxidative damages, scavenges free radicals, upregulates antioxidant proteins and enzyme levels, inhibits the production of reactive oxygen species, and induces autophagy to delay OA pathogenesis. In conclusion, glucosamine prevents OA and maintains joint health by reducing inflammation, improving the redox status, and inducing autophagy in joints. Further studies are warranted to determine the synergistic effect of glucosamine with other anti-inflammatory and/or antioxidative agents on joint health in humans.
Collapse
|
14
|
Amalraj A, Jacob J, Varma K, Kunnumakkara AB, Divya C, Gopi S. Acujoint™, a highly efficient formulation with natural bioactive compounds, exerts potent anti-arthritis effects in human osteoarthritis – A pilot randomized double blind clinical study compared to combination of glucosamine and chondroitin. J Herb Med 2019. [DOI: 10.1016/j.hermed.2019.100276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Wang L, Wu YR, Ren ST, Yin L, Wang YX, Liu SH, Liu WW, Shi DH, Cao ZL, Sun HM. Synthesis and bioactivity of novel C2-glycosyl benzofuranylthiazoles derivatives as acetylcholinesterase inhibitors. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819856973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A new series of C2-glycosyl benzofuranylthiazole derivatives was synthesised by the further cyclization of glycosyl thiourea and 2-(bromoacetyl)-benzofuran via Hantzsch’s method. The corresponding 2-(bromoacetyl)-benzofuran derivatives were obtained by the reaction from various salicylaldehydes, and the glycosyl thiourea was prepared through a series of steps from D-Glucosamine. The acetylcholinesterase-inhibitory activities of the products were tested by Ellman’s method. The most active compounds were subsequently evaluated for the 50% inhibitory concentration values. N-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-glucopyranosyl)-4-(5-methoxy-benzofuran-2-yl)-1,3-thiazole-2-amine possessed the best acetylcholinesterase-inhibition activity with a 50% inhibitory concentration of 2.03 ± 0.26 μM.
Collapse
Affiliation(s)
- Lei Wang
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang, P.R. China
| | - Yu-Ran Wu
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang, P.R. China
| | - Shu-Ting Ren
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang, P.R. China
| | - Long Yin
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang, P.R. China
| | - You-Xian Wang
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang, P.R. China
| | - Shu-Hao Liu
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang, P.R. China
| | - Wei-Wei Liu
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang, P.R. China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, P.R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, P.R. China
| | - Da-Hua Shi
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang, P.R. China
| | - Zhi-Ling Cao
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang, P.R. China
| | - Hui-Min Sun
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang, P.R. China
| |
Collapse
|
16
|
López-Vidriero E, Olivé-Vilas R, López-Capapé D, Varela-Sende L, López-Vidriero R, Til-Pérez L. Efficacy and Tolerability of Progen, a Nutritional Supplement Based on Innovative Plasma Proteins, in ACL Reconstruction: A Multicenter Randomized Controlled Trial. Orthop J Sports Med 2019; 7:2325967119827237. [PMID: 30834280 PMCID: PMC6393838 DOI: 10.1177/2325967119827237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: New biologic strategies are arising to enhance healing and improve the clinical outcome of anterior cruciate ligament (ACL) reconstruction. Purpose: To evaluate the efficacy of a new oral nutritional supplement (Progen) that contains hydrolyzed collagen peptides and plasma proteins, a hyaluronic acid–chondroitin sulfate complex, and vitamin C. Study Design: Randomized controlled trial; Level of evidence, 2. Methods: The study included patients who underwent ACL reconstruction with hamstring autografts using the same fixation method. All patients received the same analgesia and physical therapy (PT) protocol and were randomized to receive either the nutritional supplement (supplemented group) or no additional therapy (control group). Patients were followed up at days 7, 30, 60, and 90. Pain was assessed by use of a visual analog scale (VAS) and by analgesic consumption. Clinical outcome was assessed via International Knee Documentation Committee (IKDC) score and the number of PT sessions. Perceived efficacy and tolerability were rated on a 5-point Likert scale. Graft maturation was assessed by a blinded musculoskeletal radiologist using magnetic resonance imaging. The number of adverse events (AEs) was recorded. Results: The intention-to-treat analysis included 72 patients, 36 allocated to the supplemented group and 36 to the control group, with no significant differences regarding demographic and preoperative characteristics. Both groups showed significant improvement in pain and function (measured by VAS and IKDC scores) during the 90-day follow-up period (P < .001 for both), without significant differences between groups. The supplemented group had fewer patients that needed analgesics (8.5% vs 50.0%; P < .05) and attended fewer PT sessions (38.0 vs 48.4 sessions; P < .001) at 90 days and had a higher IKDC score at 60 days (62.5 vs 55.5; P = .029) compared with the control group. Patient- and physician-perceived efficacy was considered significantly higher in the supplemented group at 60 and 90 days (P < .05). Perceived tolerability of the overall intervention was better in the supplemented group at 30, 60, and 90 days (P < .05). Graft maturation showed more advanced degrees (grades 3 and 4) in the supplemented group at 90 days (61.8% vs 38.2%; P < .01). No intolerance or AEs associated with the nutritional supplement treatment were reported. Conclusion: The combination of the nutritional supplement and PT after ACL reconstruction improved pain, clinical outcome, and graft maturation. Nutritional supplementation showed higher efficacy during the second month of recovery, without causing AEs. Registration: NCT03355651 (ClinicalTrials.gov identifier).
Collapse
|
17
|
Wang L, Wu YR, Ren ST, Yin L, Liu XJ, Cheng FC, Liu WW, Shi DH, Cao ZL, Sun HM. Synthesis and bioactivity of novel C2-glycosyl oxadiazole derivatives as acetylcholinesterase inhibitors. HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2018-0166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
A series of glycosyl-substituted 1,3,4-oxadiazoles were synthesized by cyclization of glycosyl-acylthiosemicarbazides via a base-catalyzed reaction. The starting glycosyl-acylthiosemicarbazide derivatives were obtained by the reaction of glycosyl isothiocyanate with various hydrazides. The acetylcholinesterase (AChE) inhibitory activities of the products were tested by Ellman’s method. The most active compounds were subsequently evaluated for the 50% inhibitory concentration (IC50) values. N-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-glucopyranosyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole-2-amine (6i) possesses the best AChE -inhibition activity with an IC50 of 1.61±0.34 μm.
Collapse
|
18
|
DiNubile N. Glucosamine and Chondroitin Sulfate: What Has Been Learned Since the Glucosamine/chondroitin Arthritis Intervention Trial. Orthopedics 2018; 41:200-207. [PMID: 29771395 DOI: 10.3928/01477447-20180511-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/13/2017] [Indexed: 02/03/2023]
Abstract
Glucosamine and chondroitin sulfate, alone or in combination, are used worldwide by individuals suffering from osteoarthritis pain. They are by prescription in some countries but are available as over-the-counter dietary supplements in other countries, such as the United States. The inconclusive results of the National Institutes of Health-sponsored Glucosamine/chondroitin Arthritis Intervention Trial (GAIT) did little to clarify the efficacy of these agents. However, some newer studies have provided a better perspective on the potential benefits that they can offer. Because the 2 in combination showed a significant level of efficacy in the moderate-to-severe knee osteoarthritis subgroup of the GAIT, this review examines the randomized, controlled trials published from that time to the present. The findings of these studies are mixed, owing in some cases to the high rate of placebo response added to by the ethical incorporation of rescue analgesics into protocols designed to evaluate the slow-acting, subtle effects of glucosamine and chondroitin sulfate in combination. The strong influence of the placebo effect and confounding of results by rescue analgesics point to the importance of objective measurement tools such as osteoarthritis biomarker panels in long-term glucosamine/chondroitin sulfate clinical trials with less reliance on the subjective measurement tools commonly used in osteoarthritis trials of pharmaceuticals. [Orthopedics. 2018; 41(4):200-207.].
Collapse
|
19
|
Chondroitin sulfate and glucosamine sulfate associated to photobiomodulation prevents degenerative morphological changes in an experimental model of osteoarthritis in rats. Lasers Med Sci 2017; 33:549-557. [DOI: 10.1007/s10103-017-2401-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/23/2017] [Indexed: 12/22/2022]
|
20
|
Liu XJ, Wang L, Yin L, Cheng FC, Sun HM, Liu WW, Shi DH, Cao ZL. Synthesis and Biological Evaluation of Novel Glycosyl-Containing 1,2,4-Triazolo[3,4-b][1,3,4]Thiadiazole Derivatives as Acetylcholinesterase Inhibitors. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x15064232103047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An efficient protocol for the synthesis of novel glycosyl-containing 1,2,4-triazolo[3,4- b][1,3,4]thiadiazole derivatives starting from the commercially available D-glucosamine hydrochloride is described by reaction of glycosyl isothiocyanate with various aminotriazoles in DMF. Glycosyl isothiocyanate is an important intermediate and synthetic methods are discussed. The acetylcholinesterase inhibitory activity of these compounds was tested by Ellman's method. It was found that most compounds exhibited over 90% inhibition and they were subsequently evaluated for their IC50 values.
Collapse
Affiliation(s)
- Xiu-Jian Liu
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Lei Wang
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Long Yin
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Feng-Chang Cheng
- China University of Mining and Technology, Xuzhou 221116, P.R. China
| | - Hui-Min Sun
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Wei-Wei Liu
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang 222005, P.R. China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Da-Hua Shi
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang 222005, P.R. China
| | - Zhi-Ling Cao
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang 222005, P.R. China
| |
Collapse
|
21
|
IL-10 and TGF-β: Roles in chondroprotective effects of Glucosamine in experimental Osteoarthritis? PATHOPHYSIOLOGY 2017; 24:45-49. [DOI: 10.1016/j.pathophys.2017.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 01/01/2023] Open
|
22
|
van der Made AD, Reurink G, Tol JL, Marotta M, Rodas G, Kerkhoffs GM. Emerging Biological Approaches to Muscle Injuries. BIO-ORTHOPAEDICS 2017:227-238. [DOI: 10.1007/978-3-662-54181-4_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Yin L, Cheng F, Li Q, Liu W, Liu X, Cao Z, Shi D. Synthesis and biological evaluation of novel C1-glycosyl thiazole derivatives as acetylcholinesterase inhibitors. JOURNAL OF CHEMICAL RESEARCH 2016. [DOI: 10.3184/174751916x14711768865726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new series of C1-glycosyl thiazole derivatives was synthesised by the reaction of 1-(1,3,4,6-tetra- O-acetyl-2-deoxy-β-D-glucopyranos-2-yl)thiourea with 2-bromoacetophenone derivatives. Subsequent removal of the acetyl groups were conducted using NaOMe–MeOH. The structures of all new products were confirmed by IR, 1H NMR and HRMS (ESI). The acetylcholinesterase inhibitory activities of these new compounds were tested. Among them, N-(2-acetamido-3,4,6-tri- O-acetyl-2-deoxy-β-D-glucopyranosyl)-4-(4-nitrophenyl)-1,3-thiazole-2-amine showed the best activity with an inhibition rate of 43.21%.
Collapse
Affiliation(s)
- Long Yin
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Feng–Chang Cheng
- China University of Mining and Technology, Xuzhou 221116, P.R. China
| | - Qu–Xiang Li
- China University of Mining and Technology, Xuzhou 221116, P.R. China
| | - Wei–Wei Liu
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang 222005, P.R. China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Xiu–Jian Liu
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Zhi–Ling Cao
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang 222005, P.R. China
| | - Da–Hua Shi
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang 222005, P.R. China
| |
Collapse
|