1
|
Gao W, Xu Y, Chen W, Wu J, He Y. A systematic review of advances in preparation, structures, bioactivities, structural-property relationships, and applications of Polyporus umbellatus polysaccharides. Food Chem X 2025; 25:102161. [PMID: 39885918 PMCID: PMC11780138 DOI: 10.1016/j.fochx.2025.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025] Open
Abstract
Polyporus umbellatus (Pers.) Fries is an edible fungus species belonging to the Polygonaceae family. Polysaccharides, the predominant bioactive compounds in P. umbellatus, have been widely used due to its abundant nutritional and medicinal benefits. Since the first unrefined P. umbellatus polysaccharides (PUPs) was obtained in 1973, they have been studied for half a century, and are currently gaining increasing attention. These research findings are however quite fragmented. In this review, current relevant research data regarding techniques for the preparation (extraction, fractionation, and purification) and structural characterization (molecular weight, monosaccharide composition, glycosidic bond types, and structural features) of PUPs covering a period of over 50 years are reviewed. Furthermore, this review comprehensively examines the functional properties, structure-activity relationships, and current applications of PUPs. Future research should prioritize standardized preparation process, reliable quality control and specific mechanisms to further advance the utilization and development of PUPs and their related products.
Collapse
Affiliation(s)
- Wei Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yongbin Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Weihao Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jianjun Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| |
Collapse
|
2
|
Ren S, Liu H, Sang Q, Sun Y, Li L, Chen W. Polyporus umbellatus, A Precious Rare Fungus With Good Pharmaceutical and Food Value. Eng Life Sci 2025; 25:e202400048. [PMID: 39834535 PMCID: PMC11742960 DOI: 10.1002/elsc.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Polyporus umbellatus is a rare porous fungus that exhibits notable pharmacological activities. Particularly, due to its diuretic properties, it is considered an important source of targeted drugs for the treatment of kidney disease. Extensive research has been conducted on this fungus, focusing not only on its challenging cultivation techniques but also on its diverse array of medicinal ingredients, including polysaccharides and steroids. These active compounds demonstrate considerable variability and exhibit a wide range of medicinal properties. As a result, extracting, separating, and purifying these active compounds has become a subject of interest. This review aims to provide a comprehensive overview of the types, structures, and physicochemical properties of these active compounds. Additionally, the medicinal effects of P. umbellatus are thoroughly examined, offering valuable insights into the utilization of its resources and the rational development of medical fungi.
Collapse
Affiliation(s)
- Sizhu Ren
- College of Life SciencesLangfang Normal UniversityLangfangHebeiChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangHebeiChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangHebeiChina
| | - Hua Liu
- College of Life SciencesLangfang Normal UniversityLangfangHebeiChina
| | - Qing Sang
- College of Life SciencesLangfang Normal UniversityLangfangHebeiChina
| | - Yifan Sun
- College of Life SciencesLangfang Normal UniversityLangfangHebeiChina
| | - Liyan Li
- College of Life SciencesLangfang Normal UniversityLangfangHebeiChina
| | - Wenjie Chen
- College of Life SciencesLangfang Normal UniversityLangfangHebeiChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangHebeiChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangHebeiChina
| |
Collapse
|
3
|
Li S, Liu Y, Liu L, Li B, Guo S. Genome Sequencing Providing Molecular Evidence of Tetrapolar Mating System and Heterothallic Life Cycle for Edible and Medicinal Mushroom Polyporus umbellatus Fr. J Fungi (Basel) 2024; 11:15. [PMID: 39852434 PMCID: PMC11766841 DOI: 10.3390/jof11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
Polyporus umbellatus is a species whose sclerotia have been extensively employed in traditional Chinese medicine, which has diuretic, antitumor, anticancer, and immune system enhancement properties. However, prolonged asexual reproduction has resulted in significant homogenization and degeneration of seed sclerotia. In contrast, sexual reproduction has emerged as an effective strategy to address these challenges, with a distinct mating system serving as the foundation for the implementation of sexual breeding. This study presents the first sequencing and assembly of the genome of P. umbellatus, thereby providing an opportunity to investigate the mating system at the genomic level. Based on the annotated mating-type loci within the genome, monokaryotic offspring exhibiting different mating-types were identified. Through the integration of traditional mating tests, the tetrapolar mating system of P. umbellatus was distinctly elucidated. The resequencing of monokaryotic strains with four different mating-types, along with comparative analyses of mating-type loci, revealed the HD1 and HD2 (HD, homeodomain) genes determined the mating A types, and the PR4, PR5, and PR6 (PR, pheromone receptor) genes determined the mating B types. Meanwhile, this study offers a successful case study in the molecular investigation of mating systems. Additionally, the number of sterigma and basidiospores on each basidium was examined using scanning electron microscopy, while the nuclei of basidiospores and basidia at various developmental stages were analyzed through DAPI staining. This research clarifies the heterothallic life cycle of P. umbellatus. The findings of this study are expected to facilitate advancements in genetic research, breeding development, strain improvement, and the industry of P. umbellatus.
Collapse
Affiliation(s)
- Shoujian Li
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (S.L.); (Y.L.); (L.L.); (B.L.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Youyan Liu
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (S.L.); (Y.L.); (L.L.); (B.L.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Liu Liu
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (S.L.); (Y.L.); (L.L.); (B.L.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Bing Li
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (S.L.); (Y.L.); (L.L.); (B.L.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shunxing Guo
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (S.L.); (Y.L.); (L.L.); (B.L.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
4
|
Zhuang J, Mo J, Huang Z, Yan Y, Wang Z, Cao X, Yang C, Shen B, Zhang F. Mechanisms of Xiaozheng decoction for anti-bladder cancer effects via affecting the GSK3β/β-catenin signaling pathways: a network pharmacology-directed experimental investigation. Chin Med 2023; 18:104. [PMID: 37608369 PMCID: PMC10464372 DOI: 10.1186/s13020-023-00818-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE The combination of Xiaozheng decoction with postoperative intravesical instillation has been shown to improve the prognosis of bladder cancer patients and prevent recurrence. However, the mechanisms underlying the efficacy of this herbal formula remain largely unclear. This research aims to identify the important components of Xiaozheng decoction and explore their anti-bladder cancer effect and mechanism using network pharmacology-based experiments. METHODS The chemical ingredients of each herb in the Xiaozheng decoction were collected from the Traditional Chinese Medicine (TCM) database. Network pharmacology was employed to predict the target proteins and pathways of action. Disease databases were utilized to identify target genes associated with bladder cancer. A Protein-Protein Interaction (PPI) network was constructed to illustrate the interaction with intersected target proteins. Key targets were identified using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis. A compound-target-pathway network was established after molecular docking predictions. In vitro experiments with bladder cancer cell lines were conducted using core chemical components confirmed by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-qTOF-MS) to verify the conclusions of network pharmacology. RESULTS 45 active compounds were extracted, and their relationships with Traditional Chinese Medicines (TCMs) and protein targets were presented, comprising 7 herbs, 45 active compounds, and 557 protein targets. The intersection between potential TCM target genes and bladder cancer-related genes yielded 322 genes. GO and KEGG analyses indicated that these targets may be involved in numerous cancer-related pathways. Molecular docking results showed that candidate compounds except mandenol could form stable conformations with the receptor. In vitro experiments on three bladder cancer cell lines demonstrated that quercetin and two other impressive new compounds, bisdemethoxycurcumin (BDMC) and kumatakenin, significantly promoted cancer cell apoptosis through the B-cell lymphoma 2/Bcl-2-associated X (Bcl-2/BAX) pathway and inhibited proliferation and migration through the glycogen synthase kinase 3 beta (GSK3β)/β-catenin pathway. CONCLUSION By employing network pharmacology and conducting in vitro experiments, the mechanism of Xiaozheng decoction's effect against bladder cancer was tentatively elucidated, and its main active ingredients and targets were identified, providing a scientific basis for future research.
Collapse
Affiliation(s)
- Jingming Zhuang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahang Mo
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Zhengnan Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyi Wang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
He D, Ren Y, Hua X, Zhang J, Zhang B, Dong J, Efferth T, Ma P. Phytochemistry and bioactivities of the main constituents of Polyporus umbellatus (Pers.) Fries. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154196. [PMID: 35667259 DOI: 10.1016/j.phymed.2022.154196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Edible fungi resources have good application prospects in the research and development of food, medicine, and health products. Polyporus umbellatus (Pers.) Fries, as a precious edible and medicinal fungus, has long been used by Chinese medicine to treat urinary systems and related kidney diseases. PURPOSE In recent years, researchers have discovered and isolated a variety of active compounds from P. umbellatus. Modern phytochemical and pharmacological experiments showed that the crude extract of P. umbellatus had many biological functions and could be widely used in the fields of food, pharmaceutical and cosmetics. This paper summarizes the active components of P. umbellatus, through elaborating its mechanism of action, further clarify the action substances, in order to improve the utilization rate of P. umbellatus, promote the development and application of P. umbellatus in food, pharmaceutical and cosmetics industry. METHODS In this paper, the literatures related to P. umbellatus were summarized and classified by "China National Knowledge Instructure (CNKI)", "Google Scholar" and "Web of Science". Compared with other articles, this work systematically sorted out all the active substances with clear structures in P. umbellatus. On this basis, combined with the chemical composition of P. umbellatus, its functional efficacy was expounded, and the effects of different types of active substances in P. umbellatus were further presented. RESULTS The main chemical constituents of P. umbellatus include polysaccharide and sterol, and the secondary compounds include fatty acids, phenols and other small molecules. These active substances endowed P. umbellatus anti-cancer, antibacterial, diuretic, antioxidant, enhance immune system, promote hair growth and other pharmacological activities, which has been verified many times in vivo and in vitro experiments. CONCLUSION Modern in vitro or in vivo pharmacological experiments and clinical practice for the efficacy of P. umbellatus provides a strong support, and the separation of compounds in P. umbellatus has also deepened people's understanding of this traditional Chinese medicine, greatly promoted the development and application of P. umbellatus. However, the complex active substances of poring also hinder the research of P. umbellatus to some extent, and the mechanism of action and potential synergistic or antagonistic effect of the mixture of various active ingredients have not been clearly analyzed. How to use the bioactivity-guided separation strategy to identify more bioactive components and analyze the molecular mechanism of the main active components have become the main problems of P. umbellatus research, but also provides a direction for the further study of it.
Collapse
Affiliation(s)
- Di He
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yafei Ren
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xin Hua
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jiao Zhang
- College of Innovation and Experiment, Northwest A&F University, Yangling 712100, China
| | - Bin Zhang
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany.
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Wang C, Tu H, Yang L, Ma C, Hu J, Luo J, Wang H. FOXN3 inhibits cell proliferation and invasion via modulating the AKT/MDM2/p53 axis in human glioma. Aging (Albany NY) 2021; 13:21587-21598. [PMID: 34511432 PMCID: PMC8457572 DOI: 10.18632/aging.203499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022]
Abstract
This study aimed to evaluate the biological role of forkhead box N3 (FOXN3) in human glioma and clarify the possible molecular mechanisms. FOXN3 expression patterns in clinical tissue specimens were characterized via qPCR and Western blotting. Kaplan-Meier survival curve was applied to assess the correlation between FOXN3 expression and overall survival. Effects of FOXN3 over-expression and depletion on glioma cell proliferation, apoptosis, migration and invasion were assessed by CCK8, colony formation assay, flow cytometry, scratch wound healing assay and Transwell invasion assay, respectively. Moreover, the involvement of AKT/murine double minute 2 (MDM2)/p53 pathway was evaluated. Additionally, tumor transplantation model assay was performed to determine the effects of FOXN3 over-expression on glioma cell growth in vivo. Results showed that FOXN3 was significantly down-regulated in glioma tissues compared with normal tissues. Patients with lower FOXN3 expression exhibited a shorter overall survival time. Gain- and loss-of-function analyses demonstrated that FOXN3 over-expression significantly suppressed proliferation, survival and motility of glioma cells, whereas FOXN3 knockdown remarkably promoted glioma cell proliferation, survival and motility. Furthermore, FOXN3 over-expression inhibited the activation of AKT/MDM2/p53 signaling pathway in glioma cells, while FOXN3 depletion facilitated its activation. Additionally, tumor xenograft assays revealed that FOXN3 over-expression retarded glioma cell growth in vivo. Collectively, these findings indicate that FOXN3 inhibits cell growth and invasion through inactivating the AKT/MDM2/p53 signaling pathway and that FOXN3-AKT/MDM2/p53 axis may represent a novel therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Chaojia Wang
- Department of Neurosurgery, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China
| | - Hanjun Tu
- First School of Clinical Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Ling Yang
- Department of Pediatrics, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China
| | - Chunming Ma
- Department of Rehabilitation, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China
| | - Juntao Hu
- Department of Neurosurgery, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China
| | - Jie Luo
- Department of Neurosurgery, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China
| | - Hui Wang
- Department of Neurosurgery, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
7
|
Li N, Wang C, Georgiev MI, Bajpai VK, Tundis R, Simal-Gandara J, Lu X, Xiao J, Tang X, Qiao X. Advances in dietary polysaccharides as anticancer agents: Structure-activity relationship. Trends Food Sci Technol 2021; 111:360-377. [DOI: 10.1016/j.tifs.2021.03.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother 2020; 133:111044. [PMID: 33378952 DOI: 10.1016/j.biopha.2020.111044] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, slight side effects and good therapeutic effects. Good anti-tumor effects are shown by Traditional Chinese Medicine prescription, Chinese patent medicine, single Traditional Chinese Medicine and Traditional Chinese medicine monomer compound. Clinically, TCM prolonged the survival time of patients and improved the life quality of patients, due to less side effects. Cancer metastasis is a complex process involving numerous steps, multiple genes and their products. During the process of tumor metastasis, firstly, cancer cell increases its proliferative capacity by reducing autophagy and apoptosis, and then the cancer cell capacity is stimulated by increasing the ability of tumors to absorb nutrients from the outside through angiogenesis. Both of the two steps can increase tumor migration and invasion. Finally, the purpose of tumor metastasis is achieved. By inhibiting autophagy and apoptosis of tumor cells, angiogenesis and EMT outside the tumor can inhibit the invasion and migration of cancer, and consequently achieve the purpose of inhibiting tumor metastasis. This review explores the research achievements of Traditional Chinese Medicine on breast cancer, lung cancer, hepatic carcinoma, colorectal cancer, gastric cancer and other cancer metastasis in the past five years, summarizes the development direction of TCM on cancer metastasis research in the past five years and makes a prospect for the future.
Collapse
|
9
|
Gao X, Li X, Mu J, Ho CT, Su J, Zhang Y, Lin X, Chen Z, Li B, Xie Y. Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide. Int J Biol Macromol 2020; 152:605-615. [PMID: 32087224 DOI: 10.1016/j.ijbiomac.2020.02.199] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 01/07/2023]
Abstract
Selenium nanoparticles (SeNPs), a novel selenium form, have attracted worldwide attention due to their bioactivities and low toxicity. This study aimed to assess the physicochemical characterization, storage stability, and anti-proliferative activities of SeNPs stabilized by Polyporus umbellatus polysaccharide (PUP). Results showed that orange-red, zero-valent, amorphous and spherical SeNPs with mean diameter of approximately 82.5 nm were successfully prepared by using PUP as a capping agent. PUP-SeNPs solution stored at 4 °C in dark condition could be stable for at least 84 days. Moreover, PUP-SeNPs treatment inhibited four cancer cell lines proliferation in a dose-dependent manner, while no significant cytotoxicity towards three normal cell lines was observed. Comparing with the other cancer cell lines (HepG2, Hela, and HT29), PUP-SeNPs displayed the most sensitive towards MDA-MB-231 cells with an IC50 value of 6.27 μM. Furthermore, PUP-SeNPs significantly up-regulated Bax/Bcl-2 ratio, promoted cytochrome c release, increased caspase-9, -8 and -3 activities, and poly (ADP-ribose) polymerase cleavage, suggesting that mitochondria-mediated and death receptor-mediated apoptotic pathways were activated in MDA-MB-231 cells. Besides, PUP-SeNPs possessed better anti-proliferative activity than selenomethionine as well as lower cytotoxicity than sodium selenite. Taken together, PUP-SeNPs have strong potential as a dietary supplement for application in cancer chemoprevention, especially breast cancer.
Collapse
Affiliation(s)
- Xiong Gao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Xiaofei Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Jingjing Mu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Jiyan Su
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuting Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Bin Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China.
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China.
| |
Collapse
|
10
|
Monosaccharide analysis and fingerprinting identification of polysaccharides from Poria cocos and Polyporus umbellatus by HPLC combined with chemometrics methods. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
11
|
Ailanthone exerts anticancer effect by up-regulating miR-148a expression in MDA-MB-231 breast cancer cells and inhibiting proliferation, migration and invasion. Biomed Pharmacother 2019; 109:1062-1069. [DOI: 10.1016/j.biopha.2018.10.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/13/2022] Open
|
12
|
Zhou W, Shi K, Ji L, Wu R, Chen Y, Tu H, Zhou B, Wang Z, Zhang M. Inhibition of Phospholipase D1 mRNA Expression Slows Down the Proliferation Rate of Prostate Cancer Cells That Have Transited to Androgen Independence. J Cancer 2018; 9:3620-3625. [PMID: 30310520 PMCID: PMC6171019 DOI: 10.7150/jca.26689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
To explore the role of phospholipase D1 (PLD1) mRNA in transition of prostate cancer (PCa) cells to androgen independence, we used Arraystar Human LncRNA Microarray V3.0 to detect and compare the differential expression of PLD1 and its signaling pathway-related gene in standard androgen dependence prostate cancer (ADPC) cell line LNCaP before and after the occurrence of androgen independence prostate cancer (AIPC) transition. In addition, we used the shRNA lentiviral vector to inhibit the PLD1 mRNA expression and observed its effect on LNCaP cell proliferation after AIPC transition by using MTS method. The results showed that the expression level of PLD1 mRNA was increased by 373-fold after AIPC transition (P<0.05); the PI3K/AKT signaling pathway-related gene expression was also elevated (P<0.05); the growth rate of LNCaP cells that had transited to androgen independence was reduced by about 30% when the PLD1 mRNA expression was inhibited by the shRNA lentivirus as compared with the negative control group (P<0.05). All these results suggest that PLD1 mRNA and the related PI3K/AKT signaling pathway may play an important role in AIPC. Down-regulating the expression of PLD1 mRNA could to some extent inhibit the proliferation rate of PCa cells after AIPC transition.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| | - Keqing Shi
- Liver Disease Center, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000,China
| | - Lili Ji
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| | - Ruihao Wu
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| | - Yuehui Chen
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| | - Hongxiang Tu
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| | - Beibei Zhou
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| | - Zhongyong Wang
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| | - Meijuan Zhang
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| |
Collapse
|
13
|
Mao Y, Hao J, Jin ZQ, Niu YY, Yang X, Liu D, Cao R, Wu XZ. Network pharmacology-based and clinically relevant prediction of the active ingredients and potential targets of Chinese herbs in metastatic breast cancer patients. Oncotarget 2018; 8:27007-27021. [PMID: 28212580 PMCID: PMC5432314 DOI: 10.18632/oncotarget.15351] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/22/2017] [Indexed: 01/24/2023] Open
Abstract
Chinese Herbal Medicine (CHM) plays a significant role in breast cancer treatment. We conduct the study to ascertain the relative molecular targets of effective Chinese herbs in treating stage IV breast cancer.Survival benefit of CHM was verified by Kaplan-Meier method and Cox regression analysis. A bivariate correlation analysis was used to find and establish the effect of herbs in complex CHM formulas. A network pharmacological approach was adopted to explore the potential mechanisms of CHM.Patients in the CHM group had a median survival time of 55 months, which was longer than the 23 months of patients in the non-CHM group. Cox regression analysis indicated that CHM was an independent protective factor. Correlation analysis showed that 10 herbs were strongly correlated with favorable survival outcomes (P<0.01). Bioinformatics analyses suggested that the 10 herbs might achieve anti-breast cancer activity primarily through inhibiting HSP90, ERα and TOP-II related pathways.
Collapse
Affiliation(s)
- Yu Mao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Jian Hao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Zi-Qi Jin
- Tianjin Medical University, Tianjin, 300070, China
| | | | - Xue Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Dan Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Rui Cao
- Zhong-Shan-Men Inpatient Department, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xiong-Zhi Wu
- Zhong-Shan-Men Inpatient Department, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| |
Collapse
|
14
|
Qu H, Yang W, Li J. Structural characterization of a polysaccharide from the flower buds of Tussilago farfara, and its effect on proliferation and apoptosis of A549 human non-small lung cancer cell line. Int J Biol Macromol 2018; 113:849-858. [PMID: 29505876 DOI: 10.1016/j.ijbiomac.2018.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 01/23/2023]
Abstract
In present study, we purified a polysaccharide, TFPB1, from the flower buds of Tussilago farfara using DEAE-cellulose 52 anion-exchange and Sephacryl S-300 HR gel filtration chromatography. TFPB1 was a homogeneous polysaccharide with a molecular weight of 37.8kDa and composed of rhamnose, galacturonic acid, glucose, galactose, and arabinose, in a ratio of 13:13:1:7:12. Methylation and NMR results demonstrated that TFPB1 contained a rhamnogalacturonan I backbone consisting of a repeat disaccharide unit →4)-α-D-GalAp-(1→2)-α-L-Rhap-(1→, substituted by various type II arabinogalactan branches including terminal galactose, (1→3)-β-D-galactan and (1→5)-α-L-arabinan, attached to the O-4 of (1→2)-α-L-Rhap. TFPB1 was found to inhibit cell proliferation of A549 cells and induce cell apoptosis in vitro. Furthermore, TFPB1 downregulated the phosphorylation of Akt, and upregulated caspase-3, Fas, FasL, and Bax expression, but downregulated Bcl-2 expression. Therefore, TFPB1 exhibited anti-proliferative and anti-apoptotic effect partly depending on the suppression of Akt signaling pathway. These findings provided us a potential chemotherapeutic strategy for the treatment of human non-small cell lung cancer.
Collapse
Affiliation(s)
- Honglan Qu
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, Yakeshi 022150, China
| | - Wei Yang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jie Li
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|
15
|
Yu X, Tang W, Yang Y, Tang L, Dai R, Pu B, Feng C, Xia J. Long noncoding RNA NKILA enhances the anti-cancer effects of baicalein in hepatocellular carcinoma via the regulation of NF-κB signaling. Chem Biol Interact 2018; 285:48-58. [PMID: 29481769 DOI: 10.1016/j.cbi.2018.02.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/11/2018] [Accepted: 02/22/2018] [Indexed: 01/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancer and leading cause of cancer-related death worldwide. Baicalein, a principle flavonoid, has shown attractive anti-cancer effects on HCC. However, the underlying molecular mechanisms and influencing factors contributing to the anti-cancer effects of baicalein on HCC are still largely unknown. Long noncoding RNAs (lncRNAs) have been revealed to be fascinating therapeutic targets for cancers. The roles of NF-κB Interacting LncRNA (NKILA) are recently explored in several cancers. However, the expressions, clinical significances, roles and action mechanisms of NKILA in the anti-cancer effects of baicalein on HCC are unknown. In this study, we found that NKILA is down-regulated in HCC and reduced expression of NKILA indicts poor survival of HCC patients. Functional assays showed that overexpression of NKILA enhances the roles of baicalein on HCC cell proliferation inhibition, apoptosis induction, and migration inhibition in vitro and tumor growth suppression in vivo. Conversely, knockdown of NKILA suppresses the effects of baicalein. Mechanistically, we found that NKILA inhibits IκBα phosphorylation, NF-κB nuclear translocation, and NF-κB activity. NKILA also enhances the inhibitory effects of baicalein on NF-κB signaling. Furthermore, the effects of NKILA on baicalein-induced NF-κB activity inhibition, cell growth inhibition, apoptosis induction, and migration inhibition are reversed by NF-κB nuclear translocation inhibitor JSH-23. Collectively, our data demonstrated that NKILA enhances the anti-cancer effects of baicalein on HCC in vitro and in vivo via the regulation of NF-κB signaling, and implied that the combination of NKILA and baicalein would be potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Xiaolan Yu
- Department of Obstetrics and Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wei Tang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yingcheng Yang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Li Tang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Bangming Pu
- Department of Hepatobiliary Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Feng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Jiyi Xia
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
16
|
Zeng L, Yuan S, Shen J, Wu M, Pan L, Kong X. Suppression of human breast cancer cells by tectorigenin through downregulation of matrix metalloproteinases and MAPK signaling in vitro. Mol Med Rep 2017; 17:3935-3943. [PMID: 29359782 DOI: 10.3892/mmr.2017.8313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/09/2017] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is a major life‑threatening malignancy and is the second highest cause of mortality. The aim of the present study was to investigate the effects of tectorigenin (Tec), a Traditional Chinese Medicine, against human breast cancer cells in vitro. MDA‑MB‑231 and MCF‑7 human breast cancer cells were treated with various concentrations of Tec. Cell proliferation was evaluated using the Cell Counting kit‑8 assay, and apoptosis and the cell cycle were examined by flow cytometry. The migratory and invasive abilities of these cells were detected by Transwell and Matrigel assays, respectively. Metastasis‑, apoptosis‑ and survival‑related gene expression levels were measured by reverse transcription‑quantitative polymerase chain reaction and western blotting. The results indicated that Tec was able to inhibit the proliferation of MDA‑MB‑231 and MCF‑7 cells in a dose‑ and time‑dependent manner. Furthermore, Tec treatment induced apoptosis and G0/G1‑phase arrest, and inhibited cell migration and invasion. Tec treatment decreased the expression of matrix metalloproteinase (MMP)‑2, MMP9, BCL‑2, phosphorylated‑AKT and components of the mitogen‑activated protein kinase (MAPK) signaling pathway, and increased the expression of BCL‑2‑associated X, cleaved poly [ADP‑ribose] polymerase and cleaved caspase‑3. In conclusion, Tec treatment suppressed human breast cancer cells through the downregulation of AKT and MAPK signaling and the upregulated expression and/or activity of the caspase family in vitro. Therefore, Tec may be a potential therapeutic drug to treat human breast cancer.
Collapse
Affiliation(s)
- Linwen Zeng
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Shaofeng Yuan
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Jianliang Shen
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Ming Wu
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Liangming Pan
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Xiangdong Kong
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| |
Collapse
|
17
|
Du WL, Fang Q, Chen Y, Teng JW, Xiao YS, Xie P, Jin B, Wang JQ. Effect of silencing the T‑Box transcription factor TBX2 in prostate cancer PC3 and LNCaP cells. Mol Med Rep 2017; 16:6050-6058. [PMID: 28849151 PMCID: PMC5865808 DOI: 10.3892/mmr.2017.7361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/31/2017] [Indexed: 11/05/2022] Open
Abstract
T‑Box (TBX)‑2 is a member of the T‑box gene family, which is aberrantly expressed in numerous types of malignant tumors, and has previously been demonstrated to be conducive to tumor progression by acting as a transcription factor. However, specific information regarding the expression and function of TBX2 in prostate cancer cells remains to be elucidated. The present study demonstrated that silencing of TBX2 by TBX2 small interfering RNA inhibited cell proliferation and promoted cell senescence. It was demonstrated that knockdown of TBX2 inhibited cell metastatic abilities by upregulating E‑cadherin and downregulating N‑cadherin, Vimentin and fibronectin. In addition, the expression of TBX2 in prostate cancer tissues and tumor adjacent tissues was detected by immunohistochemistry. The results indicated that the expression rates of TBX2 were significantly increased in the cancerous tissues, compared with the healthy tumor adjacent tissue, and TBX2 increased staining was associated with the clinical stage and pathological grade. The findings of the present study therefore suggest that TBX2 expression is markedly increased in prostate cancer and TBX2 may act as a potential beneficial therapeutic target for the future treatment of prostate cancer.
Collapse
Affiliation(s)
- Wen-Liang Du
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Qian Fang
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yue Chen
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jing-Wei Teng
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yong-Shuang Xiao
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Ping Xie
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Bo Jin
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jun-Qi Wang
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
18
|
Zhang L, Zhang H, Zhang H, Benson M, Han X, Li D. Roles of piRNAs in microcystin-leucine-arginine (MC-LR) induced reproductive toxicity in testis on male offspring. Food Chem Toxicol 2017; 105:177-185. [PMID: 28414124 DOI: 10.1016/j.fct.2017.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
In the present study, we evaluated the toxic effects on the testis of the male offspring of MC-LR exposure during fetal and lactational periods. Pregnant females were distributed into two experimental groups: control group and MC-LR group which were exposed to 0 and 10 μg/L of MC-LR, respectively, through drinking water separately during fetal and lactational periods. At the age of 30 days after birth, the male offspring were euthanized. The body weight, testis index, and histomorphology change were observed and the global changes of piwi-interacting RNA (piRNA) expression were evaluated. The results revealed that MC-LR was found in the testis of male offspring, body weight and testis index decreased significantly, and testicular tissue structure was damaged in the MC-LR group. In addition, the exposure to MC-LR resulted in an altered piRNA expression profile and an increase of the cell apoptosis and a decrease of the cell proliferation in the testis of the male offspring. It was reasonable to speculate that the toxic effects on reproductive system of the male offspring in MC-LR group might be mediated by piRNAs through the regulation of the target genes. As far as we are aware, this is the first report showing that MC-LR could play a role in disorder of proliferative and cell apoptosis in the testis of the male offspring by the maternal transmission effect of toxicity.
Collapse
Affiliation(s)
- Ling Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Hui Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Huan Zhang
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden.
| | - Mikael Benson
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|