1
|
Contreras A, Sánchez SA, Rodríguez-Medina C, Botero JE. The role and impact of viruses on cancer development. Periodontol 2000 2024; 96:170-184. [PMID: 38641954 DOI: 10.1111/prd.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 03/16/2024] [Indexed: 04/21/2024]
Abstract
This review focuses on three major aspects of oncoviruses' role in cancer development. To begin, we discuss their geographic distribution, revealing that seven oncoviruses cause 20% of all human cancers worldwide. Second, we investigate the primary carcinogenic mechanisms, looking at how these oncogenic viruses can induce cellular transformation, angiogenesis, and local and systemic inflammation. Finally, we investigate the possibility of SARS-CoV-2 infection reactivating latent oncoviruses, which could increase the risk of further disease. The development of oncovirus vaccines holds great promise for reducing cancer burden. Many unanswered questions about the host and environmental cofactors that contribute to cancer development and prevention remain, which ongoing research is attempting to address.
Collapse
Affiliation(s)
| | - Sandra Amaya Sánchez
- Advanced Periodontology Program, Escuela de Odontología, Universidad del Valle, Cali, Colombia
| | | | | |
Collapse
|
2
|
Forghani-Ramandi MM, Mostafavi B, Bahavar A, Dehghankar M, Siami Z, Mozhgani SH. Illuminating (HTLV-1)-induced adult T-cell leukemia/lymphoma transcriptomic signature: A systems virology approach. Virus Res 2023; 338:199237. [PMID: 37832654 PMCID: PMC10618755 DOI: 10.1016/j.virusres.2023.199237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Adult T-cell leukemia/lymphoma (ATLL) is a poor prognosis malignancy of peripheral T-cells caused by human T-cell leukemia virus type 1 (HTLV-1). The low survival rates observed in the patients are the result of the lack of sufficient knowledge about the disease pathogenesis. METHODS In the present study, we first identified differentially expressed genes in ATLL patients and the cellular signaling pathways affected by them. Then, genes of these pathways were subjected to more comprehensive evaluations, including WGCNA and module validation studies on five external datasets. Finally, potential biomarkers were selected for qRT-PCR validation. RESULTS Thirteen signaling pathways, including Apoptosis, Human T-cell leukemia virus 1 infection, IL-17 signaling pathway, pathways in cancer, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, and seven others were selected for deeper investigations. Results of our in-depth bioinformatics evaluations, highlighted pathways related to regulation of immune responses, T-cell receptor and activation, regulation of cell signaling receptors and messengers, Wnt signaling pathway, and apoptosis as key players in ATLL pathogenesis. MAPK3, PIK3CD, KRAS, NFKB1, TNF, PLCB3, PLCB2, PLCB1, MAPK11, JUN, ITPR1, ADCY1, GNAQ, ADCY3, ADCY4, CHEK1, CCND1, SOS2, BAX, FOS and GNA12 were identified as possible biomarkers. Upregulation of ADCY1 and ADCY3 genes was confirmed via qRT-PCR. CONCLUSIONS In this study, we performed a deep bioinformatic examination on a limited set of genes with high probabilities of involvement in the pathogenesis of ATLL. Our results highlighted signaling pathways and genes with potential key roles in disease formation and resistance against current treatment strategies. Further studies are required to test the possible benefits of highlighted genes as biomarkers and targets of treatment.
Collapse
Affiliation(s)
| | - Behnam Mostafavi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Tehran, Iran; Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Atefeh Bahavar
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Dehghankar
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zeinab Siami
- Department Infectious Disease and Tropical Medicine, Ziaeian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Keikha M, Ali-Hassanzadeh M, Bagheri R, Karbalaei M. Dysregulation of immune gene expression profiles during HTLV-1 infection. Meta Gene 2021; 30:100944. [DOI: 10.1016/j.mgene.2021.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
4
|
Ducasa N, Grasso D, Benencio P, Papademetrio DL, Biglione M, Kashanchi F, Berini C, Garcia MN. Autophagy in Human T-Cell Leukemia Virus Type 1 (HTLV-1) Induced Leukemia. Front Oncol 2021; 11:641269. [PMID: 33869030 PMCID: PMC8045967 DOI: 10.3389/fonc.2021.641269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 12/23/2022] Open
Abstract
Viruses play an important role in the development of certain human cancers. They are estimated to contribute 16% to all human cancers. Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus to be discovered and is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive T-cell malignancy with poor prognosis. HTLV-1 viral proteins interact with mechanisms and proteins present in host cells for their own benefit, evading the immune system and promoting the establishment of disease. Several viruses manipulate the autophagy pathway to achieve their infective goals, and HTLV-1 is not the exception. HTLV-1 Tax viral protein engages NF-κB and autophagy pathways prone favoring viral replication and T cell transformation. In this review we focus on describing the relationship of HTLV-1 with the autophagy machinery and its implication in the development of ATLL.
Collapse
Affiliation(s)
- Nicolás Ducasa
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Grasso
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Paula Benencio
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela L. Papademetrio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mirna Biglione
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Carolina Berini
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Noé Garcia
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Bastos Ferreira AP, Cassilhas APP, Moura P, Sampaio Rocha-Filho PA. Intrinsic and Extrinsic Cell Apoptotic Pathways in Patients with HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis: A Systematic Review. Viral Immunol 2021; 34:380-391. [PMID: 33470891 DOI: 10.1089/vim.2020.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We aimed to verify the influence of intrinsic and extrinsic cell apoptotic pathways on the inhibition of cellular apoptosis in patients with tropical spastic paralysis/myelopathy related to human T cell lymphotropic virus type 1. The databases accessed were PubMed, Scopus, Science Direct, and Web of Science. Neither the time of publishing nor the language of the articles was limited. The descriptors used for this systematic literature review were: Tropical Paraparesis, Proto-Oncogenic Protein C, Bcl-2, Bcl-X Protein, Bax protein, Fas ligand (FasL) protein, Fas receptor, TNF-related apoptosis-inducing ligand and Fas-associated protein with death domain (FADD)-like apoptosis regulating. The search resulted in 546 articles from which 9 articles were selected for analysis; ranging from serum levels of Bcl-2, Fas and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) measured by enzyme-linked immunosorbent assay and the levels of cellular expression of Bcl-2 and Bcl-xL the TCD4+ lymphocytes accessed by western blot. Most studies accessed either gene expression or polymorphism of Fas, FasL, and TRAIL in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), whereas one study used flow cytometry and fluorescence to determine Fas expression. Increased Bcl-xL expression inhibited T lymphocyte apoptosis, whereas Bcl-2, serum levels, and cellular expression did not influence T lymphocyte apoptosis and serum levels of Fas were significantly higher and associated with markers of leukocyte activation in patients with HAM/TSP. In addition, Fas polymorphism (FAS-670AA) was associated with higher proviral load. There is a need for additional research on this issue since the number of patients was small and the studies presented higher heterogeneity.
Collapse
Affiliation(s)
- Ana Patrícia Bastos Ferreira
- Post-graduation Program in Neuropsychiatry and Behavioral Sciences (POSNEURO), Federal University of Pernambuco (UFPE), Recife, Brazil
| | | | | | - Pedro Augusto Sampaio Rocha-Filho
- Post-graduation Program in Neuropsychiatry and Behavioral Sciences (POSNEURO), Federal University of Pernambuco (UFPE), Recife, Brazil.,Division of Neuropsychiatry, Centro de Ciências Médicas, Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
6
|
Mohammadi A, Yazdi SZ, Poursina Z, Hampson IN, Vakili V, Sahebkar A, Akbarien MM, Rahimi H, Vakili R, Boostani R, Rafatpanah H. Nanomicellar Curcumin Supplementation Improves the Clinical Manifestations of HAM/TSP Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:347-359. [DOI: 10.1007/978-3-030-73234-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Ghazvini K, Youssefi M, Keikha M. Expression changes of cytotoxicity and apoptosis genes in HTLV-1-associated myelopathy/tropical spastic paraparesis patients from the perspective of system virology. Access Microbiol 2020; 2:acmi000088. [PMID: 32974568 PMCID: PMC7470310 DOI: 10.1099/acmi.0.000088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023] Open
Abstract
Although human T-cell lymphotropic virus type-1 (HTLV-1) was the first retrovirus among human pathogens to be identified, insufficient information on the pathogenesis of HTLV-1 infection means that no precise mechanism has yet been provided for HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Based on previous studies, it was found that apoptosis and inflammation stimulation were among the most important mechanisms underlying HAM/TSP. The present study provides an in-silico analysis of the microarray data related to HAM/TSP patients. Expression changes of the genes responsible for cytotoxicity and apoptosis processes of HAM/TSP patients and asymptomatic carriers were investigated. Expression of the genes involved in cytotoxicity and apoptosis in HAM/TSP patients was decreased; hence, a model was proposed indicating that the spread of immune responses in HAM/TSP may be due to expression of HTLV-1 virulence factors and the resistance of HTLV-1-infected cells to apoptosis.
Collapse
Affiliation(s)
- Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Youssefi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Mohammadi A, Fazeli B, Poursina Z, Tehranian F, Vakili V, Boostani R, Rafatpanah H. HTLV-1-infected asymptomatic carriers compared to HAM/TSP patients over-express the apoptosis- and cytotoxicity-related molecules. Med Microbiol Immunol 2019; 208:835-844. [PMID: 31317252 DOI: 10.1007/s00430-019-00625-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/10/2019] [Indexed: 01/01/2023]
Abstract
HTLV-1 infection causes a chronic progressive debilitating neuroinflammatory disease which is called, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). One of the host defense mechanisms against viral infection is apoptosis which may control HTLV-1 infection. Therefore, we aimed to investigate this process and its interaction with viral factors in HTLV-1-infected asymptomatic carriers (ACs) compared to HAM/TSP patients. Fas, FasL, TRAIL, perforin, granzyme A, granzyme B, and granulysin gene expression and serum levels of Fas, FasL, TRAIL, and granulysin in the peripheral blood of 21 sex- and age-matched healthy controls (HCs), ACs, and HAM/TSP patients were evaluated. Also, the level of granulysin secretion in the cell culture supernatant was measured. Finally, the correlation of the expression of these molecules with HTLV-1 proviral load (PVL), Tax, and HBZ mRNA expression was analyzed. ACs compared to HAM/TSP patients significantly over-expressed the Fas, FasL, TRAIL, perforin, and granzyme B molecules. Fas, FasL, TRAIL, and granulysin serum levels were not different among studied groups; whereas, the secretion of granulysin was significantly decreased in ACs and HAM/TSP patients compared to HCs. Also, HAM/TSP patients expressed higher levels of HTLV-1 PVL, Tax, and HBZ mRNA. In addition, in ACs, inverse correlations between the Fas, FasL, TRAIL, perforin, granzyme B, and granulysin levels with HBZ mRNA expression were seen. ACs compared to HAM/TSP patients over-expressed the apoptosis- and cytotoxicity-related molecules. It could be concluded that successful control of the HTLV-1 infection and suppression of HAM/TSP development stem from the strong apoptosis and cytotoxic activity in the peripheral blood of ACs.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahare Fazeli
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Poursina
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farahnaz Tehranian
- Research Center of Iranian Blood Transfusion Organization, Mashhad, Khorasan Razavi, Iran
| | - Veda Vakili
- Community Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Rahimi K, Ahmadi A, Hassanzadeh K, Soleimani Z, Sathyapalan T, Mohammadi A, Sahebkar A. Targeting the balance of T helper cell responses by curcumin in inflammatory and autoimmune states. Autoimmun Rev 2019; 18:738-748. [PMID: 31059845 DOI: 10.1016/j.autrev.2019.05.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
CD4+ T helper (Th) cells are a crucial player in host defense but under certain conditions can contribute to the pathogenesis of inflammatory and autoimmune diseases. Beside the Th1/Th2 subset, several additional Th subsets have been identified, each with a distinctive transcription factor, functional properties, signature cytokine profile, and possible role in the pathophysiology of diseases. These newer Th subsets include Th17, regulatory Th cells (Tregs), and more recently, Th9, Th22, and follicular T helper cells. Interestingly, imbalance of Th subsets contributes to the immunopathology of several disease states. Therefore, targeting the imbalance of Th subsets and their signature cytokine profiles by a safe, effective and inexpensive nutraceutical agent such as curcumin could be helpful to treat autoimmune and inflammatory diseases. In this study different Th subsets and how the imbalance of these subsets could promote pathology of several diseases has been reviewed. Furthermore, the role of curcumin in this process will be discussed and the impact of targeting Th subsets by curcumin.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Soleimani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
10
|
Fochi S, Bergamo E, Serena M, Mutascio S, Journo C, Mahieux R, Ciminale V, Bertazzoni U, Zipeto D, Romanelli MG. TRAF3 Is Required for NF-κB Pathway Activation Mediated by HTLV Tax Proteins. Front Microbiol 2019; 10:1302. [PMID: 31244811 PMCID: PMC6581700 DOI: 10.3389/fmicb.2019.01302] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/24/2019] [Indexed: 01/23/2023] Open
Abstract
Human T-cell leukemia viruses type 1 (HTLV-1) and type 2 (HTLV-2) share a common genome organization and expression strategy but have distinct pathological properties. HTLV-1 is the etiological agent of Adult T-cell Leukemia (ATL) and of HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), whereas HTLV-2 does not cause hematological disorders and is only sporadically associated with cases of subacute myelopathy. Both HTLV genomes encode two regulatory proteins that play a pivotal role in pathogenesis: the transactivating Tax-1 and Tax-2 proteins and the antisense proteins HBZ and APH-2, respectively. We recently reported that Tax-1 and Tax-2 form complexes with the TNF-receptor associated factor 3, TRAF3, a negative regulator of the non-canonical NF-κB pathway. The NF-κB pathway is constitutively activated by the Tax proteins, whereas it is inhibited by HBZ and APH-2. The antagonistic effects of Tax and antisense proteins on NF-κB activation have not yet been fully clarified. Here, we investigated the effect of TRAF3 interaction with HTLV regulatory proteins and in particular its consequence on the subcellular distribution of the effector p65/RelA protein. We demonstrated that Tax-1 and Tax-2 efficiency on NF-κB activation is impaired in TRAF3 deficient cells obtained by CRISPR/Cas9 editing. We also found that APH-2 is more effective than HBZ in preventing Tax-dependent NF-κB activation. We further observed that TRAF3 co-localizes with Tax-2 and APH-2 in cytoplasmic complexes together with NF-κB essential modulator NEMO and TAB2, differently from HBZ and TRAF3. These results contribute to untangle the mechanism of NF-κB inhibition by HBZ and APH-2, highlighting the different role of the HTLV-1 and HTLV-2 regulatory proteins in the NF-κB activation.
Collapse
Affiliation(s)
- Stefania Fochi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Elisa Bergamo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Simona Mutascio
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Chloé Journo
- Retroviral Oncogenesis Laboratory, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, Equipe Labellisée "Fondation pour la Recherche Médicale", UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Renaud Mahieux
- Retroviral Oncogenesis Laboratory, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, Equipe Labellisée "Fondation pour la Recherche Médicale", UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.,Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Umberto Bertazzoni
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Poursina Z, Mohammadi A, Yazdi SZ, Humpson I, Vakili V, Boostani R, Rafatpanah H. Curcumin increased the expression of c-FLIP in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients. J Cell Biochem 2019; 120:15740-15745. [PMID: 31074052 DOI: 10.1002/jcb.28843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) disease is a chronic neuroinflammatory disease, which is associated with HTLV-1 infection. There is no effective and satisfactory treatment of HAM/TSP. It has been shown that curcumin exhibits modulatory effects on apoptosis and cytotoxicity-related molecules in HAM/TSP patients. In the present study, we examined the effect of curcumin on the gene expression of caspase-8, caspase-10, and anti-apoptotic protein c-FLIP, in HAM/TSP patients. Furthermore, we compared the expression of these molecules between HAM/TSP and asymptomatic carriers. Real-time PCR was performed to examine the mRNA expression of caspase-8, caspase-10, and c-FLIP in studied groups. The mRNA expression of caspase-8 and caspase-10 was similar before and after curcumin treatment in HAM/TSP patients (P > 0.05). The mRNA expression of c-FLIPL and c-FLIPs was higher after curcumin treatment compared with before treatment and significant differences were observed between the two groups (P = 0.004 and P = 0.044, respectively). The mRNA expression levels of caspase-8, caspase-10, c-FLIPL, and c-FLIPs were not statistically significant between HAM/TSP patients and asymptomatic carriers (P < 0.05). In conclusion, our results showed that curcumin increased the expression of c-FLIP in HAM/TSP patients which might suggest that, this molecule is involved in the apoptosis of HTLV-1-infected cells. Further studies with large sample size could be useful to clarify the role of this supplement in HAM/TSP patients.
Collapse
Affiliation(s)
- Zohreh Poursina
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asadollah Mohammadi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shadi Zamanian Yazdi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ian Humpson
- Division of Cancer Sciences, Manchester University, Manchester, UK
| | - Veda Vakili
- Community Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Lalu MM, Fergusson DA, Cheng W, Avey MT, Corbett D, Dowlatshahi D, Macleod MR, Sena ES, Moher D, Shorr R, McCann SK, Gray LJ, Hill MD, O'Connor A, Thayer K, Haggar F, Dobriyal A, Chung HS, Welton NJ, Hutton B. Identifying stroke therapeutics from preclinical models: A protocol for a novel application of network meta-analysis. F1000Res 2019; 8:11. [PMID: 30906535 PMCID: PMC6426098 DOI: 10.12688/f1000research.15869.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction: Globally, stroke is the second leading cause of death. Despite the burden of illness and death, few acute interventions are available to patients with ischemic stroke. Over 1,000 potential neuroprotective therapeutics have been evaluated in preclinical models. It is important to use robust evidence synthesis methods to appropriately assess which therapies should be translated to the clinical setting for evaluation in human studies. This protocol details planned methods to conduct a systematic review to identify and appraise eligible studies and to use a network meta-analysis to synthesize available evidence to answer the following questions: in preclinical in vivo models of focal ischemic stroke, what are the relative benefits of competing therapies tested in combination with the gold standard treatment alteplase in (i) reducing cerebral infarction size, and (ii) improving neurobehavioural outcomes? Methods: We will search Ovid Medline and Embase for articles on the effects of combination therapies with alteplase. Controlled comparison studies of preclinical in vivo models of experimentally induced focal ischemia testing the efficacy of therapies with alteplase versus alteplase alone will be identified. Outcomes to be extracted include infarct size (primary outcome) and neurobehavioural measures. Risk of bias and construct validity will be assessed using tools appropriate for preclinical studies. Here we describe steps undertaken to perform preclinical network meta-analysis to synthesise all evidence for each outcome and obtain a comprehensive ranking of all treatments. This will be a novel use of this evidence synthesis approach in stroke medicine to assess pre-clinical therapeutics. Combining all evidence to simultaneously compare mutliple therapuetics tested preclinically may provide a rationale for the clinical translation of therapeutics for patients with ischemic stroke. Dissemination: Review findings will be submitted to a peer-reviewed journal and presented at relevant scientific meetings to promote knowledge transfer. Registration: PROSPERO number to be submitted following peer review.
Collapse
Affiliation(s)
- Manoj M Lalu
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Canada.,Clinical Epidemiology Program, Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Regenerative Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Wei Cheng
- Knowledge Synthesis Group, Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Marc T Avey
- Clinical Epidemiology Program, Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, Canada
| | - Dar Dowlatshahi
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.,Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, Canada.,Department of Medicine. Division of Neurology, The Ottawa Hospital, Ottawa, Canada.,Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Malcolm R Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Emily S Sena
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David Moher
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.,Knowledge Synthesis Group, Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Risa Shorr
- Learning Services, The Ottawa Hospital, Ottawa, Canada
| | - Sarah K McCann
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Laura J Gray
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Michael D Hill
- Cumming School of Medicine, Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Annette O'Connor
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Kristina Thayer
- National Institutes of Environmental Health Sciences, Durham, North Carolina, USA
| | - Fatima Haggar
- Clinical Epidemiology Program, Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Aditi Dobriyal
- Clinical Epidemiology Program, Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Hee Sahng Chung
- Clinical Epidemiology Program, Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Nicky J Welton
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Brian Hutton
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.,Knowledge Synthesis Group, Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
13
|
Yaghouti N, Boostani R, Mohamamdi A, Poursina Z, Rezaee SA, Vakili V, Valizadeh N, Shams A, Rafatpanah H. Role of Receptors for Advanced Glycation End Products and High-Mobility Group Box 1 in the Outcome of Human T Cell Lymphotropic Type 1 Infection. Viral Immunol 2018; 32:89-94. [PMID: 30585773 DOI: 10.1089/vim.2018.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human T cell lymphotropic type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic viral neuroinflammatory disease, which leads to damage of the central nervous system. Inflammatory responses and mediators are both involved in the pathogenesis of the disease and in determining its outcome. High-Mobility Group Box 1 (HMGB1) is a chromatin-associated nuclear protein acting as a signaling molecule in cells after binding to its receptors. Receptor for advanced glycation end products (RAGE) is a transmembrane multiligand receptor that binds to HMGB1. HMGB1-RAGE signaling has an important role in inflammatory and infectious diseases. Inhibition of HMGB1 activity reduces the inflammation in immune-associated diseases. In the present study, we examined the gene expressions and plasma levels of HMGB1 and its receptor RAGE in HAM/TSP patients, HTLV-1-infected asymptomatic carriers (ACs), and healthy controls. Peripheral blood mononuclear cells were collected from all the groups and complementary DNA (cDNA) was synthesized. HMGB-1 messenger RNA (mRNA) expression was quantified by real-time polymerase chain reaction (PCR) TaqMan method, and plasma levels of HMGB1 and soluble RAGE (sRAGE) were measured by enzyme-linked immunosorbent assay (ELISA). The mRNA expression of HMGB1 was the same among the groups (p > 0.05). No significant difference in the plasma levels of HMGB1 was observed between the groups (p > 0.05). The plasma levels of sRAGE were higher in ACs than HAM/TSP patients, and a significant difference was observed between the two groups (p < 0.001). Our results showed that sRAGE could play a potential role in the control of inflammatory response in HTLV-1 carriers through the inhibition of HMGB1 signaling and potentially could be used as an indicator for evaluation of HAM/TSP developing in HTLV-1-infected individuals.
Collapse
Affiliation(s)
- Nafise Yaghouti
- 1 Department of Immunology, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Reza Boostani
- 2 Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asadollah Mohamamdi
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Poursina
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Veda Vakili
- 4 Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Valizadeh
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shams
- 1 Department of Immunology, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Houshang Rafatpanah
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Vahidian F, Mohammadi H, Ali-Hasanzadeh M, Derakhshani A, Mostaan M, Hemmatzadeh M, Baradaran B. MicroRNAs and breast cancer stem cells: Potential role in breast cancer therapy. J Cell Physiol 2018; 234:3294-3306. [PMID: 30362508 DOI: 10.1002/jcp.27246] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) can control cancer and cancer stem cells (CSCs), and this topic has drawn immense attention recently. Stem cells are a tiny population of a bulk of tumor cells that have enormous potential in expansion and metastasis of the tumor. miRNA have a crucial role in the management of the function of stem cells. This role is to either promote or suppress the tumor. In this review, we investigated the function and different characteristics of CSCs and function of the miRNAs that are related to them. We also demonstrated the role and efficacy of these miRNAs in breast cancer and breast cancer stem cells (BCSC). Eventually, we revealed the metastasis, tumor formation, and their role in the apoptosis process. Also, the therapeutic potential of miRNA as an effective method for the treatment of BCSC was described. Extensive research is required to investigate the employment or suppression of these miRNAs for therapeutics approached in different cancers in the future.
Collapse
Affiliation(s)
- Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali-Hasanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Afshin Derakhshani
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran.,Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Mostaan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad university, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Fochi S, Mutascio S, Bertazzoni U, Zipeto D, Romanelli MG. HTLV Deregulation of the NF-κB Pathway: An Update on Tax and Antisense Proteins Role. Front Microbiol 2018; 9:285. [PMID: 29515558 PMCID: PMC5826390 DOI: 10.3389/fmicb.2018.00285] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/07/2018] [Indexed: 12/31/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4+/CD25+ T-cell malignancy and of a severe neurodegenerative disease, HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The chronic activation or deregulation of the canonical and non-canonical nuclear factor kappa B (NF-κB) pathways play a crucial role in tumorigenesis. The HTLV-1 Tax-1 oncoprotein is a potent activator of the NF-κB transcription factors and the NF-κB response is required for promoting the development of HTLV-1 transformed cell lines. The homologous retrovirus HTLV-2, which also expresses a Tax-2 transforming protein, is not associated with ATL. In this review, we provide an updated synopsis of the role of Tax-1 in the deregulation of the NF-κB pathway, highlighting the differences with the homologous Tax-2. Special emphasis is directed toward the understanding of the molecular mechanisms involved in NF-κB activation resulting from Tax interaction with host factors affecting several cellular processes, such as cell cycle, apoptosis, senescence, cell proliferation, autophagy, and post-translational modifications. We also discuss the current knowledge on the role of the antisense viral protein HBZ in down-regulating the NF-κB activation induced by Tax, and its implication in cellular senescence. In addition, we review the recent studies on the mechanism of HBZ-mediated inhibition of NF-κB activity as compared to that exerted by the HTLV-2 antisense protein, APH-2. Finally, we discuss recent advances aimed at understanding the role exerted in the development of ATL by the perturbation of NF-κB pathway by viral regulatory proteins.
Collapse
Affiliation(s)
| | | | | | | | - Maria G. Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|