1
|
Buitrago S, Yang X, Wang L, Pan R, Zhang W. Evolutionary analysis of anthocyanin biosynthetic genes: insights into abiotic stress adaptation. PLANT MOLECULAR BIOLOGY 2024; 115:6. [PMID: 39680184 DOI: 10.1007/s11103-024-01540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Anthocyanin regulation can be fruitfully explored from a diverse perspective by studying distantly related model organisms. Land plants pioneers faced a huge evolutionary leap, involving substantial physiological and genetic changes. Anthocyanins have evolved alongside these changes, becoming versatile compounds capable of mitigating terrestrial challenges such as drought, salinity, extreme temperatures and high radiation. With the accessibility of whole-genome sequences from ancient plant lineages, deeper insights into the evolution of key metabolic pathways like phenylpropanoids have emerged. Despite understanding the function of anthocyanins under stress, gaps remain in uncovering the precise metabolic and regulatory mechanisms driving their overproduction under stressful conditions. For example, the regulatory effect of reactive oxygen species (ROS) on well-known transcription factors like MYBs is not fully elucidated. This manuscript presents an evolutionary analysis of the anthocyanin biosynthetic pathway to elucidate key genes. CINNAMATE 4-HYDROXYLASE (C4H) and CHALCONE ISOMERASE (CHI2) received particular attention. C4H exposes remarkable differences between aquatic and land plants, while CHI2 demonstrates substantial variation in gene copy number and sequence similarity across species. The role of transcription factors, such as MYB, and the involvement of ROS in the regulation of anthocyanin biosynthesis are discussed. Complementary gene expression analyses under abiotic stress in Arabidopsis thaliana, Selaginella moellendorffii, and Marchantia polymorpha reveal intriguing gene-stress relationships. This study highlights evolutionary trends and the regulatory complexity of anthocyanin production under abiotic stress, providing insights and opening avenues for future research.
Collapse
Affiliation(s)
- Sebastian Buitrago
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025, China
| | - Xinsun Yang
- Hubei Sweet Potato Engineering and Technology Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lianjun Wang
- Hubei Sweet Potato Engineering and Technology Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025, China.
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
2
|
Valdés-Sánchez L, Moshtaghion SM, Caballano-Infantes E, Peñalver P, Rodríguez-Ruiz R, González-Alfonso JL, Plou FJ, Desmet T, Morales JC, Díaz-Corrales FJ. Synthesis and Evaluation of Glucosyl-, Acyl- and Silyl- Resveratrol Derivatives as Retinoprotective Agents: Piceid Octanoate Notably Delays Photoreceptor Degeneration in a Retinitis Pigmentosa Mouse Model. Pharmaceuticals (Basel) 2024; 17:1482. [PMID: 39598393 PMCID: PMC11597447 DOI: 10.3390/ph17111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP), the leading cause of inherited blindness in adults, is marked by the progressive degeneration of rod photoreceptors in the retina. While gene therapy has shown promise in treating RP in patients with specific mutations, no effective therapies currently exist for the majority of patients with diverse genetic backgrounds. Additionally, no intervention can yet prevent or delay photoreceptor loss across the broader RP patient population. Resveratrol (RES), a naturally occurring polyphenol, has shown cytoprotective effects in various neurodegenerative disease models; however, its therapeutic potential is limited by low bioavailability. METHODS In this study, we synthesized novel RES derivatives and assessed their retinoprotective effects in a murine model of RP (rd10 mice). RESULTS Among these derivatives, piceid octanoate (PIC-OCT) significantly delayed photoreceptor degeneration in the RP model, demonstrating superior efficacy compared to RES. CONCLUSIONS PIC-OCT shows strong potential as a leading candidate for developing new therapeutic strategies for RP.
Collapse
Affiliation(s)
- Lourdes Valdés-Sánchez
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Seville, Spain; (L.V.-S.); (S.M.M.); (E.C.-I.)
| | - Seyed Mohamadmehdi Moshtaghion
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Seville, Spain; (L.V.-S.); (S.M.M.); (E.C.-I.)
| | - Estefanía Caballano-Infantes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Seville, Spain; (L.V.-S.); (S.M.M.); (E.C.-I.)
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain; (P.P.); (R.R.-R.)
| | - Rosario Rodríguez-Ruiz
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain; (P.P.); (R.R.-R.)
| | - José Luis González-Alfonso
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, 28049 Madrid, Madrid, Spain; (J.L.G.-A.) (F.J.P.)
| | - Francisco José Plou
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, 28049 Madrid, Madrid, Spain; (J.L.G.-A.) (F.J.P.)
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Juan C. Morales
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain; (P.P.); (R.R.-R.)
| | - Francisco J. Díaz-Corrales
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Seville, Spain; (L.V.-S.); (S.M.M.); (E.C.-I.)
| |
Collapse
|
3
|
Huang J, Wu H, Yu F, Wu F, Hang C, Zhang X, Hao Y, Fu H, Xu H, Li R, Chen D. Association between systemic immune-inflammation index and cataract among outpatient US adults. Front Med (Lausanne) 2024; 11:1469200. [PMID: 39359932 PMCID: PMC11445128 DOI: 10.3389/fmed.2024.1469200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Background While several studies have noted a higher SII correlates with multiple diseases, research on the association between SII and cataract remains limited. Our cross-sectional study seeks to examine the association between SII and cataract among outpatient US adults. Methods This compensatory cross-sectional study utilized NHANES data from 1999 to 2008 cycles, conducting sample-weighted multivariate logistic regression and stratified analysis of subgroups. Results Among 11,205 adults included in this study (5,571 [46.2%] male; 5,634 [53.8%] female), 2,131 (15.2%) had cataract and 9,074 (84.8%) did not have cataract. A fully adjusted model showed that SII higher than 500 × 109/L was positively correlated with an increased risk of cataracts among women (OR, 1.27; 95% CI, 1.02-1.59) (p = 0.036). However, no difference was found in the men subgroup, and there was no significant interaction between SII and sex. Conclusion Our results indicated that a SII higher than 500 × 109/L was positively correlated with an increased risk of cataracts in women. This study is the first to specifically investigate the impact of a high SII on cataract risk in outpatient adults in the United States. By effectively addressing inflammation, it is possible to mitigate cataract progression and significantly enhance patient outcomes.
Collapse
Affiliation(s)
- Jin Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongjiang Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fang Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fangkun Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chen Hang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoya Zhang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiting Hao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hao Fu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongting Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rong Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ding Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Kulbay M, Wu KY, Nirwal GK, Bélanger P, Tran SD. Oxidative Stress and Cataract Formation: Evaluating the Efficacy of Antioxidant Therapies. Biomolecules 2024; 14:1055. [PMID: 39334822 PMCID: PMC11430732 DOI: 10.3390/biom14091055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
This comprehensive review investigates the pivotal role of reactive oxygen species (ROS) in cataract formation and evaluates the potential of antioxidant therapies in mitigating this ocular condition. By elucidating the mechanisms of oxidative stress, the article examines how ROS contribute to the deterioration of lens proteins and lipids, leading to the characteristic aggregation, cross-linking, and light scattering observed in cataracts. The review provides a thorough assessment of various antioxidant strategies aimed at preventing and managing cataracts, such as dietary antioxidants (i.e., vitamins C and E, lutein, and zeaxanthin), as well as pharmacological agents with antioxidative properties. Furthermore, the article explores innovative therapeutic approaches, including gene therapy and nanotechnology-based delivery systems, designed to bolster antioxidant defenses in ocular tissues. Concluding with a critical analysis of current research, the review offers evidence-based recommendations for optimizing antioxidant therapies. The current literature on the use of antioxidant therapies to prevent cataract formation is sparse. There is a lack of evidence-based conclusions; further clinical studies are needed to endorse the use of antioxidant strategies in patients to prevent cataractogenesis. However, personalized treatment plans considering individual patient factors and disease stages can be applied. This article serves as a valuable resource, providing insights into the potential of antioxidants to alleviate the burden of cataracts.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada
| | - Kevin Y Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J4K 0A8, Canada
| | - Gurleen K Nirwal
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Paul Bélanger
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J4K 0A8, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
5
|
Drago L, Ciprandi G, Brindisi G, Brunese FP, Dinardo G, Gori A, Indolfi C, Naso M, Tondina E, Trincianti C, Varricchio A, Zicari AM, Ullah H, Daglia M. Certainty and uncertainty in the biological activities of resveratrol. FOOD FRONTIERS 2024; 5:849-854. [DOI: 10.1002/fft2.375] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
AbstractResveratrol is a nonflavonoid polyphenolic compound with a chemical structure consisting of two aromatic rings linked by a methylene bridge. It exists in two primary isomers and has a broad range of desirable biological activities, including antioxidant, anti‐inflammatory, antidiabetic, cardioprotective, and antitumor activities. Some antioxidant properties of resveratrol are known with certainty, such as its potential to positively impact cardiovascular health, inflammation, and the metabolism. On the other hand, many uncertainties and controversies plague its efficacy, including issues related to its bioavailability, dosing, human clinical trial results, interactions with other food components and drugs, and individual variability. In brief, although promising results have been observed in in vitro and in vivo studies, the translation of these findings to human health remains uncertain. Many human clinical trials on resveratrol are ongoing or have proven inconclusive, making it challenging to definitively determine its efficacy for specific health conditions and its dose and duration of treatment. Resveratrol may interact with medications and have varying effects on individuals. In conclusion, it is essential to approach resveratrol with a balanced perspective, consulting with healthcare professionals, and considering the evolving scientific evidence when making decisions regarding its clinical use.
Collapse
Affiliation(s)
- Lorenzo Drago
- Department of Biomedical Sciences for Health Laboratory of Clinical Microbiology & Microbiome University of Milan Milan Italy
- MultiLab Department UOC Laboratory of Clinical Medicine IRCCS Multimedica Milan Italy
| | | | - Giulia Brindisi
- Department of Maternal Infantile and Urological Science Sapienza University of Rome Rome Italy
| | | | - Giulio Dinardo
- Department of Woman Child and General and Specialized Surgery University of Campania “Luigi Vanvitelli” Naples Italy
| | - Alessandra Gori
- Department of Maternal Infantile and Urological Science Sapienza University of Rome Rome Italy
| | - Cristiana Indolfi
- Department of Woman Child and General and Specialized Surgery University of Campania “Luigi Vanvitelli” Naples Italy
| | - Matteo Naso
- Allergy Center, IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Enrico Tondina
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | | | | | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Science Sapienza University of Rome Rome Italy
| | - Hammad Ullah
- Department of Pharmacy University of Napoli Federico II Naples Italy
| | - Maria Daglia
- Department of Pharmacy University of Napoli Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | | |
Collapse
|
6
|
Li Y, Tang L, Dang G, Ma M, Tang X. Scinderin Promotes Hydrogen Peroxide-induced Lens Epithelial Cell Injury in Age-related Cataract. Curr Mol Med 2024; 24:1426-1436. [PMID: 37936437 DOI: 10.2174/0115665240250050231030110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Scinderin (SCIN) is a calcium-dependent protein implicated in cell growth and apoptosis by regulating actin cleavage and capping. In this study, we investigated the role of SCIN in hydrogen peroxide-induced lens epithelial cell (LEC) injury related to age-related cataract (ARC). METHODS Anterior lens capsules from ARC patients were collected to examine SCIN expression levels. Immortalized human LEC cell line SRA01/04 and lens capsules freshly isolated from mice were induced by H2O2 to mimic the oxidative stress in ARC. The role of SCIN was investigated by gain-of-function (overexpression) and loss-offunction (knockdown) experiments. Flow cytometry (FCM) and Western-blot (WB) assays were performed to investigate the effect of SCIN on apoptosis. The oxidative stress (OS) was examined by detecting malondialdehyde (MDA) level, superoxide dismutase (SOD) and catalase (CAT) activity. The interaction between SCIN mRNA and miR-489-3p was predicted by StarBase and miRDB databases and validated by luciferase reporter activity assay. RESULTS SCIN was significantly elevated in cataract samples, and the expression levels were positively correlated with the nuclear sclerosis grades. SCIN overexpression promoted OS and apoptosis in H2O2-induced SRA01/04 cells, while SCIN silencing showed the opposite effect. We further showed that miR-489-3p was a negative regulator of SCIN. miR-489-3p overexpression suppressed apoptosis and OS in H2O2-induced SRA01/04 cells by targeting SCIN. CONCLUSION Our study identified SCIN as an upregulated gene in ARC, which is negatively regulated by miR-489-3p. Targeting miR-489-3p/SCIN axis could attenuate OS-induced apoptosis in LECs.
Collapse
Affiliation(s)
- Yan Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Li Tang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Guanxing Dang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Mengyuan Ma
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Xingfang Tang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| |
Collapse
|
7
|
Feng J, Zhang Y. The potential benefits of polyphenols for corneal diseases. Biomed Pharmacother 2023; 169:115862. [PMID: 37979379 DOI: 10.1016/j.biopha.2023.115862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
The cornea functions as the primary barrier of the ocular surface, regulating temperature and humidity while providing protection against oxidative stress, harmful stimuli and pathogenic microorganisms. Corneal diseases can affect the biomechanical and optical properties of the eye, resulting in visual impairment or even blindness. Due to their diverse origins and potent biological activities, plant secondary metabolites known as polyphenols offer potential advantages for treating corneal diseases owing to their anti-inflammatory, antioxidant, and antibacterial properties. Various polyphenols and their derivatives have demonstrated diverse mechanisms of action in vitro and in vivo, exhibiting efficacy against a range of corneal diseases including repair of tissue damage, treatment of keratitis, inhibition of neovascularization, alleviation of dry eye syndrome, among others. Therefore, this article presents a concise overview of corneal and related diseases, along with an update on the research progress of natural polyphenols in safeguarding corneal health. A more comprehensive understanding of natural polyphenols provides a novel perspective for secure treatment of corneal diseases.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
8
|
Rodella U, Honisch C, Gatto C, Ruzza P, D'Amato Tóthová J. Antioxidant Nutraceutical Strategies in the Prevention of Oxidative Stress Related Eye Diseases. Nutrients 2023; 15:nu15102283. [PMID: 37242167 DOI: 10.3390/nu15102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This review aims to discuss the delicate balance between the physiological production of reactive oxygen species and the role of antioxidant nutraceutical molecules in managing radicals in the complex anatomical structure of the eye. Many molecules and enzymes with reducing and antioxidant potential are present in different parts of the eye. Some of these, such as glutathione, N-acetylcysteine, α-lipoic acid, coenzyme Q10, and enzymatic antioxidants, are endogenously produced by the body. Others, such as plant-derived polyphenols and carotenoids, vitamins B2, C, and E, zinc and selenium, and omega-3 polyunsaturated fatty acids, must be obtained through the diet and are considered essential nutrients. When the equilibrium between the production of reactive oxygen species and their scavenging is disrupted, radical generation overwhelms the endogenous antioxidant arsenal, leading to oxidative stress-related eye disorders and aging. Therefore, the roles of antioxidants contained in dietary supplements in preventing oxidative stress-based ocular dysfunctions are also discussed. However, the results of studies investigating the efficacy of antioxidant supplementation have been mixed or inconclusive, indicating a need for future research to highlight the potential of antioxidant molecules and to develop new preventive nutritional strategies.
Collapse
Affiliation(s)
- Umberto Rodella
- Fondazione Banca degli Occhi del Veneto Onlus (FBOV), 30174 Zelarino, Italy
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria 14, 35020 Ponte San Nicoló, Italy
| | - Claudia Honisch
- Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35131 Padova, Italy
| | - Claudio Gatto
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria 14, 35020 Ponte San Nicoló, Italy
| | - Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35131 Padova, Italy
| | - Jana D'Amato Tóthová
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria 14, 35020 Ponte San Nicoló, Italy
| |
Collapse
|
9
|
De Luca I, Di Cristo F, Conte R, Peluso G, Cerruti P, Calarco A. In-Situ Thermoresponsive Hydrogel Containing Resveratrol-Loaded Nanoparticles as a Localized Drug Delivery Platform for Dry Eye Disease. Antioxidants (Basel) 2023; 12:antiox12050993. [PMID: 37237859 DOI: 10.3390/antiox12050993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Dry eye disease (DED) is a dynamic and complex disease that can cause significant damage to the ocular surface and discomfort, compromising the patient's quality of life. Phytochemicals such as resveratrol have received increasing attention due to their ability to interfere with multiple pathways related to these diseases. However, the low bioavailability and the poor therapeutic response of resveratrol hinder its clinical applications. Cationic polymeric nanoparticles, in combination with in situ gelling polymers, could represent a promising strategy to prolong drug corneal residence time reducing the frequency of administration and increasing the therapeutic response. Eyedrop formulations, based on acetylated polyethyleneimine-modified polylactic-co-glicolyc acid- (PLGA-PEI) nanoparticles loaded with resveratrol (RSV-NPs) were dispersed into poloxamer 407 hydrogel and characterized in terms of pH, gelation time, rheological properties, in vitro drugs release, and biocompatibility. Moreover, the antioxidant and anti-inflammatory effects of RSV were assessed in vitro by mimicking a DED condition through the exposition of epithelial corneal cells to a hyperosmotic state. This formulation exhibited sustained release of RSV for up to 3 days, exerting potent antioxidant and anti-inflammatory effects on corneal epithelial cells. In addition, RSV reversed the mitochondrial dysfunction mediated by high osmotic pressure, leading to upregulated sirtuin-1 (SIRT1) expression, an essential regulator of mitochondrial function. These results suggest the potential of eyedrop formulation as a platform to overcome the rapid clearance of current solutions for treating various inflammation- and oxidative stress-related diseases such as DED.
Collapse
Affiliation(s)
- Ilenia De Luca
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | | | - Raffaele Conte
- Elleva Pharma s.r.l., Via P. Castellino 111, 80131 Napoli, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
- Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
10
|
Chen Q, Gu P, Liu X, Hu S, Zheng H, Liu T, Li C. Gold Nanoparticles Encapsulated Resveratrol as an Anti-Aging Agent to Delay Cataract Development. Pharmaceuticals (Basel) 2022; 16:ph16010026. [PMID: 36678523 PMCID: PMC9866047 DOI: 10.3390/ph16010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Nanoparticle-based drug delivery systems, which can overcome the challenges associated with poor aqueous solubility and other harmful side effects of drugs, display potent applications in cataract treatment. Herein, we designed a nanosystem of gold nanoparticles containing resveratrol (RGNPs) as an anti-aging agent to delay cataracts. The spherical RGNPs had a superior ability to inhibit hydrogen peroxide-mediated oxidative stress damage, including reactive oxygen species (ROS) production, malondialdehyde (MDA) generation, and glutathione (GSH) consumption in the lens epithelial cells. Additionally, the present data showed that RGNPs could delay cellular senescence induced by oxidative stress by decreasing the protein levels of p16 and p21, reducing the ratio of BAX/BCL-2 and the senescence-associated secretory phenotype (SASP) in vitro. Moreover, the RGNPs could also clearly relieve sodium selenite-induced lens opacity in a rat cataract model. Our data indicated that cell senescence was reduced and cataracts were delayed upon treatment with RGNPs through activating the Sirt1/Nrf2 signaling pathway. Our findings suggested that RGNPs could serve as an anti-aging ingredient, highlighting their potential to delay cataract development.
Collapse
Affiliation(s)
- Qifang Chen
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Peilin Gu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xuemei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shaohua Hu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ting Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
- Correspondence: (T.L.); (C.L.)
| | - Chongyi Li
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
- Correspondence: (T.L.); (C.L.)
| |
Collapse
|
11
|
Zhou C, Huang X, Li X, Xiong Y. Circular RNA erythrocyte membrane protein band 4.1 assuages ultraviolet irradiation-induced apoptosis of lens epithelial cells by stimulating 5'-bisphosphate nucleotidase 1 in a miR-24-3p-dependent manner. Bioengineered 2021; 12:8953-8964. [PMID: 34652259 PMCID: PMC8806953 DOI: 10.1080/21655979.2021.1990196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Apoptosis of lens epithelial cells contributed to the formation of age-related cataract (ARC), and previous data revealed that circular RNA (circRNA) was responsible for the underneath mechanism. The study was organized to explore the role of circular RNA erythrocyte membrane protein band 4.1 (circ_EPB41) in ultraviolet (UV) irradiation-induced apoptosis of lens epithelial cells. SRA01/04 cells were irradiated with UV to mimic the ARC cell model. The RNA levels of circ_EPB41, microRNA-24-3p (miR-24-3p), and 3ʹ(2ʹ), 5ʹ-bisphosphate nucleotidase 1 (BPNT1) were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blot. 5-Ethynyl-29-deoxyuridine, 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide and DNA content quantitation assays were performed to investigate cell proliferation. Flow cytometry was conducted to analyze cell apoptosis. Dual-luciferase reporter assay was implemented to confirm the interaction among circ_EPB41, miR-24-3p, and BPNT1. Our data showed that circ_EPB41 and BPNT1 expression were downregulated in ARC tissues and UV-irradiated SRA01/04 cells as compared with normal anterior lens capsules and untreated SRA01/04 cells. Circ_EPB41 overexpression ameliorated the effects of UV irradiation on the proliferation and apoptosis of SRA01/04 cells. Besides, miR-24-3p, a target miRNA of circ_EPB41, attenuated circ_EPB41 introduction-mediated proliferation, and apoptosis of UV-irradiated SRA01/04 cells. MiR-24-3p regulated UV irradiation-induced effects by targeting BPNT1. Importantly, it was found that circ_EPB41 stimulated BPNT1 production by miR-24-3p. Taken together, the enforced expression of circ_EPB41 ameliorated UV irradiation-induced apoptosis of lens epithelial cells by miR-24-3p/BPNT1 pathway, providing us with a potential target for the therapy of UV-caused ARC.
Collapse
Affiliation(s)
- Cuiyun Zhou
- Department of Ophthalmology, Jingmen First People's Hospital, Jingmen, Hubei, China
| | - Xiaoqiong Huang
- Department of Ophthalmology, Jingmen First People's Hospital, Jingmen, Hubei, China
| | - Xia Li
- Department of Ophthalmology, Jingmen First People's Hospital, Jingmen, Hubei, China
| | - Yan Xiong
- Department of Ophthalmology, Jingmen First People's Hospital, Jingmen, Hubei, China
| |
Collapse
|
12
|
Resveratrol-Loaded Hydrogel Contact Lenses with Antioxidant and Antibiofilm Performance. Pharmaceutics 2021; 13:pharmaceutics13040532. [PMID: 33920327 PMCID: PMC8069945 DOI: 10.3390/pharmaceutics13040532] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Contact lenses (CLs) are prone to biofilm formation, which may cause severe ocular infections. Since the use of antibiotics is associated with resistance concerns, here, two alternative strategies were evaluated to endow CLs with antibiofilm features: copolymerization with the antifouling monomer 2-methacryloyloxyethyl phosphorylcholine (MPC) and loading of the antioxidant resveratrol with known antibacterial activity. MPC has, so far, been used to increase water retention on the CL surface (Proclear® 1 day CLs). Both poly(hydroxyethyl methacrylate) (HEMA) and silicone hydrogels were prepared with MPC covering a wide range of concentrations (from 0 to 101 mM). All hydrogels showed physical properties adequate for CLs and successfully passed the hen’s egg-chorioallantoic membrane (HET-CAM) test. Silicone hydrogels had stronger affinity for resveratrol, with higher loading and a slower release rate. Ex vivo cornea and sclera permeability tests revealed that resveratrol released from the hydrogels readily accumulated in both tissues but did not cross through. The antibiofilm tests against Pseudomonas aeruginosa and Staphylococcus aureus evidenced that, in general, resveratrol decreased biofilm formation, which correlated with its concentration-dependent antibacterial capability. Preferential adsorption of lysozyme, compared to albumin, might also contribute to the antimicrobial activity. In addition, importantly, the loading of resveratrol in the hydrogels preserved the antioxidant activity, even against photodegradation. Overall, the designed hydrogels can host therapeutically relevant amounts of resveratrol to be sustainedly released on the eye, providing antibiofilm and antioxidant performance.
Collapse
|
13
|
Zhang M, Cheng K. Long non-coding RNA KCNQ1OT1 promotes hydrogen peroxide-induced lens epithelial cell apoptosis and oxidative stress by regulating miR-223-3p/BCL2L2 axis. Exp Eye Res 2021; 206:108543. [PMID: 33744257 DOI: 10.1016/j.exer.2021.108543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
Many long non-coding RNAs (lncRNAs) can exert crucial roles in the pathogenesis of cataract, including lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1). We aimed to further elucidate the biological role and regulatory molecular mechanism of KCNQ1OT1 in cataract. The expression of KCNQ1OT1 and miR-223-3p and BCL2 like 2 (BCL2L2) was examined by qRT-PCR. Cataract cell model was constructed by treatment with hydrogen peroxide (H2O2) in lens epithelial cells (SRA01/04). SRA01/04 cell viability and cell apoptosis were tested using CCK-8 assay and flow cytometry, respectively. Western blot (WB) was performed to measure the levels of apoptosis-related proteins and BCL2L2 protein. The oxidative stress factors were analyzed by corresponding kits. The interaction between miR-223-3p and KCNQ1OT1 or BCL2L2 was validated by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. We found that KCNQ1OT1 was upregulated in cataract anterior lens capsule samples and H2O2-induced SRA01/04 cells. Knockdown of KCNQ1OT1 suppressed H2O2-induced SRA01/04 cell apoptosis and oxidative stress. KCNQ1OT1 acted as a sponge of miR-223-3p. Inhibition of miR-223-3p could abate the function of KCNQ1OT1 silence in H2O2-treated SRA01/04 cells. Additionally, BCL2L2 was a direct target of miR-223-3p, and miR-223-3p weakened H2O2-induced SRA01/04 cell apoptosis and oxidative stress by targeting BCL2L2. Collectively, the data suggest a role for the KCNQ1OT1/miR-223-3p/BCL2L2 axis in cataract formation but the data was generated using an epithelial cell line.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ophthalmology, Jinan Maternal and Child Health Hospital, Jinan, 250001, Shandong, China
| | - Kai Cheng
- Department of Ophthalmology, Jinan Maternal and Child Health Hospital, Jinan, 250001, Shandong, China.
| |
Collapse
|
14
|
Yang R, Li X, Mei J, Wan W, Huang X, Yang Q, Wei X. Protective effect of syringic acid via restoring cells biomechanics and organelle structure in human lens epithelial cells. J Bioenerg Biomembr 2021; 53:275-284. [PMID: 33704647 PMCID: PMC8124055 DOI: 10.1007/s10863-021-09873-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/13/2021] [Indexed: 11/29/2022]
Abstract
We have previously reported that syringic acid (SA) extracted from D. aurantiacum var. denneanum (kerr) may be used to prevent diabetic cataract (DC). However, the underlying mechanisms through which SA prevents DC in human lens epithelial cells (HLECs) remained unclear. In the present study, we employed single-molecule optics technologies, including transmission electron microscopy (TEM), atomic force microscopy (AFM), laser scanning confocal microscopy (LSCM) and Raman spectroscopy, to monitor the effect of SA on HLECs biomechanics and organelle structure in real-time. TEM suggested that SA improved the ultrastructure of HLECs with regard to nuclear chromatin condensation and reducing mitochondrial swelling and degeneration, which may aid in the maintenance of HLECs integrity in the presence of glucose. AFM revealed a reduced surface roughness and stiffness following SA treatment, suggesting an improved viscoelasticity of HELCs. Raman spectrometry and LSCM further revealed that these changes were related to a modification of cell liquidity and cytoskeletal structure by SA. Taken together, these results provide insights into the effects of SA on the biomechanics of HLECs and further strengthen the evidence for its potential use as a novel therapeutic strategy for DC prevention.
Collapse
Affiliation(s)
- Rong Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xue Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jie Mei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wencheng Wan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xinduo Huang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiaohong Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xiaoyong Wei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Quero J, Mármol I, Cerrada E, Rodríguez-Yoldi MJ. Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management. Food Funct 2021; 11:2805-2825. [PMID: 32134090 DOI: 10.1039/d0fo00216j] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent times, a great number of plants have been studied in order to identify new components with nutraceutical properties, among which are polyphenols. Dietary polyphenols represent a large group of bioactive molecules widely found in the food of plant origin and they have been found able to prevent the onset and progression of degenerative diseases, and to reduce and control their symptoms. These health protective effects have been mainly related to their antioxidant and anti-inflammatory properties. However, it must be considered that the application of isolated polyphenols as nutraceuticals is quite limited due to their poor systemic distribution and relative bioavailability. The present review highlights the potential effect of dietary intervention with polyphenol-rich food and plant extracts in patients with cancer, diabetes and neurodegenerative, autoimmune, cardiovascular and ophthalmic diseases, as well as the possible molecular mechanisms of action suggested in numerous studies with animal models.
Collapse
Affiliation(s)
- Javier Quero
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| | - Inés Mármol
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.
| | - María Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| |
Collapse
|
16
|
Potential Protective Activities of Extracts of Phellinus linteus and the Altered Expressions of GSTM3 on Age-Related Cataract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4313805. [PMID: 33542742 PMCID: PMC7843177 DOI: 10.1155/2021/4313805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022]
Abstract
Age-related cataract (ARC) is one of the leading causes of visual impairment and blindness worldwide among the elderly. Here, we used sodium selenite-induced cataract mouse model, which shares with similarities with human senile cataract to investigate whether the extracts of Phellinus linteus (PLE) could have the potential protective effects of ARC or not. The mice pups were randomly divided into 4 treatment groups (n = 7): (1) normal saline on postpartum day 26; (2) Na selenite injected s.c on day 26; (3) Na selenite s.c on day 26+ gavaged PLE (40 mg/kg) on days 26–47; and (4) Na selenite s.c on day 26 + resveratrol on days 26–47. On day 47, encapsulated lenses and plasma were analyzed for the levels of glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA), a marker of lipid peroxidation. Lens epithelial cells (LECs) were also analyzed for the mRNA and protein expressions of glutathione S-transferase Mu (GSTM3). We demonstrated that PLE could prevent selenite-induced oxidative stress and cataract formation in mice by higher GSH and SOD and lower MDA in LECs, plasma, and liver tissues and the increases in the mRNA and protein expressions of GSTM3 in LECs. Our data show the increasing oxidative stress in selenite-induced cataract mice. Our data reveal the benefits of PLE for preventive activity in selenite-induced cataract in mice and there is a good possibility that PLE could ameliorate human senile cataract.
Collapse
|
17
|
Ullah H, De Filippis A, Santarcangelo C, Daglia M. Epigenetic regulation by polyphenols in diabetes and related complications. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2020; 13:289-310. [DOI: 10.3233/mnm-200489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder and one of the most challenging health problems worldwide. Left untreated, it may progress causing serious complications. Genetics, epigenetics, and environmental factors are known to play an overlapping role in the pathogenesis of DM. Growing evidence suggests the hypothesis that the environment induces changes in the early phases of growth and development, influencing health and disease in the adulthood through the alteration in genetic expression of an individual, at least in part. DNA methylation, histone modifications and miRNAs are three mechanisms responsible for epigenetic alterations. The daily diet contains a number of secondary metabolites, with polyphenols being highest in abundance, which contribute to overall health and may prevent or delay the onset of many chronic diseases. Polyphenols have the ability to alter metabolic and signaling pathways at various levels, such as gene expression, epigenetic regulation, protein expression and enzyme activity. The potential efficacy of polyphenolic compounds on glucose homeostasis has been evidenced from in vitro, in vivo and clinical studies. The present review is designed to focus on epigenetic regulation exerted by polyphenolic compounds in DM and their complications, as well as to summarize clinical trials involving polyphenols in DM.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna De Filippis
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Singh A, Bodakhe SH. Biochemical Evidence Indicates the Preventive Effect of Resveratrol and Nicotinamide in the Treatment of STZ-induced Diabetic Cataract. Curr Eye Res 2020; 46:52-63. [PMID: 32631099 DOI: 10.1080/02713683.2020.1782941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE High glucose level is a strong initiator of both oxidative stress and DNA damage to various cellular proteins. This activates the poly ADP-ribose polymerase (PARP) enzyme, which is responsible for disturbing physiological energy metabolic homeostasis. The present study aimed to elucidate the association between stress and the PARP pathway by using resveratrol (RSV) and nicotinamide (NAM, PARP inhibitor) to treat diabetic cataract. METHOD Albino rats were used for the experimental study. A single streptozotocin administration (55 mg/kg, i.p.) prompted diabetes in the animals. The experimental groups were the normal group (non-diabetic) and the diabetic groups: the diabetic control animals (group D), the diabetic animals treated with RSV at 40 mg/kg/day, i.p. (D+ RSV group), NAM at 100 and 300 mg/kg/day, i.p. (D+ NAM100, D+ NAM300 groups, respectively), and a combination of RSV and NAM i.p. (D+ RSV+NAM100 = Combi 1 group, D+ RSV+NAM300 = Combi 2 group). Glucose levels and the eyes were examined biweekly; various cataractogenic parameters in the lenses were examined after completion of the eight-week experimental protocol. RESULTS Compared to diabetic control, RSV monotherapy significantly decreased hyperglycemia and other lenticular alterations. NAM at the high dose only showed beneficial effects without altering the blood glucose level, lenticular aldose reductase (AR) activity, and sorbitol content, primarily restored the lenticular NAD level and decreased oxidative stress in diabetic rats. These findings regarding NAM treatment indicate that a pathway other than the antioxidant defense system and the polyol pathway, which might be due to PARP inhibition, is involved in diabetic cataracts. Moreover, compared to RSV monotherapy, combination treatments were effective. CONCLUSION These results indicate that hyperglycemia and oxidative-osmotic-nitrosative stress play central roles in the pathophysiology of diabetic cataracts. Moreover, our study also revealed that concurrent treatment with the RSV and NAM may prove useful in the pharmacotherapy of diabetes and its secondary complications such as cataract.
Collapse
Affiliation(s)
- Amrita Singh
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur, India
| | - Surendra H Bodakhe
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur, India
| |
Collapse
|
19
|
Ultra-small nanocomplexes based on polyvinylpyrrolidone K-17PF: A potential nanoplatform for the ocular delivery of kaempferol. Eur J Pharm Sci 2020; 147:105289. [DOI: 10.1016/j.ejps.2020.105289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/07/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023]
|
20
|
Singh A, Bodakhe SH. Resveratrol delay the cataract formation against naphthalene-induced experimental cataract in the albino rats. J Biochem Mol Toxicol 2019; 34:e22420. [PMID: 31746523 DOI: 10.1002/jbt.22420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/23/2019] [Accepted: 10/28/2019] [Indexed: 01/23/2023]
Abstract
Oxidative stress-induced toxicity plays a major role in ocular diseases such as retinal degeneration, age-related cataract (ARC) formation and macular dystrophy. In this study, we explored the possible role of resveratrol (RSV) at the different dose levels (10, 20 and 40 mg/kg/day, ip) in an experimental model of naphthalene (1 g/kg/day, po)-induced age-related cataracts. Morphological changes in the eyes of the rats in two groups, the RSV and the ARC groups, were monitored weekly, and biochemical parameters in the lenses were assessed after completion of the experimental work. A comparison between the rats in the two groups showed that treatments at RSV doses of 20 and 40 mg/kg/day significantly retarded lenticular opacity, restored antioxidants (CAT, SOD, GPX, GSH), Ca2+ ATPase function, and protein contents, and reduced lipid peroxidation in the lenses of the animals in the RSV group. The treatment with resveratrol at a dose of 10 mg/kg/day did not show any anti-cataractogenic effects. Based on the results of our investigation, we conclude that supplemental doses of resveratrol at 40 mg/kg/day effectively prevent cataract formation associated with the aging via increased soluble protein contents and Ca2+ homeostasis, apart from the antioxidant restoration. The results demonstrate that RSV treatment may be considered as a promising preventive or supplemental measure for delaying and/or preventing the formation of ARCs.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
21
|
Kataria R, Khatkar A. Contribution of Resveratrol in the Development of Novel Urease Inhibitors: Synthesis, Biological Evaluation and Molecular Docking Studies. Comb Chem High Throughput Screen 2019; 22:245-255. [DOI: 10.2174/1386207322666190410150216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/09/2018] [Accepted: 12/11/2018] [Indexed: 01/25/2023]
Abstract
Aims and Objective:
A new library of resveratrol derivatives was designed and
synthesized in excellent yield via two-step reaction utilizing Vilsmeier reaction as the first step and
subsequent addition of substituted aromatic amine in the second step.
Methods:
Synthesized compounds were investigated for their antioxidant as well as for in vitro
inhibition activity against jack bean urease enzyme. Compounds R3b and R4 with IC50 value
18.85±0.15 and 21.60±0.19µM against urease enzyme and 6.01±0.07 and 7.52±0.14µM in vitro-
DPPH free radical scavenging activity have emerged as most active molecules from the selected
library. Molecular simulation studies were also carried out for determining the interaction detail of
newly synthesized compounds within a protein pocket.
Results and Conclusion:
Newly synthesized compounds were found to possess better docking
score (-5.941 to -6.894) and binding energy (-46.854 to -56.455) as compared to the parent
resveratrol (-5.45 and -20.155) which revealed that the newly synthesized compounds bind in a
better way as compared to the parent molecule
Collapse
Affiliation(s)
- Ritu Kataria
- International Institute of Pharmaceutical Sciences, Sonepat, Haryana, India
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
22
|
Vora D, Heruye S, Kumari D, Opere C, Chauhan H. Preparation, Characterization and Antioxidant Evaluation of Poorly Soluble Polyphenol-Loaded Nanoparticles for Cataract Treatment. AAPS PharmSciTech 2019; 20:163. [PMID: 30993475 DOI: 10.1208/s12249-019-1379-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
Cataract, one of the leading causes of blindness worldwide, is a condition in which complete or partial opacity develops in the lens of the eyes, thereby impairing vision. This study aimed to examine the potential therapeutic and protective effects of poorly soluble polyphenols like curcumin, resveratrol, and dibenzoylmethane, known to possess significant antioxidant activity. The polyphenols were loaded into novel lipid-cyclodextrin-based nanoparticles and characterized by particle size, polydispersity index, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy (SEM), entrapment efficiency, and release studies. Ferric-reducing ability of plasma and 2,2-diphenyl-1-picrylhydrazyl chemical assays were used to evaluate their antioxidant properties based on their free radical quenching ability. Biochemical in vitro assays were used to examine these polyphenols on hydrogen peroxide-induced formation of cataracts in bovine lenses by estimating total glutathione content and superoxide dismutase activity. Nanoparticles were thermostable and amorphous. Particle size of curcumin, resveratrol, and dibenzoylmethane nanoparticles were 331.0 ± 17.9 nm, 329.9 ± 1.9 nm, and 163.8 ± 3.2 nm, respectively. SEM confirmed porous morphology and XRD confirmed physical stability. Entrapment efficiency for curcumin-, resveratrol-, and dibenzoylmethane-loaded nanoparticles was calculated to be 84.4 ± 2.4%, 72.2 ± 1.5%, and 86.4 ± 0.6%, respectively. In vitro release studies showed an initial burst release followed by a continuous release of polyphenols from nanoparticles. Chemical assays confirmed the polyphenols' antioxidant activity. Superoxide dismutase and glutathione levels were found to be significantly increased (p < 0.05) after treatment with polyphenol-loaded nanoparticles than pure polyphenols; thus, an improved antioxidant activity translational into potential anticataract activity of the polyphenols when loaded into nanoparticles was observed as compared to pure polyphenols.
Collapse
|
23
|
Savion N, Dahamshi S, Morein M, Kotev-Emeth S. S-Allylmercapro- N-Acetylcysteine Attenuates the Oxidation-Induced Lens Opacification and Retinal Pigment Epithelial Cell Death In Vitro. Antioxidants (Basel) 2019; 8:antiox8010025. [PMID: 30654434 PMCID: PMC6357052 DOI: 10.3390/antiox8010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
The capacity of S-Allylmercapto-N-acetylcysteine (ASSNAC) to protect human retinal pigment epithelial (RPE) cells (line ARPE-19) and porcine lenses from oxidative stress was studied. Confluent ARPE-19 cultures were incubated with ASSNAC or N-acetyl-cysteine (NAC) followed by exposure to oxidants and glutathione level and cell survival were determined. Porcine lenses were incubated with ASSNAC and then exposed to H2O2 followed by lens opacity measurement and determination of glutathione (reduced (GSH) and oxidized (GSSG)) in isolated lens adhering epithelial cells (lens capsule) and fiber cells consisting the lens cortex and nucleus (lens core). In ARPE-19 cultures, ASSNAC (0.2 mM; 24 h) increased glutathione level by 2–2.5-fold with significantly higher increase in GSH compared to NAC treated cultures. Similarly, ex-vivo exposure of lenses to ASSNAC (1 mM) significantly reduced the GSSG level and prevented H2O2 (0.5 mM)-induced lens opacification. These results demonstrate that ASSNAC up-regulates glutathione level in RPE cells and protects them from oxidative stress-induced cell death as well as protects lenses from oxidative stress-induced opacity. Further validation of these results in animal models may suggest a potential use for ASSNAC as a protective therapy in retinal degenerative diseases as well as in attenuation of oxidative stress-induced lens opacity.
Collapse
Affiliation(s)
- Naphtali Savion
- Goldschleger Eye Research Institute and Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 61390, Israel.
| | - Samia Dahamshi
- Goldschleger Eye Research Institute and Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 61390, Israel.
| | - Milana Morein
- Goldschleger Eye Research Institute and Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 61390, Israel.
| | - Shlomo Kotev-Emeth
- Goldschleger Eye Research Institute and Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 61390, Israel.
| |
Collapse
|
24
|
Lu B, Christensen IT, Ma LW, Yu T, Jiang LF, Wang CX, Feng L, Zhang JS, Yan QC, Wang XL. miR-211 regulates the antioxidant function of lens epithelial cells affected by age-related cataracts. Int J Ophthalmol 2018; 11:349-353. [PMID: 29600165 DOI: 10.18240/ijo.2018.03.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the effects and mechanism of miR-211 in mediating the antioxidant function of lens epithelial cells affected by age-related cataracts. METHODS Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect miR-211 expression in the anterior lens capsules of healthy people, the anterior lens capsules of patients with age-related cataracts, and human epithelial cell line (SRA01/04) cells exposed to oxidative stress. A 2', 7'-dichloro-fluorescein diacetate (DCFH-DA) probe was used to measure the levels of endogenous reactive oxygen species (ROS) in human lens epithelial cells (hLECs) exposed to 400 µmol/L H2O2 for 1h. SRA01/04 cells were transfected with either miR-211 mimics, mimic controls, miR-211 inhibitors or inhibitor controls. After 72h, these cells were exposed to 400 µmol/L H2O2 for 1h, then p53 and Bax mRNA expression were measured using RT-qPCR. p53 and Bax protein expression were also measured by Western blotting analysis. Finally, cell viability was assessed using an MTS assay. RESULTS Compared to the control group, expression of miR-211 in the anterior lens capsules of age-related cataract patients and in SRA01/04 cells exposed to oxidative stress was significantly increased (P<0.001). Levels of endogenous ROS were significantly elevated in hLECs exposed to oxidative stress (P<0.001). Compared to the mimic control group, the hLECs in the miR-211 mimic group expressed significantly higher levels of p53 and Bax mRNA and protein while cell viability was significantly reduced (P<0.001). Conversely, p53 and Bax mRNA and protein expression were significantly reduced in the miR-211 inhibitor group as compared to the control group, while the cells in this group had much higher levels of cell viability (P<0.001). CONCLUSION miR-211 is upregulated in the anterior lens capsules of age-related cataract patients. miR-211 decreased the antioxidative stress capacity of lens epithelial cells by upregulating p53 and Bax, while inhibiting cell proliferation and repair. This finding suggests that miR-211 may play a key role in the development of age-related cataracts.
Collapse
Affiliation(s)
- Bo Lu
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Ian T Christensen
- University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | - Li-Wei Ma
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning Province, China
| | - Ling-Feng Jiang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Chun-Xia Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Li Feng
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Jin-Song Zhang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Qi-Chang Yan
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Xin-Ling Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University; Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| |
Collapse
|
25
|
Lu B, Christensen IT, Ma LW, Wang XL, Jiang LF, Wang CX, Feng L, Zhang JS, Yan QC. miR-24-p53 pathway evoked by oxidative stress promotes lens epithelial cell apoptosis in age-related cataracts. Mol Med Rep 2018; 17:5021-5028. [PMID: 29393409 PMCID: PMC5865963 DOI: 10.3892/mmr.2018.8492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNA-24 (miR-24) serves an important role in cell proliferation, migration and inflammation in various types of disease. In the present study, the biological function and molecular mechanism of miR-24 was investigated in association with the progression of age-associated cataracts. To the best of our knowledge the present study is the first to report that the expression of miR-24 was significantly increased in human anterior lens capsules affected by age-associated cataracts as well as lens epithelial cells (LECs) exposed to oxidative stress. Overexpression of miR-24 induced p53 expression and p53 was verified as a direct target of miR-24. Overexpression of miR-24 enhanced LEC death by directly targeting p53. The present study revealed that oxidative stress induced the upregulation of miR-24 and enhanced LEC death by directly targeting p53. These results suggest that the miR-24-p53 signaling pathway is involved in a novel mechanism of age-associated cataractogenesis and miR-24 may be a useful therapeutic target for age-associated cataracts.
Collapse
Affiliation(s)
- Bo Lu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Ian T Christensen
- The School of Medicine, University of Utah, Salt Lake, UT 84132, USA
| | - Li-Wei Ma
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Xin-Ling Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Ling-Feng Jiang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Chun-Xia Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Li Feng
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Jin-Song Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Qi-Chang Yan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| |
Collapse
|
26
|
Kodukula K, Faller DV, Harpp DN, Kanara I, Pernokas J, Pernokas M, Powers WR, Soukos NS, Steliou K, Moos WH. Gut Microbiota and Salivary Diagnostics: The Mouth Is Salivating to Tell Us Something. Biores Open Access 2017; 6:123-132. [PMID: 29098118 PMCID: PMC5665491 DOI: 10.1089/biores.2017.0020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The microbiome of the human body represents a symbiosis of microbial networks spanning multiple organ systems. Bacteria predominantly represent the diversity of human microbiota, but not to be forgotten are fungi, viruses, and protists. Mounting evidence points to the fact that the "microbial signature" is host-specific and relatively stable over time. As our understanding of the human microbiome and its relationship to the health of the host increases, it is becoming clear that many and perhaps most chronic conditions have a microbial involvement. The oral and gastrointestinal tract microbiome constitutes the bulk of the overall human microbial load, and thus presents unique opportunities for advancing human health prognosis, diagnosis, and therapy development. This review is an attempt to catalog a broad diversity of recent evidence and focus it toward opportunities for prevention and treatment of debilitating illnesses.
Collapse
Affiliation(s)
- Krishna Kodukula
- Bridgewater College, Bridgewater, Virginia
- ShangPharma Innovation, Inc., South San Francisco, California
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Nikolaos S. Soukos
- Dana Research Center, Department of Physics, Northeastern University, Boston, Massachusetts
| | - Kosta Steliou
- PhenoMatriX, Inc., Natick, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Walter H. Moos
- ShangPharma Innovation, Inc., South San Francisco, California
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
| |
Collapse
|
27
|
Buhrmann C, Shayan P, Goel A, Shakibaei M. Resveratrol Regulates Colorectal Cancer Cell Invasion by Modulation of Focal Adhesion Molecules. Nutrients 2017; 9:E1073. [PMID: 28953264 PMCID: PMC5691690 DOI: 10.3390/nu9101073] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 01/19/2023] Open
Abstract
Resveratrol, a safe and multi-targeted agent, has been associated with suppression of survival, proliferation and metastasis of cancer, however, the underlying mechanisms for its anti-cancer activity, particularly on cellular signaling during cancer cell migration still remain poorly understood. We investigated the invasion response of two human colorectal cancer (CRC) cells (HCT116 and SW480) to resveratrol and studied the effect of specific pharmacological inhibitors, cytochalasin D (CytD) and focal adhesion kinase-inhibitor (FAK-I) on FAK, cell viability and migration in CRC. We found that resveratrol altered cell phenotype of both CRC cells, reduced cell viability and the results were comparable to FAK-I and CytD. These effects of resveratrol were associated with marked Sirt1 up-regulation, FAK down-regulation, inhibition of focal adhesion and potentiation of effects by combinatorial treatment of resveratrol and inhibitors. Interestingly, inhibition of FAK with FAK-I or treatment with CytD suppressed resveratrol-induced Sirt1 up-regulation and markedly down-regulated FAK expression. Resveratrol or combination treatment with inhibitors significantly activated caspase-3 and potentiated apoptosis. Moreover, resveratrol suppressed invasion and colony forming capacity, cell proliferation, β1-Integrin expression and activation of FAK of cells in alginate tumor microenvironment, similar to FAK-I or CytD. Finally, we demonstrated that resveratrol, FAK-I or CytD inhibited activation of NF-κB, suppressed NF-κB-dependent gene end-products involved in invasion, metastasis, and apoptosis; and these effects of resveratrol were potentiated by combination treatment with FAK-I or CytD. Our data illustrated that the anti-invasion effect of resveratrol by inhibition of FAK activity has a potential beneficial role in disease prevention and therapeutic management of CRC.
Collapse
Affiliation(s)
- Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany.
| | - Parviz Shayan
- Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran 141556453, Iran.
- Investigating Institute of Molecular Biological System Transfer, Tehran 1417863171, Iran.
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246, USA.
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany.
| |
Collapse
|
28
|
Mierina I, Jure M, Zeberga S, Makareviciene V, Zicane D, Tetere Z, Ravina I. Novel type of carbon‐centered antioxidants arylmethyl Meldrum's acids − inhibit free radicals. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Inese Mierina
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia
| | - Mara Jure
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia
| | - Sindija Zeberga
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia
- Latvian Institute of Organic SynthesisRigaLatvia
| | - Violeta Makareviciene
- Faculty of Forest Sciences and EcologyAleksandras Stulginskis UniversityAkademijaKaunas Distr.Lithuania
| | - Daina Zicane
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia
| | - Zenta Tetere
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia
| | - Irisa Ravina
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia
| |
Collapse
|