1
|
Korić E, Milutinović V, Hajrudinović-Bogunić A, Bogunić F, Kundaković-Vasović T, Gušić I, Radović Selgrad J, Durić K, Nikšić H. Phytochemical Characterisation of Sorbus Species: Unveiling Flavonoid Profiles Related to Ploidy and Hybrid Origin. PLANTS (BASEL, SWITZERLAND) 2025; 14:119. [PMID: 39795379 PMCID: PMC11722658 DOI: 10.3390/plants14010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
The genetic, morphological and taxonomic diversity of the genus Sorbus is due to homoploid and polyploid hybridisation, autopolyploidy and apomixis, which also influence the production and diversity of secondary metabolites, especially flavonoids. The aim of this study was to investigate the relationships and variations of flavonoids in terms of hybrid origin and ploidy level between the parental species and their hybrid derivatives. The sampling design included leaf material of the following Sorbus accessions from ten natural localities: parental taxa (di-, tri- and tetraploids of S. aria; diploid S. torminalis and S. aucuparia) and their di-, tri- and tetraploid hybrid derivatives from crosses of S. aria × S. torminalis (subg. Tormaria) as well as the tetraploid S. austriaca and S. bosniaca, which originate from crosses of S. aria × S. aucuparia (subg. Soraria). We analysed the flavonoid profiles from the leaf fractions by LC-MS. A total of 23 flavonoids were identified, including apigenin and luteolin derivatives, which distinguish the hybrid groups from each other. This profiling highlights the distinctiveness of the Tormaria and Soraria accessions and emphasises the potential of the subg. Tormaria for further research on bioactive compounds in biological studies.
Collapse
Affiliation(s)
- Emina Korić
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (I.G.); (K.D.); (H.N.)
| | - Violeta Milutinović
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia; (V.M.); (T.K.-V.); (J.R.S.)
| | - Alma Hajrudinović-Bogunić
- Faculty of Forestry, University of Sarajevo, Zagrebačka 20, 71000 Sarajevo, Bosnia and Herzegovina; (A.H.-B.); (F.B.)
| | - Faruk Bogunić
- Faculty of Forestry, University of Sarajevo, Zagrebačka 20, 71000 Sarajevo, Bosnia and Herzegovina; (A.H.-B.); (F.B.)
| | - Tatjana Kundaković-Vasović
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia; (V.M.); (T.K.-V.); (J.R.S.)
| | - Irma Gušić
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (I.G.); (K.D.); (H.N.)
| | - Jelena Radović Selgrad
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia; (V.M.); (T.K.-V.); (J.R.S.)
| | - Kemal Durić
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (I.G.); (K.D.); (H.N.)
| | - Haris Nikšić
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (I.G.); (K.D.); (H.N.)
| |
Collapse
|
2
|
Fu Y, Hong Y, Zhang S, Chen J, Wu G, Wang G, Zhang Q. Process Optimization and Characterization of Polysaccharides with Potential Antioxidant and Hypoglycemic Activity from Cissus repens. Chem Biodivers 2024; 21:e202401226. [PMID: 39104024 DOI: 10.1002/cbdv.202401226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Ultrasound-assisted extraction of Cissus repens polysaccharides (CRPs) was optimized through response surface methodology (RSM) based on Box-Behnken design (BBD). The maximum CRPs yield (16.18 %) was achieved under the optimum extraction conditions: extraction time 72 min, extraction temperature 74 °C, extraction power 240 W. Then three-phase partitioning (TPP) method combined with gradient alcohol precipitation was used to obtained CRP20, CRP40, CRP60 and CRP80 from CRPs, and CRP80 has a higher purity than others. The primary chemical and structural characteristics of CRP80 were investigated by UV, FT-IR, high-performance liquid chromatography (HPLC) and high-performance gel-permeation chromatography (HPGPC). CRP80 is mainly composed of glucose, galactose, arabinose and mannose, with a molecular weights of approximately 2.95 kDa. Furthermore, the antioxidant activity and hypoglyceamic activity of CRP80 in vitro were evaluated. The results showed that CRP80 had strong scavenging activities on ABTS, hydroxyl and DPPH radicals, as well as high scavenging activities on α-glucosidase and α-amylase. Our research provided an efficient method for the extraction of polysaccharides from C. repens and CRP80 has potential as a promising source of natural antioxidants and hypoglycemic agent for the functional food and medicinal industries.
Collapse
Affiliation(s)
- Yanfang Fu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yajiao Hong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Jiaheng Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, PR China
| | - Guorong Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Guixiang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Qian Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| |
Collapse
|
3
|
Shariati S, Shirani M, Azadnasab R, Khorsandi L, Khodayar MJ. Betaine Protects Mice from Cardiotoxicity Triggered by Sodium Arsenite Through Antioxidative and Anti-inflammatory Pathways. Cardiovasc Toxicol 2024; 24:539-549. [PMID: 38703273 DOI: 10.1007/s12012-024-09864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
NaAsO2 is known as a harmful pollutant all over the world, and many chronic heart diseases can be attributed to its prolonged exposure in NaAsO2-contaminated water. Therefore, considering the anti-inflammatory and antioxidant effects of betaine (BET), in this study, our team investigated the cardioprotective effects of this phytochemical agent on sodium arsenite (NaAsO2)-induced cardiotoxicity. Forty male mice were randomly divided into 4 groups: (I) Control; (II) BET (500 mg/kg); (III) NaAsO2 (50 ppm); and (IV) NaAsO2 + BET. NaAsO2 was given to the animals for 8 weeks, but BET was given in the last two weeks. After decapitation, inflammatory factors and biochemical parameters were measured, and Western blot analyses were performed. BET decrease the activity level of alanine aspartate aminotransferase, creatine kinase MB, thiobarbituric acid reactive substances level, inflammatory factors (tumor necrosis factor-α) content, and nuclear factor kappa B expression. Furthermore, BET increased cardiac total thiol and activity levels of catalase, superoxide dismutase, and glutathione peroxidase and nuclear factor erythroid-2 expression. Hence, the administration of BET ameliorated the deleterious effects stemming from the imbalance of oxidative and antioxidant pathways and histopathological alterations observed in NaAsO2-intoxicated mice, thereby attenuating oxidative stress-induced damage and inflammation.
Collapse
Affiliation(s)
- Saeedeh Shariati
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azadnasab
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Jiang Y, Shen X, Zhi F, Wen Z, Gao Y, Xu J, Yang B, Bai Y. An overview of arsenic trioxide-involved combined treatment algorithms for leukemia: basic concepts and clinical implications. Cell Death Discov 2023; 9:266. [PMID: 37500645 PMCID: PMC10374529 DOI: 10.1038/s41420-023-01558-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Arsenic trioxide is a first-line treatment drug for acute promyelocytic leukemia, which is also effective for other kinds of leukemia. Its side effects, however, limit its clinical application, especially for patients with complex leukemia symptoms. Combination therapy can effectively alleviate these problems. This review summarizes the research progress on the combination of arsenic trioxide with anticancer drugs, vitamin and vitamin analogs, plant products, and other kinds of drugs in the treatment of leukemia. Additionally, the new progress in arsenic trioxide-induced cardiotoxicity was summarized. This review aims to provide new insights for the rational clinical application of arsenic trioxide.
Collapse
Affiliation(s)
- Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Xiuyun Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fengnan Zhi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhengchao Wen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Gao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences (2019RU070), Harbin, China.
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
5
|
Wang J, Liu YM, Hu J, Chen C. Potential of natural products in combination with arsenic trioxide: Investigating cardioprotective effects and mechanisms. Biomed Pharmacother 2023; 162:114464. [PMID: 37060657 DOI: 10.1016/j.biopha.2023.114464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 04/17/2023] Open
Abstract
Over the past few decades, clinical trials conducted worldwide have demonstrated the efficacy of arsenic trioxide (ATO) in the treatment of relapsed acute promyelocytic leukemia (APL). Currently, ATO has become the frontline treatments for patients with APL. However, its therapeutic applicability is severely constrained by ATO-induced cardiac side effects. Any cardioprotective agents that can ameliorate the cardiac side effects and allow exploiting the full therapeutic potential of ATO, undoubtedly gain significant attention. The knowledge and use of natural products for evidence-based therapy have grown rapidly in recent years. Here we discussed the potential mechanism of ATO-induced cardiac side effects and reviewed the studies on cardiac side effects as well as the research history of ATO in the treatment of APL. Then, We summarized the protective effects and underlying mechanisms of natural products in the treatment of ATO-induced cardiac side effects. Based on the efficacy and safety of the natural product, it has a promising future in the development of cardioprotective agents against ATO-induced cardiac side effects.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| |
Collapse
|
6
|
Zhang H, Yue Y, Zhang Q, Liang L, Li C, Chen Y, Li W, Peng M, Yang M, Zhao M, Cao X, Zhong L, Du J, Wang Y, Zhou X, Shu Z. Structural characterization and anti-inflammatory effects of an arabinan isolated from Rehmannia glutinosa Libosch. Carbohydr Polym 2023; 303:120441. [PMID: 36657836 DOI: 10.1016/j.carbpol.2022.120441] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Considering that natural polysaccharides are potential anti-inflammatory agents, in this study, an arabinan (RGP70-2) was isolated and purified from Rehmannia glutinosa Libosch. (R. glutinosa) and its structure was characterized. RGP70-2 was a homogeneous polysaccharide with a molecular weight of 6.7 kDa, with the main backbone comprising →5)-α-L-Araf-(1→, →3)-α-L-Araf-(1→, →2,3,5)-α-L-Araf-(1→, and →2,5)-α-L-Araf-(1 → linkages and the side chain comprising an α-L-Araf-(1 → linkage. In vivo experiments showed that RGP70-2 inhibited ROS production and downregulated the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). In vitro experiments showed that RGP70-2 decreased levels of pro-inflammatory cytokines, inhibited ROS production, and attenuated NF-κB-p65 translocation from the cytoplasm to the nucleus. Our results showed that RGP70-2 may delay inflammation by regulating the ROS-NF-κB pathway. Thus, RGP70-2 has potential applications as an anti-inflammatory agent in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Han Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yimin Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuanqiu Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingming Peng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyang Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieyong Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xi Zhou
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Quality and Safety of Traditional Chinese Medicine, China National Analytical Center, Guangzhou 510006, China; Institute of Analysis, Guangdong Academy of Sciences, China National Analytical Center, Guangzhou 510006, China
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Effect of the duty cycle of the ultrasonic processor on the efficiency of extraction of phenolic compounds from Sorbus intermedia. Sci Rep 2022; 12:8311. [PMID: 35585109 PMCID: PMC9117660 DOI: 10.1038/s41598-022-12244-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
This paper studies the effect of different ultrasonic parameters on the yield of extraction and antioxidant activity of selected phenolic compounds from Sorbus intermedia berries. The sonication was carried out in two modes: continuous and pulse. In the pulse mode, the samples were sonicated with the following processor settings: 1 s on–2 s off. The effective ultrasonic processor times were 5, 10, and 15 min, and the total extraction times were 15, 30, and 45 min. The results showed that the duty cycle significantly affected the antioxidant activity of the extracts and the yield of chlorogenic acid, rutin, and total flavonoids. Compared to the continuous mode, the pulse ultrasound increased the extraction yield of rutin by 5–27%, chlorogenic acid by 12–29%, and total flavonoids by 8–42%. The effect of the duty cycle on the extraction yield was dependent on the intensity and duration of the ultrasound treatment. The mechanism of the influence of the pulsed ultrasound field on the extraction process has been elucidated. This research clearly demonstrated the superiority of pulsed ultrasound-assisted extraction for production of antioxidants from Sorbus intermedia berries.
Collapse
|
8
|
Han X, Yang Y, Zhang M, Chu X, Zheng B, Liu C, Xue Y, Guan S, Sun S, Jia Q. Protective Effects of 6-Gingerol on Cardiotoxicity Induced by Arsenic Trioxide Through AMPK/SIRT1/PGC-1α Signaling Pathway. Front Pharmacol 2022; 13:868393. [PMID: 35571130 PMCID: PMC9096219 DOI: 10.3389/fphar.2022.868393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023] Open
Abstract
Background and Objective: Arsenic trioxide (As2O3) induced cardiotoxicity to limit the clinical applications of the effective anticancer agent. 6-Gingerol (6G) is the main active ingredient of ginger, a food with many health benefits. The present study aims to investigate the potential pharmacological mechanisms of 6G on As2O3-induced myocardial injury. Methods and Results: Fifty KunMing mice were divided into five groups (n = 10) receiving: 1) physiological saline; 2) 6G (20 mg/kg) alone; 3) As2O3 (5 mg/kg); 4) 6G (10 mg/kg) and As2O3 (5 mg/kg); 5) 6G (20 mg/kg) and As2O3 (5 mg/kg). 6G was given orally and As2O3 was given intraperitoneally once per day for seven consecutive days. Biochemical, histopathological, transmission electron microscopy, ELISA, and western blotting analyses were then performed. Based on the resultant data, As2O3 was found to induce cardiotoxicity in mice. 6G significantly ameliorated As2O3-induced heart injury, histopathological changes, oxidative stress, myocardial mitochondrial damage, inflammation, and cardiomyocyte apoptosis, while reversed As2O3-induced inhibition of the AMPK/SIRT1/PGC-1α pathway. Conclusion: Our experimental results reveal that 6G effectively counteracts As2O3-induced cardiotoxicity including oxidative stress, inflammation and apoptosis, which might be attributed to its activation action on AMPK/SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yakun Yang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Muqing Zhang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chenxu Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yucong Xue
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shengjiang Guan
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Shengjiang Guan, ; Shijiang Sun, ; Qingzhong Jia,
| | - Shijiang Sun
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Shengjiang Guan, ; Shijiang Sun, ; Qingzhong Jia,
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Shengjiang Guan, ; Shijiang Sun, ; Qingzhong Jia,
| |
Collapse
|
9
|
Albtoosh A, Karawya F, Al-Naymat W, Al-Qaitat A. Potential Protective Effect of Spirulina Platensis on Sodium Arsenite Induced Cardiotoxicity in Male Rats. Tissue Barriers 2022; 10:1983330. [PMID: 34615441 PMCID: PMC9067523 DOI: 10.1080/21688370.2021.1983330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Sodium arsenite is a dangerous bio-accumulative poison affecting a large number of people as well as animals throughout the world. It is used clinically in the treatment of certain medical conditions, but due to its harmful damage to different tissues and mainly the cardiotoxicity, its medical application is limited. AIM This study was conducted to investigate the protective effects of spirulina on cardiotoxicity induced by sodium arsenite biochemically and histologically. METHODS 30 young adult male albino rats were randomly equally divided into three groups 10 animals each. Group I (control), Group II Arsenic intoxicated (10 mg/kg/day/ 4 weeks), Group III spirulina protected animals (concomitant sodium arsenite 10 mg/kg/day/ 4 weeks and spirulina 200 mg/kg/day/ 4 weeks). RESULTS It was evident from the study that arsenic exposure exerted a significant increase in cardiac enzyme levels, serum creatine kinase MB (CKMB) and troponin. Concomitant treatment with spirulina is considerably recovered their serum levels. Histological alterations associated with arsenite treated animals are significantly decreased after using spirulina. CONCLUSIONS The results of the present study showed that use of spirulina could alleviate the toxic effects on the heart following exposure to arsenic toxicity.
Collapse
Affiliation(s)
| | - Fardous Karawya
- College of Medicine, Mutah University, Jordan
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | |
Collapse
|
10
|
Zhao D, Zhang Y, Lu Y, Fan L, Zhang Z, Chai M, Zheng J. Genome sequence and transcriptome of Sorbus pohuashanensis provides insights into population evolution and leaf sunburn response. J Genet Genomics 2022; 49:547-558. [PMID: 34995812 DOI: 10.1016/j.jgg.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Sorbus pohuashanensis is a potential horticulture and medicinal plant, but its genomic and genetic backgrounds remain unknown. Here, we sequenced and assembled the S. pohuashanensis (Hance) Hedl. reference genome using PacBio long reads. Based on the new reference genome, we resequenced a core collection of 22 Sorbus spp. samples, which were divided into 2 groups (G1 and G2) based on phylogenetic and PCA analyses. These phylogenetic clusters were highly consistent with their classification based on leaf shape. Natural hybridization between the G1 and G2 groups was evidenced by a sample (R21) with a highly heterozygous genotype. Nucleotide diversity (π) analysis showed that G1 had a higher diversity than G2 and that G2 originated from G1. During the evolution process, the gene families involved in photosynthesis pathways expanded and the gene families involved in energy consumption contracted. RNA-seq data suggested that flavonoid biosynthesis and heat-shock protein (HSP)-heat-shock factor (HSF) pathways play important roles in protection against sunburn. This study provides new insights into the evolution of Sorbus spp. genomes. In addition, the genomic resources, and the identified genetic variations, especially those related to stress resistance, will help future efforts to produce and breed Sorbus spp.
Collapse
Affiliation(s)
- Dongxue Zhao
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest Tree Germplasm Resources, Jinan, Shandong 250102, China
| | - Liqiang Fan
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zhibin Zhang
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Mao Chai
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| | - Jian Zheng
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
11
|
Xiaojin Y, Caiyan L, Lianrong Y, Guoliang X, Zhengqing L, Shizhe C, Xiaodi Y, Hua H. Study on the Antioxidant and Anticancer Activities of Sorbus pohuashanensis (Hance) Hedl Flavonoids In Vitro and Its Screen of Small Molecule Active Components. Nutr Cancer 2021; 74:2243-2253. [DOI: 10.1080/01635581.2021.1998560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yu Xiaojin
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liu Caiyan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Lianrong
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xie Guoliang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Zhengqing
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen Shizhe
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Xiaodi
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Han Hua
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
12
|
Sun X, Wang X, He Q, Zhang M, Chu L, Zhao Y, Wu Y, Zhang J, Han X, Chu X, Wu Z, Guan S. Investigation of the ameliorative effects of baicalin against arsenic trioxide-induced cardiac toxicity in mice. Int Immunopharmacol 2021; 99:108024. [PMID: 34333357 DOI: 10.1016/j.intimp.2021.108024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022]
Abstract
Baicalin (BA), a kind of flavonoids compound, comes from Scutellaria baicalensis Georgi (a kind of perennial herb) and has beneficial effects on the cardiovascular system through anti-oxidant, anti-inflammation, and anti-apoptosis actions. However, the therapeutic effects and latent mechanisms of BA on arsenic trioxide (ATO)-induced cardiac toxicity has not been reported. The present research was performed to explore the effects and mechanisms of BA on ATO-induced heart toxicity. Male Kunming mice were treated with ATO (7.5 mg/kg) to induce cardiac toxicity. After the mice received ATO, BA (50 and 100 mg/kg) was administered for estimating its cardioprotective effects. Statistical data demonstrated that BA treatment alleviated electrocardiogram abnormalities and pathological injury caused by ATO. BA could also lead to recovery of CK and LDH activities to normal range and cause a decrease in MDA levels and ROS generation, augmentation of SOD, CAT, and GSH activities. We also found that BA caused a reduction in the expression of proinflammatory cytokines, such as TNF-α and IL-6. Moreover, BA attenuated ATO-induced apoptosis by promoting the expression of Bcl-2 and suppressing the expression of Bax and caspase-3. TUNEL test result demonstrated BA caused impediment of ATO-induced apoptosis. Furthermore, BA treatment suppressed the high expression of TLR4, NF-κB and P-NF-κB caused by ATO. In conclusion, these results indicate that BA may alleviate ATO-induced cardiac toxicity by restraining oxidative stress, apoptosis, and inflammation, and its mechanism would be associated with the inhibition of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaoqi Sun
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Xiaotian Wang
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050011, Hebei, China
| | - Qianqian He
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Muqing Zhang
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050011, Hebei, China; College of Integrative Medicine, Heibei University of Chinese Medicine, Shijiazhuang, 050200 Hebei, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China
| | - Yang Zhao
- The Fourth Hospital of Hebei Medical University, 12, Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Yongchao Wu
- The Fourth Hospital of Hebei Medical University, 12, Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Jianping Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China; School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050011, Hebei, China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, 12, Jiankang Road, Shijiazhuang 050011, Hebei, China.
| | - Zhonglin Wu
- The Fourth Hospital of Hebei Medical University, 12, Jiankang Road, Shijiazhuang 050011, Hebei, China.
| | - Shengjiang Guan
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050011, Hebei, China; School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
13
|
He Y, Pan L, Yang T, Wang W, Li C, Chen B, Shen Y. Metabolomic and Confocal Laser Scanning Microscopy (CLSM) Analyses Reveal the Important Function of Flavonoids in Amygdalus pedunculata Pall Leaves With Temporal Changes. FRONTIERS IN PLANT SCIENCE 2021; 12:648277. [PMID: 34093611 PMCID: PMC8170035 DOI: 10.3389/fpls.2021.648277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Amygdalus pedunculata Pall [Rosaceae, Prunus, Prunus pedunculata (Pall.) Maxim.] belongs to the Rosaceae family and is resistant to cold and drought. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry and metabolomics were used to track the changes in bioactive metabolites during several stages of Amygdalus pedunculata Pall growth. A total of 827 different metabolites were detected, including 169 flavonoids, 68 organic acids, 35 terpenoids and 2 tannins. Flavonoid biosynthesis and flavone and flavonol biosynthesis were the main synthetic sources of flavonoids. Quercetin, isoquercitrin, and epicatechin as biomarkers related to growth and development were found. Quercetin connects the biosynthesis of flavonoids and the biosynthesis of flavones and flavonols. The contents of isoquercitrin and epicatechin increased uniformly during the whole growth process from the flowering stage to the fruit ripening stage, indicating that play key roles in the fruit growth and ripening stages of this plant. The tissue location and quantitative analysis of flavonoids in leaves at different stages were performed by confocal laser scanning microscopy. The flavonoids were mainly distributed in the palisade tissue and spongy tissue, indicating the need for protection of these sensitive tissues in particular. Through comprehensive and systematic analysis, the temporal distribution of flavonoids in the process of their leaves growth was determined. These results clarify the important role of flavonoids in the developmental process of Amygdalus pedunculata Pall.
Collapse
Affiliation(s)
- Yueyue He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Lei Pan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Tao Yang
- Shaanxi Academy of Forestry, Xi’an, China
- Technology Research Center of Amygdalus pedunculata of State Forestry and Grassland Administration, Yulin, China
| | - Wei Wang
- Key Laboratory of Silviculture of the State Forestry Administration, The Institute of Forestry, The Chinese Academy of Forestry, Beijing, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| |
Collapse
|
14
|
Zheng B, Yang Y, Li J, Li J, Zuo S, Chu X, Xu S, Ma D, Chu L. Magnesium Isoglycyrrhizinate Alleviates Arsenic Trioxide-Induced Cardiotoxicity: Contribution of Nrf2 and TLR4/NF-κB Signaling Pathway. Drug Des Devel Ther 2021; 15:543-556. [PMID: 33603344 PMCID: PMC7886103 DOI: 10.2147/dddt.s296405] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Magnesium isoglycyrrhizinate (MgIG), a single stereoisomer magnesium salt of glycyrrhizic acid, has beneficial effects on the cardiovascular system through anti-inflammatory, anti-oxidation, and anti-apoptotic actions. However, MgIG has not been shown to provide protection against cardiotoxicity induced by arsenic trioxide (ATO). This study aims to demonstrate the protection of MgIG against ATO-induced cardiac toxicity in mice and to investigate the underlying mechanism. METHODS A mouse cardiotoxicity model was established by administering 5 mg/kg ATO for 7 days. MgIG used in conjunction with the ATO to assess its cardioprotection. RESULTS MgIG administration could significantly reduce reactive oxygen species generation and the changes in tissue morphology. Also, MgIG administration increased the activity of antioxidase, such as superoxide dismutase, catalase, and glutathione peroxidase, and reduced malondialdehyde content and pro-inflammatory cytokine levels. Western blotting showed decreased expression of Bcl-2 associated X protein and Caspase-3, with increased expression of B-cell lymphoma 2. Importantly, MgIG administration increased nuclear factor-erythroid-2-related factor 2 (Nrf2) expression, while the expressions of nuclear factor kappa-B (NF-κB) and toll-like receptor-4 (TLR4) were significantly decreased. CONCLUSION Our data showed that MgIG alleviates ATO-induced cardiotoxicity, which is associated to the anti-inflammation, anti-oxidation, and anti-apoptosis action, potentially through activation of the Nrf2 pathway and suppression of the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Bin Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Yakun Yang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Jinghan Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Jing Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Saijie Zuo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, People’s Republic of China
| | - Shan Xu
- Hebei Province Hospital of Chinese Medicine, Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| |
Collapse
|
15
|
Zhao Z, Li J, Zheng B, Liang Y, Shi J, Zhang J, Han X, Chu L, Chu X, Gao Y. Ameliorative effects and mechanism of crocetin in arsenic trioxide‑induced cardiotoxicity in rats. Mol Med Rep 2020; 22:5271-5281. [PMID: 33173984 PMCID: PMC7646993 DOI: 10.3892/mmr.2020.11587] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/20/2020] [Indexed: 01/15/2023] Open
Abstract
Arsenic trioxide (ATO) is commonly used to treat patients with acute promyelocytic leukemia since it was authorized by the U.S. Food and Drug Administration in the 1970s, but its applicability has been limited by its cardiotoxic effects. Therefore, the aim of the present study was to investigate the cardioprotective effects and underlying mechanism of crocetin (CRT), the critical ingredient of saffron. Sprague-Dawley rats were then randomly divided into four groups (n=10/group): i) Control group; ii) ATO group, iii) CRT-low (20 mg/kg) group; and iv) CRT-high (40 mg/kg) group. Rats in the Control and ATO groups were intraperitoneally injected with equal volumes of 0.9% sodium chloride solution, and CRT groups were administered with either 20 and 40 mg/kg CRT. Following 6 h, all groups except the Control group were intraperitoneally injected with 5 mg/kg ATO over 10 days. Cardiotoxicity was indicated by changes in electrocardiographic (ECG) patterns, morphology and marker enzymes. Histomorphological changes in the heart tissue were observed by pathological staining. The levels of superoxide dismutase, glutathione peroxidase, malondialdehyde and catalase in the serum were analyzed using colometric commercial assay kits, and the levels of reactive oxygen species in the heart tissue were detected using the fluorescent probe dihydroethidium. The expression levels of inflammatory factors and activities of apoptosis-related proteins were analyzed using immunohistochemistry. The protein expression levels of silent information regulator of transcription 1 were measured using western blotting. Cardiotoxicity was induced in male Sprague-Dawley rats with ATO (5 mg/kg). CRT (20 and 40 mg/kg) and ATO were co-administered to evaluate possible cardioprotective effects. CRT significantly reduced the heart rate and J-point elevation induced by ATO in rats. Histological changes were evaluated via hematoxylin and eosin staining. CRT decreased the levels of creatine kinase and lactate dehydrogenase, increased the activities of superoxide dismutase, glutathione-peroxidase and catalase, and decreased the levels of malondialdehyde and reactive oxygen species. Moreover, CRT downregulated the expression levels of the pro-inflammatory factors IL-1, TNF-α, IL-6, Bax and p65, as well as increased the expression of Bcl-2. It was also identified that CRT enhanced silent information regulator of transcription 1 protein expression. Thus, the present study demonstrated that CRT treatment effectively ameliorated ATO-induced cardiotoxicity. The protective effects of CRT can be attributed to the inhibition of oxidative stress, inflammation and apoptosis. Therefore, CRT represents a promising therapeutic method for improving the cardiotoxic side effects caused by ATO treatment, and additional clinical applications are possible, but warrant further investigation.
Collapse
Affiliation(s)
- Zhifeng Zhao
- Department of Pharmaceutics, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Jinghan Li
- Department of Preventive Medicine, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Bin Zheng
- Department of Pharmaceutics, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Yingran Liang
- Department of Pharmaceutics, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Jing Shi
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jianping Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xue Han
- Department of Pharmaceutics, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Li Chu
- Department of Pharmaceutics, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yonggang Gao
- Department of Preventive Medicine, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| |
Collapse
|
16
|
Xue Y, Li M, Xue Y, Jin W, Han X, Zhang J, Chu X, Li Z, Chu L. Mechanisms underlying the protective effect of tannic acid against arsenic trioxide‑induced cardiotoxicity in rats: Potential involvement of mitochondrial apoptosis. Mol Med Rep 2020; 22:4663-4674. [PMID: 33173965 PMCID: PMC7646850 DOI: 10.3892/mmr.2020.11586] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Arsenic trioxide (ATO) is a frontline chemotherapy drug used in the therapy of acute promyelocytic leukemia. However, the clinical use of ATO is hindered by its cardiotoxicity. The present study aimed to observe the potential effects and underlying mechanisms of tannic acid (TA) against ATO-induced cardiotoxicity. Male rats were intraperitoneally injected with ATO (5 mg/kg/day) to induce cardiotoxicity. TA (20 and 40 mg/kg/day) was administered to evaluate its cardioprotective efficacy against ATO-induced heart injury in rats. Administration of ATO resulted in pathological damage in the heart and increased oxidative stress as well as levels of serum cardiac biomarkers creatine kinase and lactate dehydrogenase and the inflammatory marker NF-κB (p65). Conversely, TA markedly reversed this phenomenon. Additionally, TA treatment caused a notable decrease in the expression levels of cleaved caspase-3/caspase-3, Bax, p53 and Bad, while increasing Bcl-2 expression levels. Notably, the application of TA decreased the expression levels of cytochrome c, second mitochondria-derived activator of caspases and high-temperature requirement A2, which are apoptosis mitochondrial-associated proteins. The present findings indicated that TA protected against ATO-induced cardiotoxicity, which may be associated with oxidative stress, inflammation and mitochondrial apoptosis.
Collapse
Affiliation(s)
- Yucong Xue
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Mengying Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Yurun Xue
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Weiyue Jin
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Jianping Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Ziliang Li
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| |
Collapse
|
17
|
Crocin ameliorates arsenic trioxide‑induced cardiotoxicity via Keap1-Nrf2/HO-1 pathway: Reducing oxidative stress, inflammation, and apoptosis. Biomed Pharmacother 2020; 131:110713. [PMID: 32920515 DOI: 10.1016/j.biopha.2020.110713] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/16/2020] [Accepted: 08/29/2020] [Indexed: 12/27/2022] Open
Abstract
Arsenic trioxide (ATO) is an excellent therapy for acute promyelocytic leukemia; however, its use is limited due to its cardiotoxicity. Crocin (CRO) possesses abundant pharmacological and biological properties, including antioxidant, anti-inflammatory, and anti-apoptotic. This study examined the cardioprotective effects of crocin and explored their mechanistic involvement in ATO-induced cardiotoxicity. Forty-eight male rats were treated with ATO to induce cardiotoxicity. In combination with ATO, CRO were given to evaluate its cardioprotection. The results demonstrated that CRO administration not only diminished QTc prolongation, myocardial enzymes and Troponin T levels but also improved histopathological results. CRO administration reduced reactive oxygen species generation. However, the CRO administration caused an increase in glutathione, superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase and total sulphydryl levels and a decrease in malondialdehyde content, gamma glutamyl transferase and lipid hydroperoxides levels and proinflammatory cytokines. Importantly, immunohistochemical analysis, real time PCR and western blotting showed a reduction in Caspase-3 and Bcl-2-associated X protein expressions and enhancement of B cell lymphoma-2 expression. Real time PCR and western blotting showed a reduction in proinflammatory cytokines. Moreover, CRO caused an activation in nuclear factor erythroid-2 related factor 2, leading to enhanced Kelch-like ECH-associated protein 1, heme oxygenase-1 and nicotinamide adenine dinucleotide quinone dehydrogenase 1 expressions involved in Nrf2 signaling during ATO-induced cardiotoxicity. CRO was shown to ameliorate ATO-induced cardiotoxicity. The mechanisms for CRO amelioration of cardiotoxicity due to inflammation, oxidative damage, and apoptosis may occur via an up-regulated Keap1-Nrf2/HO-1 signaling pathway.
Collapse
|
18
|
A Systematic Review of the Various Effect of Arsenic on Glutathione Synthesis In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9414196. [PMID: 32802886 PMCID: PMC7411465 DOI: 10.1155/2020/9414196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
Background Arsenic is a toxic metalloid widely present in nature, and arsenic poisoning in drinking water is a serious global public problem. Glutathione is an important reducing agent that inhibits arsenic-induced oxidative stress and participates in arsenic methylation metabolism. Therefore, glutathione plays an important role in regulating arsenic toxicity. In recent years, a large number of studies have shown that arsenic can regulate glutathione synthesis in many ways, but there are many contradictions in the research results. At present, the mechanism of the effect of arsenic on glutathione synthesis has not been elucidated. Objective We will conduct a meta-analysis to illustrate the effects of arsenic on GSH synthesis precursors Glu, Cys, Gly, and rate-limiting enzyme γ-GCS in mammalian models, as well as the regulation of p38/Nrf2 of γ-GCS subunit GCLC, and further explore the molecular mechanism of arsenic affecting glutathione synthesis. Results This meta-analysis included 30 studies in vivo and 58 studies in vitro, among which in vivo studies showed that arsenic exposure could reduce the contents of GSH (SMD = -2.86, 95% CI (-4.45, -1.27)), Glu (SMD = -1.11, 95% CI (-2.20,-0.02)), and Cys (SMD = -1.48, 95% CI (-2.63, -0.33)), with no statistically significant difference in p38/Nrf2, GCLC, and GCLM. In vitro studies showed that arsenic exposure increased intracellular GSH content (SMD = 1.87, 95% CI (0.18, 3.56)) and promoted the expression of p-p38 (SMD = 4.19, 95% CI (2.34, 6.05)), Nrf2 (SMD = 4.60, 95% CI (2.34, 6.86)), and GCLC (SMD = 1.32, 95% CI (0.23, 2.41)); the p38 inhibitor inhibited the expression of Nrf2 (SMD = -1.27, 95% CI (-2.46, -0.09)) and GCLC (SMD = -5.37, 95% CI (-5.37, -2.20)); siNrf2 inhibited the expression of GCLC, and BSO inhibited the synthesis of GSH. There is a dose-dependent relationship between the effects of exposure on GSH in vitro. Conclusions. These indicate the difference between in vivo and in vitro studies of the effect of arsenic on glutathione synthesis. In vivo studies have shown that arsenic exposure can reduce glutamate and cysteine levels and inhibit glutathione synthesis, while in vitro studies have shown that chronic low-dose arsenic exposure can activate the p38/Nrf2 pathway, upregulate GCLC expression, and promote glutathione synthesis.
Collapse
|
19
|
Zhang W, Huo T, Li A, Wu X, Feng C, Liu J, Jiang H. Identification of neurotoxicity markers induced by realgar exposure in the mouse cerebral cortex using lipidomics. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121567. [PMID: 32061421 DOI: 10.1016/j.jhazmat.2019.121567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Realgar is a traditional Chinese medicine containing arsenic and has neurotoxicity. This study used realgar exposure mice model, neurobehavioral tests, analytical chemistry, molecular biology and nontargeted lipidomics to explore the mechanism of realgar damages the nervous system. The arsenic contained in realgar passed through the BBB and accumulated in the brain. Neurons, synapses and myelin showed abnormal changes in the cerebral cortex. The number of autophagosomes were incresed as well as levels of MDA, Lp-PLA2, and cPLA2 but the CAT level was significant reduced. Finally, the cognition and memory of mice were decreased. Nontargeted lipidomics detected 34 lipid subclasses including 1603 lipid molecules. The levels of the LPC and LPE were significantly increased. Under the condition of variable importance for the projection (VIP)>1 and P < 0.05, only 28 lipid molecules satisfied the criteria. The lipid molecular markers SM (d36:2), PE (18:2/22:6) and PE (36:3) which were filtered by receiver operating characteristic (ROC) curve (AUC>0.8 or AUC<0.2) were used to identify the neurotoxicity induced by realgar. Therefore, realgar induces neurotoxicity through exacerbating oxidative damage and lipid dysfunction. Providing research basis for the clinical diagnosis and treatment of realgar-induced neurotoxicity.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Aihong Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xinyu Wu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Cong Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
20
|
Astaxanthin Protects Ochratoxin A-Induced Oxidative Stress and Apoptosis in the Heart via the Nrf2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7639109. [PMID: 32190177 PMCID: PMC7073479 DOI: 10.1155/2020/7639109] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/18/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
This study assessed the protective mechanism of astaxanthin (ASX) against ochratoxin A- (OTA-) induced cardiac injury in mice. Four groups of mice were established: control group (0.1 mL olive oil + 0.1 mL NaHCO2), OTA group (0.1 mL OTA 5 mg/kg body weight), ASX group (0.1 mL ASX 100 mg/kg body weight), and ASX + OTA group (0.1 mL ASX 100 mg/kg body weight, 2 h later, 0.1 mL OTA 5 mg/kg body weight). The test period lasted for 27 days (7 days of dosing, 2 days of rest). Electrocardiogram, body weight, heart weight, tissue pathology, oxidative markers (malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH)), biochemical markers (creatine kinase (CK), creatine kinase isoenzyme (CK-MB), and lactate dehydrogenase (LDH)), electron microscopy, TUNEL, and Western blot tests were used to examine the effects of OTA on myocardial injury and ASX detoxification. The results showed that OTA exposure significantly decreased both body weight and heart weight. OTA induced a decrease in heart rate in mice and decreased tissue concentrations of SOD, CAT, and GSH, while increasing serum concentrations of cardiac enzymes (CK, CK-MB, and LDH) and tissue MDA. ASX improved heart rate, cardiac enzymes, and antioxidant levels in mice. The results of tissue pathology and TUNEL assay showed that ASX protects against OTA-induced myocardial injury. In addition, Western blot results showed that the OTA group upregulated Keap1, Bax, Caspase3, and Caspase9, while it downregulated Nrf2, HO-1, and Bcl-2 protein expression. ASX played a protective role by changing the expression of Keap1, Nrf2, HO-1, Bax, Bcl-2, Caspase3, and Caspase9 proteins. These results indicate that the protective mechanism of ASX on the myocardium works through the Keap1-Nrf2 signaling pathway and mitochondria-mediated apoptosis pathway. This study provides a molecular rationale for the mechanism underlying OTA-induced myocardial injury and the protective effect of ASX on the myocardium.
Collapse
|
21
|
The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules 2020; 10:biom10020240. [PMID: 32033297 PMCID: PMC7072296 DOI: 10.3390/biom10020240] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.
Collapse
|
22
|
Tian X, Feng J, Dong N, Lyu Y, Wei C, Li B, Ma Y, Xie J, Qiu Y, Song G, Ren X, Yan X. Subchronic exposure to arsenite and fluoride from gestation to puberty induces oxidative stress and disrupts ultrastructure in the kidneys of rat offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:1229-1237. [PMID: 31412519 DOI: 10.1016/j.scitotenv.2019.04.409] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 06/10/2023]
Abstract
Underground drinking water is commonly contaminated with arsenite (As) and fluoride (F) associated with chronic kidney diseases in humans; however, the combined renal toxicity of these pollutants and the underlying mechanisms are still unclear. The aim of the present study was to investigate the interaction between As and F regarding toxic effects on the kidney of rat offspring exposed to pollutants during prenatal and postnatal development. Pregnant rats were randomly divided into four groups that received NaAsO2 (50 mg/L), NaF (100 mg/L), NaAsO2 (50 mg/L) and NaF (100 mg/L) in drinking water, or clean water, respectively, during gestation and lactation. After weaning, six male pups were randomly selected from each group and continued on the same treatment as their mothers for up to three months. The results revealed that subchronic exposure to high-dose As and/or F decreased the organ coefficient of the kidneys and disrupted kidney ultrastructure, moreover inhibited the activity of antioxidant enzymes and increased the generation of malondialdehyde in the kidney. As exposure alone or combined with F led to an upregulation of nuclear factor erythroid 2-related factor-2 (Nrf2) and its regulatory targets (Ho-1, Gclc, and Nqo1), whereas the effect of F alone was not significant. These results suggest that the renal toxicity of As and F is associated with the induction of mitochondrial damage and oxidative stress, and alters the expression of Nrf2 and its regulatory targets. Furthermore, variance analysis results showed that an interaction between As and F in the toxicity process.
Collapse
Affiliation(s)
- Xiaolin Tian
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Jing Feng
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Nisha Dong
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yi Lyu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yanqin Ma
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Guohua Song
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214, USA; Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214, USA
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| |
Collapse
|
23
|
Haybar H, Shahrabi S, Rezaeeyan H, Jodat H, Saki N. Strategies to inhibit arsenic trioxide-induced cardiotoxicity in acute promyelocytic leukemia. J Cell Physiol 2019; 234:14500-14506. [PMID: 30770558 DOI: 10.1002/jcp.28292] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Arsenic trioxide (ATO) is a drug commonly used for the treatment of acute promyelocytic leukemia (APL). Although ATO has been shown to cause significant improvement in patients, it is associated with serious side effects, which sometimes lead to the patient's death. In this review paper, we examine the reports of ATO-induced cardiotoxicity in APL patients and evaluate the strategies to reduce the incidence of such toxicity. METHODS The key search terms were "arsenic trioxide," "acute promyelocytic leukemia," "cardiotoxicity," "molecular pathway," and "biomarker." RESULTS Studies have indicated the involvement of several molecular pathways in ATO-induced cardiotoxicity. These pathways increase the production of reactive oxygen species by interfering with intracellular calcium homeostasis as well as impairing the transfer of calcium into endoplasmic reticulum and mitochondria. On the other hand, increasing or decreasing expressions of some microRNAs (miRs) have been shown to play a role in cardiotoxicity. CONCLUSION Finally, it can be stated that given the essential role of molecular pathways in cardiotoxicity and considering the fact these pathways impair the regulation of miRs expression, identification of molecular pathways involved in ATO-induced cardiotoxicity aimed at targeting miRs could be a new therapeutic strategy to prevent cardiotoxicity.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hosein Jodat
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
24
|
Triterpenoids from fruits of Sorbus pohuashanensis inhibit acetaminophen-induced acute liver injury in mice. Biomed Pharmacother 2019; 109:493-502. [DOI: 10.1016/j.biopha.2018.10.160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023] Open
|
25
|
Khan H, Jawad M, Kamal MA, Baldi A, Xiao J, Nabavi SM, Daglia M. Evidence and prospective of plant derived flavonoids as antiplatelet agents: Strong candidates to be drugs of future. Food Chem Toxicol 2018; 119:355-367. [PMID: 29448091 DOI: 10.1016/j.fct.2018.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 02/05/2023]
Abstract
Platelets are involved in hemostasis, inflammation, and thrombosis processes. Following a vascular damage, the endothelium releases protein factors, allowing the adhesion of subendothelium to platelets. Then platelets are activated, leading to the secretion of biologically-active ligands including thromboxane A2, adenosine diphosphate and serotonin. Aspirin, clopidogrel and warfarin are the most common drugs used to meet the challenges of platelet aggregation. However, these agents face issues with aspirin resistance and bleeding. New therapeutically effective and safe agents are therefore strongly needed, and natural substances could be ideal candidates. Flavonoids, a chemically diverse group of polyphenols, might be important in this regard. Consumption of flavonoids is responsible for several health-promoting properties. A number of flavonoids have shown outstanding preclinical antiplatelet effects through various mechanisms. Flavonoids could provide an ideal approach as templates for new, clinically-effective and safe antiplatelet agents due to their inherent safety and multiple useful pharmacological hits. This review aims to report data from literature regarding flavonoids with antiplatelet activity, with a particular focus on possible mechanisms of action, pharmacokinetic profiles and overall safety, thus providing a strong rationale for the design of selective and well-directed antiplatelet agents of natural origin.
Collapse
Affiliation(s)
- Harron Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Mohammad Jawad
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | | | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Science of University of Pavia, Pavia, Italy.
| |
Collapse
|
26
|
Khan H, Perviz S, Sureda A, Nabavi SM, Tejada S. Current standing of plant derived flavonoids as an antidepressant. Food Chem Toxicol 2018; 119:176-188. [DOI: 10.1016/j.fct.2018.04.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 01/29/2023]
|
27
|
Pace C, Dagda R, Angermann J. Antioxidants Protect against Arsenic Induced Mitochondrial Cardio-Toxicity. TOXICS 2017; 5:toxics5040038. [PMID: 29206204 PMCID: PMC5750566 DOI: 10.3390/toxics5040038] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022]
Abstract
Arsenic is a potent cardiovascular toxicant associated with numerous biomarkers of cardiovascular diseases in exposed human populations. Arsenic is also a carcinogen, yet arsenic trioxide is used as a therapeutic agent in the treatment of acute promyelotic leukemia (APL). The therapeutic use of arsenic is limited due to its severe cardiovascular side effects. Many of the toxic effects of arsenic are mediated by mitochondrial dysfunction and related to arsenic's effect on oxidative stress. Therefore, we investigated the effectiveness of antioxidants against arsenic induced cardiovascular dysfunction. A growing body of evidence suggests that antioxidant phytonutrients may ameliorate the toxic effects of arsenic on mitochondria by scavenging free radicals. This review identifies 21 antioxidants that can effectively reverse mitochondrial dysfunction and oxidative stress in cardiovascular cells and tissues. In addition, we propose that antioxidants have the potential to improve the cardiovascular health of millions of people chronically exposed to elevated arsenic concentrations through contaminated water supplies or used to treat certain types of leukemias. Importantly, we identify conceptual gaps in research and development of new mito-protective antioxidants and suggest avenues for future research to improve bioavailability of antioxidants and distribution to target tissues in order reduce arsenic-induced cardiovascular toxicity in a real-world context.
Collapse
Affiliation(s)
- Clare Pace
- Department of Environmental Science and Health, University of Nevada, Reno, NV 89557, USA.
| | - Ruben Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| | - Jeff Angermann
- School of Community Health Sciences, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|